首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Mimosine reversibly arrests cell cycle progression at the G1-S phase border   总被引:7,自引:0,他引:7  
It has previously been demonstrated that the compound mimosine inhibits cell cycle traverse in late G1 phase prior to the onset of DNA synthesis (Hoffman BD, Hanauske-Abel HM, Flint A, Lalande M: Cytometry 12:26-32, 1991; Lalande M: Exp Cell Res 186:332-339, 1990). These results were obtained by using flow cytometric analysis of DNA content to compare the effects of mimosine on cell cycle traverse with those of aphidicolin, an inhibitor of DNA polymerase alpha activity. We have now measured the incorporation of bromodeoxyuridine into lymphoblastoid cells by flow cytometry to determine precisely where the two inhibitors act relative to the initiation of DNA synthesis. It is demonstrated here that mimosine arrests cell cycle progression at the G1-S phase border. The onset of DNA replication occurs within 15 min of releasing the cells from the mimosine block. In contrast, treatment with aphidicolin results in the accumulation of cells in early S phase. These results indicate that mimosine is a suitable compound for affecting the synchronous release of cells from G1 into S phase and for analyzing the biochemical events associated with this cell cycle phase transition.  相似文献   

5.
Irniger S  Bäumer M  Braus GH 《Genetics》2000,154(4):1509-1521
In budding yeast, the Ras/cAMP pathway is involved in the coordination of cell growth and cell division. Glucose-rich medium stimulates Ras/cAMP signaling, which causes an increase in the critical cell size for cell cycle entry. Here we show that glucose and activated Ras proteins also influence the function of the anaphase-promoting complex (APC/C), a ubiquitin-protein ligase required for sister chromatid separation and mitotic exit. We found that apc10-22 and other mutants defective in the APC/C are suppressed by reduced Ras signaling activity, by a deletion of the RAS2 gene, by a cdc25 mutation, by elevated levels of PDE2, or by growth without glucose. Viability of these mutants is also enhanced by decreased Cdk1 activity. In contrast, a constitutively activated RAS2(Val19) allele or shifts to glucose medium are deleterious to apc10-22 mutants. Remarkably, cdc34-2 mutants, which are impaired in SCF function, are differently affected with respect to Ras activity. Viability of cdc34-2 mutants at elevated temperatures is dependent on glucose and the RAS2 gene. We conclude that glucose and Ras proteins influence the APC/C and the SCF complex in an opposite manner. These ubiquitin ligases might represent novel targets for modulating cell division in response to growth conditions.  相似文献   

6.
Eukaryotic cells coordinate cell size with cell division by regulating the length of the G1 and G2 phases of the cell cycle. In fission yeast, the length of the G1 phase depends on a precise balance between levels of positive (cig1, cig2, puc1, and cdc13 cyclins) and negative (rum1 and ste9-APC) regulators of cdc2. Early in G1, cyclin proteolysis and rum1 inhibition keep the cdc2/cyclin complexes inactive. At the end of G1, the balance is reversed and cdc2/cyclin activity down-regulates both rum1 and the cyclin-degrading activity of the APC. Here we present data showing that the puc1 cyclin, a close relative of the Cln cyclins in budding yeast, plays an important role in regulating the length of G1. Fission yeast cells lacking cig1 and cig2 have a cell cycle distribution similar to that of wild-type cells, with a short G1 and a long G2. However, when the puc1(+) gene is deleted in this genetic background, the length of G1 is extended and these cells undergo S phase with a greater cell size than wild-type cells. This G1 delay is completely abolished in cells lacking rum1. Cdc2/puc1 function may be important to down-regulate the rum1 Cdk inhibitor at the end of G1.  相似文献   

7.
H A Snaith  S L Forsburg 《Genetics》1999,152(3):839-851
The fission yeast Schizosaccharomyces pombe can be induced to perform multiple rounds of DNA replication without intervening mitoses by manipulating the activity of the cyclin-dependent kinase p34(cdc2). We have examined the role in this abnormal rereplication of a large panel of genes known to be involved in normal S phase. The genes analyzed can be grouped into four classes: (1) those that have no effect on rereplication, (2) others that delay DNA accumulation, (3) several that allow a gradual increase in DNA content but not in genome equivalents, and finally, (4) mutations that completely block rereplication. The rereplication induced by overexpression of the CDK inhibitor Rum1p or depletion of the Cdc13p cyclin is essentially the same and requires the activity of two minor B-type cyclins, cig1(+) and cig2(+). In particular, the level, composition, and localization of the MCM protein complex does not alter during rereplication. Thus rereplication in fission yeast mimics the DNA synthesis of normal S phase, and the inability to rereplicate provides an excellent assay for novel S-phase mutants.  相似文献   

8.
Tylophorine, a representative phenanthroindolizidine alkaloid from Tylophoraindica plants, exhibits anti-inflammatory and anti-cancerous growth activities. However, the underlying mechanisms of its anti-cancer activity have not been elucidated and its effects on cell cycle remain ambiguous. Here, we reveal by asynchronizing and synchronizing approaches that tylophorine not only retards the S-phase progression but also dominantly arrests the cells at G1 phase in HepG2, HONE-1, and NUGC-3 carcinoma cells. Moreover, tylophorine treatment results in down regulated cyclin A2 expression and overexpressed cyclin A2 rescues the G1 arrest by tylophorine. Thus, we are the first to report that the downregulated cyclin A2 plays a vital role in G1 arrest by tylophorine in carcinoma cells.  相似文献   

9.
Deletion of the fission yeast mitotic B-type cyclin gene cdc13 causes cells to undergo successive rounds of DNA replication. We have used a strain which expresses cdc13 conditionally to investigate re-replication. Activity of Start genes cdc2 and cdc10 is necessary and p34cdc2 kinase is active in re-replicating cells. We tested to see whether other cyclins were required for re-replication using cdc13delta. Further deletion of cig1 and puc1 had no effect, but deletion of cig2/cyc17 caused a severe delay in re-replication. Deletion of cig1 and cig2/cyc17 together abolished re-replication completely and cells arrested in G1. This, and analysis of the temperature sensitive cdc13-117 mutant, suggests that cdc13 can effectively substitute for the G1 cyclin activity of cig2/cyc17. We have characterized p56cdc13 activity and find evidence that in the absence of G1 cyclins, S-phase is delayed until the mitotic p34cdc2-p56cdc13 kinase is sufficiently active. These data suggest that a single oscillation of p34cdc2 kinase activity provided by a single B-type cyclin can promote ordered progression into both DNA replication and mitosis, and that the level of cyclin-dependent kinase activity may act as a master regulator dictating whether cells undergo S-phase or mitosis.  相似文献   

10.
Ubiquitin-mediated proteolysis has emerged as a key mechanism of regulation in eukaryotic cells. During cell division, a multi-subunit ubiquitin ligase termed the anaphase promoting complex (APC) targets critical regulatory proteins such as securin and mitotic cyclins, and thereby triggers chromosome separation and exit from mitosis. Previous studies in the yeast Saccharomyces cerevisiae identified the conserved WD40 proteins Cdc20 and Hct1 (Cdh1) as substrate-specific activators of the APC, but their precise mechanism of action has remained unclear. This study provides evidence that Hct1 functions as a substrate receptor that recognizes target proteins and recruits them to the APC for ubiquitylation and subsequent proteolysis. By co-immunoprecipitation, we found that Hct1 interacted with the mitotic cyclins Clb2 and Clb3 and the polo-related kinase Cdc5, whereas Cdc20 interacted with the securin Pds1. Failure to interact with Hct1 resulted in stabilization of Clb2. Analysis of Hct1 derivatives identified the C-box, a motif required for APC association of Hct1 and conserved among Cdc20-related proteins. We propose that proteins of the Cdc20 family are substrate recognition subunits of the ubiquitin ligase APC.  相似文献   

11.
The temporal relationship between cyclin A accumulation and the onset of DNA replication was analyzed in detail. Five untransformed and nine transformed asynchronously growing cell cultures were investigated using a triple immunofluorescence staining protocol combined with computerized evaluation of staining intensities in individual cells. The simultaneous staining of BrdU, cyclin A, and cyclin E made it possible to determine the cell cycle position of each cell investigated. Cells at the G(1)/S border were identified on the basis of cyclin E content and were further analyzed with respect to cyclin A and BrdU content. A method was developed to calculate objective thresholds defining the highest staining intensity found in the negative cells in the population. Using the thresholds we could distinguish cells with minute amounts of cyclin A and BrdU from truly negative cells. We show that the onset of cyclin A accumulation and the start of DNA replication occurs at the same time, or deviating by a few minutes at the most. We also show that cyclin A accumulates continuously during S. This study clearly demonstrates that nuclear cyclin A can be used as a reliable marker for the S and G(2) phases in both normal and transformed interphase cells.  相似文献   

12.
13.
Cdc2, a catalytic subunit of cyclin-dependent kinases, is required for both the G1-to-S and G2-to-M transitions in the fission yeast Schizosaccharomyces pombe. Cdc13, a B-type cyclin, is required for the M-phase induction function of Cd2. Two additional B-type cyclins, Cig1 and Cig2, have been identified in S. pombe, but none of the B-type cyclins are individually required for the onset of S. We report that Cdc13 is important for DNA replication in a strain lacking Cig2. Unlike deltacdc13 cells, double-mutant deltacdc13 deltacig2 cells are defective in undergoing multiple rounds of DNA replication. The conclusion that Cig2 promotes S is further supported by the finding that Cig2 protein and Cig2-associated kinase activity appear soon after the completion of M and peak during S, as well as the observation that S is delayed in deltacig2 cells as they recover from a G1 arrest induced by nitrogen starvation. These studies indicate that Cig2 is the primary S-phase-promoting cyclin in S. pombe but that Cdc13 can effectively substitute for Cig2 in deltacig2 cells. These observations also suggest that the gradual increase in the activity of Cdc2-Cdc13 kinase can be sufficient for the correct temporal ordering of S and M phases in deltacig2 cells.  相似文献   

14.
Recent studies have given us a clue as to how modulations of both metabolic pathways and cyclins by the ubiquitin system influence cell cycle progression. Among these metabolic modulations, an aerobic glycolysis and glutaminolysis represent an initial step for metabolic machinery adaptation. The enzymes 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and glutaminase-1 (GLS1) maintain a high abundance in glycolytic intermediates (for synthesis of non-essential amino acids, the use of ribose for the synthesis of nucleotides and hexosamine biosynthesis), as well as tricarboxylic acid cycle intermediates (replenishing the loss of mitochondrial citrate), respectively. On the one hand, regulation of these key metabolic enzymes by ubiquitin ligases anaphase-promoting complex/cyclosome (APC/C) and Skp1/cullin/F-box (SCF) has revealed the importance of anaplerosis by both glycolysis and glutaminolysis to overcome the restriction point of the G1 phase by maintaining high levels of glycolytic and glutaminolytic intermediates. On the other hand, only glutaminolytic intermediates are necessary to drive cell growth through the S and G2 phases of the cell cycle. It is interesting to appreciate how this reorganization of the metabolic machinery, which has been observed beyond cellular proliferation, is a crucial determinant of a cell’s decision to proliferate. Here, we explore a unifying view of interactions between the ubiquitin system, metabolic activity, and cyclin-dependent kinase complexes activity during the cell cycle.  相似文献   

15.
Degradation of Saccharomyces cerevisiae G(1) cyclins Cln1 and Cln2 is mediated by the ubiquitin-proteasome pathway and involves the SCF E3 ubiquitin-ligase complex containing the F-box protein Grr1 (SCF(Grr1)). Here we identify the domain of Cln2 that confers instability and describe the signals in Cln2 that result in binding to Grr1 and rapid degradation. We demonstrate that mutants of Cln2 that lack a cluster of four Cdc28 consensus phosphorylation sites are highly stabilized and fail to interact with Grr1 in vivo. Since one of the phosphorylation sites lies within the Cln2 PEST motif, a sequence rich in proline, aspartate or glutamate, serine, and threonine residues found in many unstable proteins, we fused various Cln2 C-terminal domains containing combinations of the PEST and the phosphoacceptor motifs to stable reporter proteins. We show that fusion of the Cln2 domain to a stabilized form of the cyclin-dependent kinase inhibitor Sic1 (Delta N-Sic1), a substrate of SCF(Cdc4), results in degradation in a phosphorylation-dependent manner. Fusion of Cln2 degradation domains to Delta N-Sic1 switches degradation of Sic1 from SCF(Cdc4) to SCF(Grr1). Delta N-Sic1 fused with a Cln2 domain containing the PEST motif and four phosphorylation sites binds to Grr1 and is unstable and ubiquitinated in vivo. Interestingly, the phosphoacceptor domain of Cln2 binds to Grr1 but is not ubiquitinated and is stable. In summary, we have identified a small transferable domain in Cln2 that can redirect a stabilized SCF(Cdc4) target for SCF(Grr1)-mediated degradation by the ubiquitin-proteasome pathway.  相似文献   

16.
Post-translational modification of proteins regulates many cellular processes. Some modifications, including N-linked glycosylation, serve multiple functions. For example, the attachment of N-linked glycans to nascent proteins in the endoplasmic reticulum facilitates proper folding, whereas retention of high mannose glycans on misfolded glycoproteins serves as a signal for retrotranslocation and ubiquitin-mediated proteasomal degradation. Here we examine the substrate specificity of the only family of ubiquitin ligase subunits thought to target glycoproteins through their attached glycans. The five proteins comprising this FBA family (FBXO2, FBXO6, FBXO17, FBXO27, and FBXO44) contain a conserved G domain that mediates substrate binding. Using a variety of complementary approaches, including glycan arrays, we show that each family member has differing specificity for glycosylated substrates. Collectively, the F-box proteins in the FBA family bind high mannose and sulfated glycoproteins, with one FBA protein, FBX044, failing to bind any glycans on the tested arrays. Site-directed mutagenesis of two aromatic amino acids in the G domain demonstrated that the hydrophobic pocket created by these amino acids is necessary for high affinity glycan binding. All FBA proteins co-precipitated components of the canonical SCF complex (Skp1, Cullin1, and Rbx1), yet FBXO2 bound very little Cullin1, suggesting that FBXO2 may exist primarily as a heterodimer with Skp1. Using subunit-specific antibodies, we further demonstrate marked divergence in tissue distribution and developmental expression. These differences in substrate recognition, SCF complex formation, and tissue distribution suggest that FBA proteins play diverse roles in glycoprotein quality control.  相似文献   

17.
18.
Ribosome biogenesis is an evolutionarily conserved pathway that requires ribosomal and nonribosomal proteins. Here, we investigated the role of the ribosomal protein S2 (Rps2) in fission yeast ribosome synthesis. As for many budding yeast ribosomal proteins, Rps2 was essential for cell viability in fission yeast and the genetic depletion of Rps2 caused a complete inhibition of 40S ribosomal subunit production. The pattern of pre-rRNA processing upon depletion of Rps2 revealed a reduction of 27SA2 pre-rRNAs and the concomitant production of 21S rRNA precursors, consistent with a role for Rps2 in efficient cleavage at site A2 within the 32S pre-rRNA. Importantly, kinetics of pre-rRNA accumulation as determined by rRNA pulse-chases assays indicated that a small fraction of 35S precursors matured into 20S-containing particles, suggesting that most 40S precursors were rapidly degraded in the absence of Rps2. Analysis of steady-state RNA levels revealed that some pre-40S particles were produced in Rps2-depleted cells, but that these precursors were retained in the nucleolus. Our findings suggest a role for Rps2 in a mechanism that monitors pre-40S export competence.  相似文献   

19.
20.
The COP9 signalosome (CSN) is a conserved protein complex with homologies to the lid subcomplex of the 26S proteasome. It promotes cleavage of the Nedd8 conjugate (deneddylation) from the cullin component of SCF ubiquitin ligases. We provide evidence that cullin neddylation and deneddylation is highly dynamic, that its equilibrium can be effectively modulated by CSN, and that neddylation allows Cul1 to form larger protein complexes. CSN2 integrates into the CSN complex via its C-terminal region and its N-terminal half region is necessary for direct interaction with Cul1. The polyclonal antibodies against CSN2 but not other CSN subunits cause accumulation of neddylated Cul1/Cul2 in HeLa cell extract, indicating that CSN2 is essential in cullin deneddylation. Further, CSN inhibits ubiquitination and degradation of the cyclin-dependent kinase inhibitor p27(kip1) in vitro. Microinjection of the CSN complex impeded the G1 cells from entering the S phase. Moreover, anti-CSN2 antibodies negate the CSN-dependent p27 stabilization and the G1/S blockage, suggesting that these functions require the deneddylation activity. We conclude that CSN inhibits SCF ubiquitin ligase activity in targeting p27 proteolysis and negatively regulates cell cycle at the G1 phase by promoting deneddylation of Cul1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号