首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study explores the relationship between microtopography and soil nutrients (and trace elements), comparing results for created and reference wetlands in Virginia, and examining the effects of disking during wetland creation. Replicate multiscale tangentially conjoined circular transects were used to quantify microtopography both in terms of elevation and by two microtopographic indices. Corresponding soil samples were analyzed for moisture content, total C and N, KCl-extractable NH4–N and NO3–N, and Mehlich-3 extractable P, Ca, Mg, K, Al, Fe, and Mn. Means and variances of soil nutrient/element concentrations were compared between created and natural wetlands and between disked and nondisked created wetlands. Natural sites had higher and more variable soil moisture, higher extractable P and Fe, lower Mn than created wetlands, and comparatively high variability in nutrient concentrations. Disked sites had higher soil moisture, NH4–N, Fe, and Mn than did nondisked sites. Consistently low variances (Levene test for inequality) suggested that nondisked sites had minimal nutrient heterogeneity. Across sites, low P availability was inferred by the molar ratio (Mehlich-3 [P/(Al + Fe)] < 0.06); strong intercorrelations among total C, total N, and extractable Fe, Al, and P suggested that humic–metal–P complexes may be important for P retention and availability. Correlations between nutrient/element concentrations and microtopographic indices suggested increased Mn and decreased K and Al availability with increased surface roughness. Disking appears to enhance water and nutrient retention, as well as nutrient heterogeneity otherwise absent from created wetlands, thus potentially promoting ecosystem development.  相似文献   

2.
再生(污)水灌溉生态风险与可持续利用   总被引:9,自引:0,他引:9  
作为一个农业大国,水资源贫乏及地域分布不均匀造成了我国严重的农业用水危机。为缓解我国农业用水危机,污水灌溉及再生水灌溉已成为解决农业灌溉水源不足的一项重要措施。在总结污水灌溉及再生水灌溉生态风险的基础上,针对国内研究现状,分析了我国再生水灌溉利用的可行性。研究发现,再生水灌溉的污染风险远小于污水灌溉,且再生水灌溉还具有回用成本低、减少农作物生产成本等经济效益,以及减少污染物向水环境中排放、改善土壤质量等环境效益。与污水灌溉相比再生水在农业灌溉上具有较大的应用前景,应加大其推广与应用的力度。最后,根据国内外的研究现状,提出了一些再生水灌溉可持续管理措施及其安全利用的相关建议。  相似文献   

3.
Reclaimed water use is an important component of sustainable water resource management. However, there are concerns regarding pathogen transport through this alternative water supply. This study characterized the viral community found in reclaimed water and compared it with viruses in potable water. Reclaimed water contained 1000-fold more virus-like particles than potable water, having approximately 108 VLPs per millilitre. Metagenomic analyses revealed that most of the viruses in both reclaimed and potable water were novel. Bacteriophages dominated the DNA viral community in both reclaimed and potable water, but reclaimed water had a distinct phage community based on phage family distributions and host representation within each family. Eukaryotic viruses similar to plant pathogens and invertebrate picornaviruses dominated RNA metagenomic libraries. Established human pathogens were not detected in reclaimed water viral metagenomes, which contained a wealth of novel single-stranded DNA and RNA viruses related to plant, animal and insect viruses. Therefore, reclaimed water may play a role in the dissemination of highly stable viruses. Information regarding viruses present in reclaimed water but not in potable water can be used to identify new bioindicators of water quality. Future studies will need to investigate the infectivity and host range of these viruses to evaluate the impacts of reclaimed water use on human and ecosystem health.  相似文献   

4.
天然水体中生物膜及悬浮颗粒物的元素含量研究   总被引:10,自引:0,他引:10  
应用一种简便的生物膜采样装置 ,分别于 1999年 7和 10月在北京颐和园昆明湖水体中采集生物膜、悬浮颗粒物和湖水样品 ,研究了天然水体中生物膜及悬浮颗粒物的元素含量 .用光学显微镜和扫描电子显微镜 (SEM)观察生物膜的形态和结构表明 ,生物膜内存在着棒形或球形的细菌、藻类、有机碎屑、原生动物和甲壳类动物等 .对生物膜样品的重量分析表明 ,在实验期间 ,随着生长时间的延长 ,生物膜样品的干重明显增加 .生长 78d时 ,1m水深处的生物膜样品干重可达 5 .19mg·cm-2 .用电感藕合等离子体发射光谱仪 (ICP AES)测定了生物膜、悬浮颗粒物和湖水中元素含量 .结果表明 ,实验期间生物膜中元素含量高于悬浮颗粒物 .同一时间、相同地点、不同水层深度生物膜样品中的元素含量无明显的规律性 .在 3个采样点 ,1及 1.5m水深处的生物膜样品中Ca、Mg、K、Na、Al、Fe和S的含量基本相近 ,Mn、Sr、Ti、P、La、Co、Cu、Pb、Li、Ni、B、Ce、V、Be和Cr的含量存在差异 .生长时间越长 ,生物膜样品的元素含量相对较高  相似文献   

5.
Biofilms are a serious problem in industrial recirculating cooling water systems. Biofilm formation and properties are affected by many factors, such as inorganic particles and suspended bacteria. In this research a laboratory model recirculating cooling water system was applied to investigate the effects of CaCO3 concentration and suspended bacterial count on extracellular polymeric substances (EPS) content and dehydrogenase activity (DHA) in the attached biofilms. In addition, nutrient level was also the key factor when investigating the effect of suspended bacterial count. The results showed that EPS content and DHA first increased and then decreased with the increase of CaCO3 concentration from 0 to 200 mg/l. At the low nutrient level, with the increase of suspended bacterial count from 4.04 to 5.78 log10 c.f.u./ml, biofilm EPS content decreased firstly and then increased. However, biofilm DHA always gradually increased. At the medium nutrient level, biofilm EPS content increased firstly and then decreased and DHA always gradually decreased when suspended bacterial count ranged from 4.04 to 5.78 log10 c.f.u./ml. At the high nutrient level, biofilm EPS content and DHA both showed the increasing trend with the increase of suspended bacterial count. This work provides the basis and reference for management strategies in actual recirculating cooling water systems.  相似文献   

6.
Although health risk due to discoloured water is minimal, such water continues to be the source of one of the major complaints received by most water utilities in Australia. Elevated levels of iron (Fe) and/or manganese (Mn) in bulk water are associated with discoloured water incidents. The accumulation of these two elements in distribution systems is believed to be one of the main causes for such elevated levels. An investigation into the contribution of pipe wall biofilms towards Fe and Mn deposition, and discoloured water events is reported in this study. Eight laboratory-scale reactors were operated to test four different conditions in duplicate. Four reactors were exposed to low Fe (0.05?mg?l?1) and Mn (0.02?mg?l?1) concentrations and the remaining four were exposed to a higher (0.3 and 0.4?mg?l?1 for Fe and Mn, respectively) concentration. Two of the four reactors which received low and high Fe and Mn concentrations were chlorinated (3.0?mg?l?1 of chlorine). The biological activity (measured in terms of ATP) on the glass rings in these reactors was very low (~1.5 ng cm?2 ring). Higher concentrations of Fe and Mn in bulk water and active biofilms resulted in increased deposition of Fe and Mn on the glass rings. Moreover, with an increase in biological activity, an increase in Fe and Mn deposition was observed. The observations in the laboratory-scale experiments were in line with the results of field observations that were carried out using biofilm monitors. The field data additionally demonstrated the effect of seasons, where increased biofilm activities observed on pipe wall biofilms during late summer and early autumn were found to be associated with increased deposition of Fe and Mn. In contrast, during the cooler months, biofilm activities were a magnitude lower and the deposited metal concentrations were also significantly less (ie a drop of 68% for Fe and 86% for Mn). Based on the laboratory-scale investigations, detachment of pipe wall biofilms due to cell death or flow dynamics could release the entrapped Fe and Mn into the bulk water, which could lead to a discoloured water event. Hence, managing biofilm growth on drinking water pipelines should be considered by water utilities to minimize accumulation of Fe and Mn in distribution networks.  相似文献   

7.
Ginige MP  Wylie J  Plumb J 《Biofouling》2011,27(2):151-163
Although health risk due to discoloured water is minimal, such water continues to be the source of one of the major complaints received by most water utilities in Australia. Elevated levels of iron (Fe) and/or manganese (Mn) in bulk water are associated with discoloured water incidents. The accumulation of these two elements in distribution systems is believed to be one of the main causes for such elevated levels. An investigation into the contribution of pipe wall biofilms towards Fe and Mn deposition, and discoloured water events is reported in this study. Eight laboratory-scale reactors were operated to test four different conditions in duplicate. Four reactors were exposed to low Fe (0.05 mg l(-1)) and Mn (0.02 mg l(-1)) concentrations and the remaining four were exposed to a higher (0.3 and 0.4 mg l(-1) for Fe and Mn, respectively) concentration. Two of the four reactors which received low and high Fe and Mn concentrations were chlorinated (3.0 mg l(-1) of chlorine). The biological activity (measured in terms of ATP) on the glass rings in these reactors was very low (~1.5 ng cm(-2) ring). Higher concentrations of Fe and Mn in bulk water and active biofilms resulted in increased deposition of Fe and Mn on the glass rings. Moreover, with an increase in biological activity, an increase in Fe and Mn deposition was observed. The observations in the laboratory-scale experiments were in line with the results of field observations that were carried out using biofilm monitors. The field data additionally demonstrated the effect of seasons, where increased biofilm activities observed on pipe wall biofilms during late summer and early autumn were found to be associated with increased deposition of Fe and Mn. In contrast, during the cooler months, biofilm activities were a magnitude lower and the deposited metal concentrations were also significantly less (ie a drop of 68% for Fe and 86% for Mn). Based on the laboratory-scale investigations, detachment of pipe wall biofilms due to cell death or flow dynamics could release the entrapped Fe and Mn into the bulk water, which could lead to a discoloured water event. Hence, managing biofilm growth on drinking water pipelines should be considered by water utilities to minimize accumulation of Fe and Mn in distribution networks.  相似文献   

8.
Electrocoagulation is an evolving technology that has been effectively applied for wastewater treatment but its applications in biotechnology and nanotechnology are very limited. This method was applied for the preparation of nanoparticles from soluble exopolysaccharide (EPS) produced by Claviceps viridis in a submerged batch culture. A cathode/anode pair electrode (Al or Fe) system was used for determination of the separation rates of electrocoagulation and the yields of EPS nanoparticles production. The separation rates of 0.170 +/- 0.003 mg EPS/sec (Fe electrodes) and 0.250 +/- 0.003 mg EPS/sec (Al electrodes) were calculated for voltage gradient 1 V/1 cm of electrodes distance and were constant during experiments. The specific yield of EPS nanoparticles production based on the consumed electric power was dependent on the material of the electrodes and its value was determined as 0.71 +/- 0.01 mg EPS/W for Fe electrodes and 0.91 +/- 0.01 mg EPS/W for Al electrodes, respectively.  相似文献   

9.
AIMS: To investigate the use of confocal Raman microspectroscopy (CRM) for the analysis of the structure, composition and development of fully hydrated biofilms. METHODS AND RESULTS: Pseudomonas aeruginosa PAO1 biofilms were cultured in a flow cell in minimal nutrient medium (artificial sea water) and their development was followed for up to 3 weeks. The spectroscopic signature of the biofilm cells and extracellular polymeric substances (EPS) were differentiated and their distribution in biofilm colonies and within water channels was mapped in-plane and -depth. The colonies were initially amorphous, mainly composed of cells with no detectable amount of EPS. They developed rapidly to give round colonies composed of a cellular core enclosed in a sheath of EPS. The EPS continued to increase and spread throughout the biofilm to become the dominating feature of aged colonies. Colonies with a liquid core morphology - characteristic of the seeding dispersal process - were also observed. CONCLUSIONS: This study demonstrated that CRM can be used to monitor the distribution of biofilm components in fully hydrated undisturbed biofilms over time. SIGNIFICANCE AND IMPACT OF THE STUDY: Confocal Raman microspectroscopy facilitates the analysis of hydrated, live bacterial biofilms as a function of space and time, thus making it a suitable technique for investigating the effects of various additives and environmental factors on biofilm growth.  相似文献   

10.
Microbial surface adhesion to surfaces and subsequent biofilm establishment are ubiquitous in drinking water systems, which often contribute to deteriorated water quality. Disinfectants are common agents applied to drinking water controlling microbial propagation, yet the underlying mechanisms of how disinfectants function to regulate microbial activity and thereby biofilm development remains elusive. We experimentally studied the effects of chlorination on extracellular polymeric substance (EPS) production, and its impacts on early-stage biofilm formation in a model drinking water system. Results showed that low-level chlorine (≤ 1.0 mg/L) stimulated microbial EPS (especially of proteins) excretion that favored early-stage biofilm formation. Microbes experiencing higher chlorination (>1.0 mg/L) exhibited clearly suppressed growth associated with reduced EPS release, consequently yielding less biofilm formation. Removal of cell-attached proteins and polysaccharides diminished biofilm formation, which highlighted the critical role of EPS (especially protein components) in biofilm development. A negative correlation between chlorination-mediated microbial protein production and cell surface charge suggested that chlorine disinfection may modify cell surface properties through regulation of microbial EPS excretion and thereby mediate biofilm formation. With these quantitative estimations, this study provides novel insights into how chlorination-mediated EPS excretion shapes early-stage biofilm formation, which is essential for practical functioning of drinking water systems.  相似文献   

11.
Aluminium, a potentially phytotoxic metal, is an important constituent of many mine water discharges but has largely been neglected in the literature. The behaviour of this element in the rhizosphere of the wetland plant Phragmites australis was investigated in the laboratory in the presence and absence of Mn and Fe root plaques. Electron microscopy and chemical extraction techniques were utilized to determine the physico-chemical properties of the plaques and any association of Al. Both Mn and Fe plaques occurred as amorphous coatings on root surfaces with uneven distributions. Al was not adsorbed onto the surface of either plaque type but formed a separate phosphate deposit closely resembling the Fe and Mn plaques. Phosphorus was also found to be adsorbed to the surface of the Fe plaques (but not the Mn plaques). Both mechanisms were found to immobilize P at the root surface but this did not significantly reduce the concentration of P in aerial plant tissues that was sufficient to ensure adequate growth.  相似文献   

12.
Chemical differences were noted between two Antarctic cryptoendolithic (hidden within rock) microenvironments colonized by different microbial communities. Microenvironments dominated by cyanobacteria (BPC) had a higher pH (pH 7–8) than those dominated by lichen (LTL) (pH 4.5–5.5). In order to understand the interactions between the microbiota and the inorganic environment, the inorganic environment was characterized. Water‐soluble, carbonate‐bound, metal‐oxide, organically bound, and residual inorganic species were sequentially extracted from rock samples by chemical means. Each fraction was then quantified using inductively coupled plasma atomic emission spectrometry. BPC contained much more water‐soluble and carbonate‐bound Ca and Mg than LTL. Metal‐oxide species of Al, Fe, and Mn were more abundant in LTL than BPC. Metal oxides appeared to be mobilized (in the order Mn > Fe > Al) from the LTL lichen zone but remained immobile in BPC sandstone. The distribution of K and P bound to metal oxide reflected the distribution of iron oxide in LTL, an indication of the importance of iron in controlling the availability of nutrients in this ecosystem. Metal oxides in turn were likely controlled or influenced by organic matter associated with the lichen community. Despite overall depletion of Fe, Al, and K in the lichen zone, SEM X‐ray analysis showed that they were enriched in fungal hyphae. Water‐soluble P was present despite the presence of metal oxides, which sequester phosphate. This has biological relevance since P is an essential nutrient.  相似文献   

13.
Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important driver in material accumulation within the DWDS.  相似文献   

14.
Biofilms can increase pathogenic contamination of drinking water, cause biofilm-related diseases, alter the sediment erosion rate, and degrade contaminants in wastewater. Compared with mature biofilms, biofilms in the early-stage have been shown to be more susceptible to antimicrobials and easier to remove. Mechanistic understanding of physical factors controlling early-stage biofilm growth is critical to predict and control biofilm development, yet such understanding is currently incomplete. Here, we reveal the impacts of hydrodynamic conditions and microscale surface roughness on the development of early-stage Pseudomonas putida biofilm through a combination of microfluidic experiments, numerical simulations, and fluid mechanics theories. We demonstrate that early-stage biofilm growth is suppressed under high flow conditions and that the local velocity for early-stage P. putida biofilms (growth time < 14 h) to develop is about 50 μm/s, which is similar to P. putida's swimming speed. We further illustrate that microscale surface roughness promotes the growth of early-stage biofilms by increasing the area of the low-flow region. Furthermore, we show that the critical average shear stress, above which early-stage biofilms cease to form, is 0.9 Pa for rough surfaces, three times as large as the value for flat or smooth surfaces (0.3 Pa). The important control of flow conditions and microscale surface roughness on early-stage biofilm development, characterized in this study, will facilitate future predictions and managements of early-stage P. putida biofilm development on the surfaces of drinking water pipelines, bioreactors, and sediments in aquatic environments.  相似文献   

15.
A screen-house experiment with 0, 25, 50 and 75 ppm S was conducted to study the effect of S on the yield and, Mn, Cu, Fe and Mo concentrations of berseem (Trifolium alexandrinum) at three stages of growth in a normal and reclaimed soil. Higher levels of S decreased the yield in both the soils. Yield in normal soil was much higher than in reclaimed soil. Application of S increased Cu, Mn, and Fe concentrations in all cuts in both soils. Molybdenum concentration was lowered following S application in both the soils in all the cuts. Molybdenum content increased with the stage of plant growth.  相似文献   

16.
It is well known that sessile bacteria have a strong tendency to exist in a biofilm phenotype, whereby bacterial cells aggregate and produce a gel-like extracellular matrix, which, in an infection scenario, offers a significant barrier to attack by conventional antibiotics and the immune system. In this paper we develop a multi-phase model of a maturing Pseudomonas aeruginosa biofilm, allowing for the production and secretion of exopolysaccharide (EPS). The primary quorum-sensing system of P. aeruginosa (namely the lasR system) is believed to be required for full biofilm development, and we thus take the synthesis of EPS to be regulated by the cognate signal molecule, 3-oxo-C12-HSL. We also take EPS and signal production, along with bacterial growth, to be limited by oxygen availability, thus factoring in the nutrient poor conditions deep inside the biofilm. We use simulations to examine the role played by quorum sensing in the biofilm maturation process, and to investigate the effect of anti-quorum sensing and antibiotic treatments on EPS concentration, signal level, bacterial numbers and biofilm growth rate. In addition, we undertake analysis of the associated travelling-wave behaviour.  相似文献   

17.
林地开垦后坡面土壤元素的时空变化特征   总被引:9,自引:2,他引:7  
土壤中常量元素Ca,Mg和微量元素Cu,Zn,Mn,Fe是植物生长必需的重要元素,也是评价土壤质量的重要指标,林地被开垦破坏后,坡面土壤元素的空间分布受人为犁耕活动,侵蚀-沉积-搬运过程和元素性质的影响;林地开垦初期(1-2年),坡面不同部位土壤Cu,Zn,Mn,Fe,K,Ca和Mg皆增加;而开垦两年后,受土壤侵蚀的影响,这些元素又趋于下降;开垦6年后,Cu,Fe,K和Mg比开垦前下降了1.5%-4.56%,SiO2含量在坡面上部随开垦年限的增加而增加,在坡面中部则随开垦年限而减少。Al的变化则与SiO2相反。  相似文献   

18.
Extracellular polymeric substances (EPS) play an important role in the formation and activity of biofilms in wastewater treatment (WWT). The EPS of the denitrifying biomarker Comamonas denitrificans strain 110, produced in different culture media and growth modes, were characterized. The EPS mainly contained protein (3–37%), nucleic acids (9–50%), and carbohydrates (3–21%). The extracellular DNA was found to be important for initial biofilm formation since biofilm, but not planktonic growth, was inhibited in the presence of DNase. The polysaccharide fraction appeared to consist of at least two distinct polymers, one branched fraction (A) made up of glucose and mannose with a molecular weight around 100 kDa. The other fraction (B) was larger and consisted of ribose, mannose, glucose, rhamnose, arabinose, galactose, and N-acetylglucosamine. Fraction B polysaccharides were mainly found in capsular EPS which was the dominant type in biofilms and agar-grown colonies. Fraction A was abundant in the released EPS, the dominant type in planktonic cultures. Biofilm and agar-grown EPS displayed similar overall properties while planktonic EPS showed clear compositional disparity. This study presents results on the physiology of a key WWT organism, which may be useful in the future development of improved biofilm techniques for WWT purposes.  相似文献   

19.
The objectives of this study were to (1) provide a baseline estimate of soil and plant element concentrations for an intensive research site at Imnavait Creek in northern Alaska, and (2) examine the relationships between soil and plant elements in an arctic ecosystem. Soil and plant element concentrations were highly variable along biotic, spatial, and temporal axes. Deciduous shrubs had higher leaf concentration of N, P. K and Mg, whereas an evergreen shrub had higher leaf concentrations of Ca, Mn, Al and Si. Based on high required solution phase turnover rates, the most likely elemental deficiencies are N > P > K > Ca = Mg. Based on low required solution phase turnover rates and high soil concentrations. Fe, Mn, Zn and Cu deficiencies are unlikely. Manganese could be present in toxic concentrations. The nutrient bottleneck in tundra ecosystems appears to be the rate of nutrient movement to the solution phase.  相似文献   

20.
Varietal differences in net nutrient uptake rate and transport efficiency in the presence of aluminium have seldom been investigated in rice. Therefore, effects of Al on growth, uptake and transport of macronutrients (K, P, Ca, and Mg) and micronutrients (Fe, Zn, Cu, and Mn) were evaluated in 3 rice cultivars (BG35, DA14 and IR45) with different Al sensitivity. The plants were grown in nutrient solution at pH 4.1. An initial growth was completed in the time interval 1 to 5 days immediately before the addition of Al. The final growth period with Al (0, 140, 280 or 560 μ M ) was completed on day 26. With Al, a comparatively high P accumulation occurred in shoots and roots of the Al tolerant cultivar BG35. In contrast, the Al sensitive cultivar IR45 maintained a relatively high Ca accumulation during the Al treatment. A reduced total net uptake rate of P and Ca by IR45 in the time period 5 to 26 days was due to both a reduced root fresh weight and a reduced net uptake rate per g fresh weight of root. Moreover, net Ca transport to the shoots higher than net uptake rate in DA14 and IR45 at > 140 μ M Al during the test period suggests restricted Ca uptake by the roots in combination with a continuous net loss of Ca from the roots to the shoots as time proceeds. In the case of Mg and Mn, there was a general reduction of net uptake rates, irrespective of Al sensitivity of cultivars. With Al treatment, comparatively high accumulation of Fe, Zn and Cu occurred in the roots of IR45, concomitant with a high net Zn and Cu uptake rate. It is concluded that differences in Al sensitivity among rice cultivars BG35, DA14 and IR45 are not primarily linked to the depressed internal Mg or Mn status of the plants but rather to changes in the uptake and distribution of Ca and P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号