首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Restriction endonuclease-resistant high-molecular-weight (HMW)DNA fragments were isolated from nuclear DNA fragments in tobacco.The size of the fragments produced by EcoRI, HindIII, AfaI,and HaeIII ranged from 20 kb to over 166 kb. The kinetics ofdigestion by Bal31 nuclease showed that most of the HMW fragmentsare chromosome ends. The consensus sequence for tobacco telomererepeats was determined to be CCCTAAA by genomic sequencing usingthe HMW fragments and by sequencing after cloning. Besides thetelomere sequence, 9 tandem repeats of a 45-bp sequence wereidentified, in which a 35-bp unit sequence (AGTCAGCATTAGGGTTTTAAACCCTAAACTGAACT)formed a stem structure. The front of the stem is composed ofa palindrome of the telomere repeats. This highly conservedunit is surrounded by less conserved internal sequences thatare around 10–11 bp in size and contain a TTTT stretch.The internal sequences resemble the 10–11 bp consensusfor the scaffold attachment regions found in yeast and drosophila.The characteristic 45-bp sequence was abundant on the ends ofchromosomes. The shortest distance between the repeats containingtelomeric stem and the telomere was less than 20 kb. This architectureof the tobacco chromosome end region resembles the end regionof yeast chromosomes in which autonomous replication sequencesare present frequently.  相似文献   

3.
Longitudinal studies of human leucocyte telomere length often report a percentage of individuals whose telomeres appear to lengthen. However, based on theoretical considerations and empirical data, Steenstrup et al. (Nucleic Acids Research, 2013, vol 41(13): e131) concluded that this lengthening is unlikely to be a real biological phenomenon and is more likely to be an artefact of measurement error. We dispute the logic underlying this claim. We argue that Steenstrup et al.'s analysis is incomplete because it failed to compare predictions derived from assuming a scenario with no true telomere lengthening with alternative scenarios in which true lengthening occurs. To address this deficit, we built a computational model of telomere dynamics that allowed us to compare the predicted percentage of observed telomere length gainers given differing assumptions about measurement error and the true underling dynamics. We modelled a set of scenarios, all assuming measurement error, but both with and without true telomere lengthening. We found a range of scenarios assuming some true telomere lengthening that yielded either similar or better quantitative fits to the empirical data on the percentage of individuals showing apparent telomere lengthening. We conclude that although measurement error contributes to the prevalence of apparent telomere lengthening, Steenstrup et al.'s conclusion was too strong, and current data do not allow us to reject the hypothesis that true telomere lengthening is a real biological phenomenon in epidemiological studies. Our analyses highlight the need for process‐level models in the analysis of telomere dynamics.  相似文献   

4.
高等植物端粒和端粒酶的研究进展   总被引:5,自引:0,他引:5  
王渭霞  刘小川  朱廷恒 《遗传》2003,25(1):113-118
端粒是构成真核生物线状染色体末端重要的DNA-蛋白质复合结构,DNA由简单的串联重复序列组成。它的合成由一个特殊的具有反转录活性的核糖核蛋白-端粒酶完成。端粒对染色体、整个生物基因组,甚至对细胞的稳定都具有重要意义。本文就植物端粒、端粒酶、端粒结合蛋白,以及端粒变化、端粒酶在植物生长发育中的调节作一概述。  相似文献   

5.
6.
端粒随细胞分裂进行性缩短不但防止了人类肿瘤的发展,而且与人类的衰老密切相关。另外,端粒中存在一种特殊的现象:端粒位置效应,它首先在酵母中发现,表现为靠近端粒序列附近的基因表达因端粒的位置效应而沉默。在人类细胞中也存在端粒位置效应,并且有多种因子参与此效应,它可能对细胞生长停止、肿瘤以及衰老发生时等许多随端粒缩短密切相关基因的程序性表达产生重要作用。  相似文献   

7.
Telomeres consist of repetitive DNA and associated proteins that protect chromosome ends from illicit DNA repair. It is well known that telomeric DNA is progressively eroded during cell division, until telomeres become too short and the cell stops dividing. There is a second mode of telomere shortening, however, which is a regulated form of telomere rapid deletion (TRD) termed telomere trimming that is reviewed here. Telomere trimming appears to involve resolution of recombination intermediate structures, which shortens the telomere by release of extrachromosomal telomeric DNA. This has been detected in human and in mouse cells and occurs both in somatic and germline cells, where it sets an upper limit on telomere length and contributes to a length equilibrium set-point in cells that have a telomere elongation mechanism. Telomere trimming thus represents an additional mechanism of telomere length control that contributes to normal telomere dynamics and cell proliferative potential.  相似文献   

8.
端粒保护蛋白   总被引:1,自引:0,他引:1  
端粒保护蛋白(pmtection of telomere 1,PoT1)是存在于人和裂殖酵母的端粒相关蛋白,特异性地与端粒单链DNA相结合。人POT1基因位于7号染色体上,由22个外显子组成,其中4个外显子属于跳跃外显子,可形成5个剪接变异体。POT1的功能在于维持端粒的稳定,通过TRF1.TIN2.PIP1-POT通路调节端粒长度。  相似文献   

9.
Telomeres prevent chromosome ends from being repaired as double‐strand breaks (DSBs). Telomere identity in Drosophila is determined epigenetically with no sequence either necessary or sufficient. To better understand this sequence‐independent capping mechanism, we isolated proteins that interact with the HP1/ORC‐associated protein (HOAP) capping protein, and identified HipHop as a subunit of the complex. Loss of one protein destabilizes the other and renders telomeres susceptible to fusion. Both HipHop and HOAP are enriched at telomeres, where they also interact with the conserved HP1 protein. We developed a model telomere lacking repetitive sequences to study the distribution of HipHop, HOAP and HP1 using chromatin immunoprecipitation (ChIP). We discovered that they occupy a broad region >10 kb from the chromosome end and their binding is independent of the underlying DNA sequence. HipHop and HOAP are both rapidly evolving proteins yet their telomeric deposition is under the control of the conserved ATM and Mre11–Rad50–Nbs (MRN) proteins that modulate DNA structures at telomeres and at DSBs. Our characterization of HipHop and HOAP reveals functional analogies between the Drosophila proteins and subunits of the yeast and mammalian capping complexes, implicating conservation in epigenetic capping mechanisms.  相似文献   

10.
Telomeres in many eukaryotes are maintained by telomerase in whose absence telomere shortening occurs. However, telomerase-deficient Arabidopsis thaliana mutants (Attert /) show extremely low rates of telomere shortening per plant generation (250–500 bp), which does not correspond to the expected outcome of replicative telomere shortening resulting from ca. 1,000 meristem cell divisions per seed-to-seed generation. To investigate the influence of the number of cell divisions per seed-to-seed generation, Attert / mutant plants were propagated from seeds coming either from the lower-most or the upper-most siliques (L- and U-plants) and the length of their telomeres were followed over several generations. The rate of telomere shortening was faster in U-plants, than in L-plants, as would be expected from their higher number of cell divisions per generation. However, this trend was observed only in telomeres whose initial length is relatively high and the differences decreased with progressive general telomere shortening over generations. But in generation 4, the L-plants frequently show a net telomere elongation, while the U-plants fail to do so. We propose that this is due to the activation of alternative telomere lengthening (ALT), a process which is activated in early embryonic development in both U- and L-plants, but is overridden in U-plants due to their higher number of cell divisions per generation. These data demonstrate what so far has only been speculated, that in the absence of telomerase, the number of cell divisions within one generation influences the control of telomere lengths. These results also reveal a fast and efficient activation of ALT mechanism(s) in response to the loss of telomerase activity and imply that ALT is probably involved also in normal plant development.  相似文献   

11.
We undertook genetic and nongenetic approaches to investigate the relationship between telomere maintenance and osteoblast differentiation, as well as to uncover a possible link between a known mediator of cellular aging and senile bone loss. Using mouse models of disrupted telomere maintenance molecules, including mutants in the Werner helicase (Wrn(-/-) ), telomerase (Terc(-/-) ), and Wrn(-/-) Terc(-/-) double mutants predisposed to accelerated bone loss, we measured telomere dysfunction-induced foci (TIFs) and markers of osteoblast differentiation in mesenchymal progenitor cells (MPCs). We found that telomere maintenance is directly and significantly related to osteoblast differentiation, with dysfunctional telomeres associated with impaired differentiation independent of proliferation state. Telomere-mediated defects in osteoblast differentiation are associated with increased p53/p21 expression and concomitant reduction in RUNX2. Conversely, MPCs from p53(-/-) mice do not have substantial telomere dysfunction and spontaneously differentiate into osteoblasts. These results suggest that critical telomere dysfunction may be a prominent mechanism for age-related osteoporosis and limits MPC differentiation into bone-forming cells via the p53/p21 pathway.  相似文献   

12.
Telomeres often shorten with time, although this varies between tissues, individuals and species, and their length and/or rate of change may reflect fitness and rate of senescence. Measurement of telomeres is increasingly important to ecologists, yet the relative merits of different methods for estimating telomere length are not clear. In particular the extent to which interstitial telomere sequences (ITSs), telomere repeats located away from chromosomes ends, confound estimates of telomere length is unknown. Here we present a method to estimate the extent of ITS within a species and variation among individuals. We estimated the extent of ITS by comparing the amount of label hybridized to in‐gel telomere restriction fragments (TRF) before and after the TRFs were denatured. This protocol produced robust and repeatable estimates of the extent of ITS in birds. In five species, the amount of ITS was substantial, ranging from 15% to 40% of total telomeric sequence DNA. In addition, the amount of ITS can vary significantly among individuals within a species. Including ITSs in telomere length calculations always underestimated telomere length because most ITSs are shorter than most telomeres. The magnitude of that error varies with telomere length and is larger for longer telomeres. Estimating telomere length using methods that incorporate ITSs, such as Southern blot TRF and quantitative PCR analyses reduces an investigator's power to detect difference in telomere dynamics between individuals or over time within an individual.  相似文献   

13.
14.
Lin Cheng  Ming Cui 《Fly》2018,12(1):41-45
Telomere protects the ends of linear chromosomes. Telomere dysfunction fuels genome instability that can lead to diseases such as cancer. For over 30 years, Drosophila has fascinated the field as the only major model organism that does not rely on the conserved telomerase enzyme for end protection. Instead of short DNA repeats at chromosome ends, Drosophila has domesticated retrotransposons. In addition, telomere protection can be entirely sequence-independent under normal laboratory conditions, again dissimilar to what has been established for telomerase-maintained systems. Despite these major differences, recent studies from us and others have revealed remarkable similarities between the 2 systems. In particular, with the identification of the MTV complex as an ssDNA binding complex essential for telomere integrity in Drosophila (Zhang et al. 2016 Plos Genetics), we have now established several universal principles that are intrinsic to chromosome extremities but independent of the underlying DNA sequences or the telomerase enzyme. Telomere studies in Drosophila will continue to yield fundamental insights that are instrumental to the understanding of the evolution of telomere and telomeric functions.  相似文献   

15.
The budding yeast Cdc13, Stn1 and Ten1 (CST) proteins are proposed to function as an RPA-like complex at telomeres that protects (‘caps'') chromosome ends and regulates their elongation by telomerase. We show that Stn1 has a critical function in both processes through the deployment of two separable domains. The N terminus of Stn1 interacts with Ten1 and carries out its essential capping function. The C terminus of Stn1 binds both Cdc13 and Pol12, and we present genetic data indicating that the Stn1–Cdc13 interaction is required to limit continuous telomerase action. Stn1 telomere association, similar to that of Cdc13, peaks during S phase. Significantly, the magnitude of Stn1 telomere binding is independent of telomere TG tract length, suggesting that the negative effect of Stn1 on telomerase action might be regulated by a modification of CST activity or structure in cis at individual telomeres. Genetic analysis suggests that the Tel1 kinase exerts an effect in parallel with the Stn1 C terminus to counteract its inhibition of telomerase. These data provide new insights into the coordination of telomere capping and telomerase regulation.  相似文献   

16.
端粒是真核生物染色体的末端重要结构复合物,对维持染色体稳定性起着重要作用。端粒酶的主要功能是复制端粒末端DNA,维持端粒长度。端粒酶活性调节与肿瘤发生和细胞衰老有着密切关系。本简要综述近年来依赖端粒酶的端粒维持机理的研究进展。  相似文献   

17.
端粒维持研究进展   总被引:1,自引:0,他引:1  
端粒是现代生物学的研究热点,与肿瘤发生、基因表达调控、衰老有着密切的关系。本综述介绍当前对端粒维持机理研究的进展。在端粒维持过程中有两类重要的蛋白:端粒相关蛋白和端粒酶。端粒相关蛋白是直接或间接与端粒结合的蛋白 ,在维持端粒稳定性方面有重要作用。端粒酶,特别是其催化亚基hTERT,在端粒延长过程中起着不可替代的作用,与细胞永生化和癌变密切相关。此外还介绍了在某些细胞中存在的不依赖端粒酶的端粒延长机  相似文献   

18.
端粒、端粒酶结构功能研究进展   总被引:1,自引:0,他引:1  
端粒是真核生物线性染色体末端由重复DNA序列和蛋白质结合形成的复合结构,其特殊的环形结构与多种结合蛋白形成了端粒的多重功能的基础。端粒的功能包括染色体末端的保护、引导减数分裂的同源染色体配对、参与DNA修复过程等;端粒酶具有逆转录酶特性和维持端粒长度的功能,其活性与恶性肿瘤的发生密切相关,调控因子错综复杂。  相似文献   

19.
Eukaryotic organisms require iron to sustain genome stability, cell proliferation and development. Chromosomes contain telomeres to ensure complete replications and avoid fusions. Numerous evidences reveal that iron can act directly or indirectly on telomere maintenance. In human, disruption of systemic or cellular iron homeostasis is reportedly to cause serious health problems such as iron overload (hereditary hemochromatosis), iron deficiency anemia, carcinogenesis and acceleration of aging process. These processes commonly associate with abnormal telomere length. Additionally, cells containing mutations in iron-containing proteins such as DNA polymerases (Pola, g, and ~), regulator of telomere length 1 (RTEL1) and the small subunit of ribonucleotide reductases (RNRs) have abnormal telomere length. This review briefly summarizes current understandings on iron homeostasis and telomere maintenance in cancer and aging process, followed by discussing their direct and indirect correlation, and the possible regulatory mechanisms.  相似文献   

20.
Minichromosomes possess functional centromeres and telomeres and thus should be stably inherited. They offer an enormous opportunity to plant biotechnology as they have the potential to simultaneously transfer and stably express multiple genes. Segregating independently of host chromosomes, they provide a platform for accelerating plant breeding. Following a top‐down approach, we truncated endogenous chromosomes in Arabidopsis thaliana by Agrobacterium‐mediated transfer of T‐DNA constructs containing telomere sequences. Blocks of A. thaliana telomeric repeats were inserted into a binary vector suitable for stable transformation. After transfer of these constructs into the natural tetraploid A. thaliana accession Wa‐1, chromosome truncation by T‐DNA‐induced de novo formation of telomeres could be confirmed by DNA gel blot analysis, PCR (polymerase chain reaction), and fluorescence in situ hybridisation. The addition of new telomere repeats in this process could start alternatively from within the T‐DNA‐derived telomere repeats or from adjacent sequences close to the right border of the T‐DNA. Truncated chromosomes were transmissible in sexual reproduction, but were inherited at rates lower than expected according to Mendelian rules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号