首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetyl‐11‐keto‐β‐boswellic acid (AKBA), an active triterpenoid compound from the extract of Boswellia serrate, has been reported previously in our group to alleviate fibrosis in vascular remodelling. This study aimed to elucidate the in vivo and in vitro efficacy and mechanism of AKBA in renal interstitial fibrosis. The experimental renal fibrosis was produced in C57BL/6 mice via unilateral ureteral obstruction (UUO). Hypoxia‐induced HK‐2 cells were used to imitate the pathological process of renal fibrosis in vitro. Results showed that the treatment of AKBA significantly alleviated UUO‐induced impairment of renal function and improved the renal fibrosis by decreasing the expression of TGF‐β1, α‐SMA, collagen I and collagen IV in UUO kidneys. In hypoxia‐induced HK‐2 cells, AKBA displayed remarkable cell protective effects and anti‐fibrotic properties by increasing the cell viability, decreasing the lactate dehydrogenase (LDH) release and inhibiting fibrotic factor expression. Moreover, in obstructed kidneys and HK‐2 cells, AKBA markedly down‐regulated the expression of TGFβ‐RI, TGFβ‐RII, phosphorylated‐Smad2/3 (p‐Smad2/3) and Smad4 in a dose‐dependent fashion while up‐regulated the expression of Klotho and Smad7 in the same manner. In addition, the effects of AKBA on the Klotho/TGF‐β/Smad signalling were reversed by transfecting with siRNA‐Klotho in HK‐2 cells. In conclusion, our findings provide evidence that AKBA can effectively protect kidney against interstitial fibrosis, and this renoprotective effect involves the Klotho/TGF‐β/Smad signalling pathway. Therefore, AKBA could be considered as a promising candidate drug for renal interstitial fibrosis.  相似文献   

2.
An important epigenetic modification in Huntington’s disease (HD) research is histone acetylation, which is regulated by histone acetyltransferase and histone deacetylase (HDAC) enzymes. HDAC inhibitors have proven effective in HD model systems, and recent work is now focused on functional dissection of the individual HDAC enzymes in these effects. Histone deacetylase 3 (HDAC3), a member of the class I subfamily of HDACs, has previously been implicated in neuronal toxicity and huntingtin-induced cell death. Hence, we tested the effects of RGFP966 ((E)-N-(2-amino-4-fluorophenyl)-3-(1-cinnamyl-1H-pyrazol-4-yl)acrylamide), a benzamide-type HDAC inhibitor that selectively targets HDAC3, in the N171-82Q transgenic mouse model of HD. We found that RGFP966 at doses of 10 and 25 mg/kg improves motor deficits on rotarod and in open field exploration, accompanied by neuroprotective effects on striatal volume. In light of previous studies implicating HDAC3 in immune function, we measured gene expression changes for 84 immune-related genes elicited by RGFP966 using quantitative PCR arrays. RGFP966 treatment did not cause widespread changes in cytokine/chemokine gene expression patterns, but did significantly alter the striatal expression of macrophage migration inhibitory factor (Mif), a hormone immune modulator associated with glial cell activation, in N171-82Q transgenic mice, but not WT mice. Accordingly, RGFP966-treated mice showed decreased glial fibrillary acidic protein (GFAP) immunoreactivity, a marker of astrocyte activation, in the striatum of N171-82Q transgenic mice compared to vehicle-treated mice. These findings suggest that the beneficial actions of HDAC3 inhibition could be related, in part, with lowered Mif levels and its associated downstream effects.  相似文献   

3.
4.
Tubulointerstitial fibrosis plays an important role in end‐stage renal failure, and there are only limited therapeutic options available to preserve organ function. In the present study, we identified that nodakenin, a coumarin isolated from the roots of Angelicae gigas, functions effectively against unilateral ureteral obstruction (UUO)‐induced fibrosis via down‐regulating Snail1 expression. We established UUO‐induced renal fibrosis in mice and then administered with nodakenin orally ata a dose of 1 and 10 mg/kg. The in‐vivo results indicated that nodakenin protected obstructive nephropathy through its anti‐inflammatory and anti‐fibrotic properties. Nodakenin prevented the infiltration of inflammatory cells, alleviated the levels of pro‐inflammatory cytokines, reduced the polarization of macrophages and down‐regulating the aberrant deposition of extracellular matrix at the site of injury. Of note, nodakenin dramatically impeded Smad3, NF‐κB p65 phosphorylation and Snail1 expression. In line with in vivo studies, nodakenin suppressed the expression of Snail1, Smad3 phosphorylation and fibrogenesis in TGF‐β1‐treated renal epithelial cells in‐vitro. Furthermore, we found that the effect of nodaknin against fibrosis was reversed in Snail1 overexpressing cells, whereas nodakenin could not further reduce expression of fibrogenesis in Snail1 silenced cells, suggesting that nodaknein may function through a Snail1‐dependent manner. Collectively, this study reveal a critical role of nodakenin in the cure of renal fibrosis.  相似文献   

5.
BackgroundIn chronic kidney disease, although fibrosis prevention is beneficial, few interventions are available that specifically target fibrogenesis. Poricoic acid A (PAA) isolated from Poria cocos exhibits anti-fibrotic effects in the kidney, however the underlying mechanisms remain obscure.PurposeWe isolated PAA and investigated its effects and the underlying mechanisms in renal fibrosis.Study designUnilateral ureteral obstruction (UUO) and 5/6 nephrectomy (Nx) animal models and TGF-β1-induced renal fibroblasts (NRK-49F) were used to investigate the anti-fibrotic activity of PAA and its underlying mechanisms.MethodsWestern blots, qRT-PCR, immunofluorescence staining, co-immunoprecipitation and molecular docking methods were used. Knock-down and knock-in of adenosine monophosphate-activated protein kinase (AMPK) in the UUO model and cultured NRK-49F cells were employed to verify the mechanisms of action of PAA.ResultsPAA improved renal function and alleviated fibrosis by stimulating AMPK and inhibiting Smad3 specifically in Nx and UUO models. Reduced AMPK activity was associated with Smad3 induction, fibroblast activation, and the accumulation and aberrant remodelling of extracellular matrix (ECM) in human renal puncture samples and cultured NRK-49F cells. PAA stimulated AMPK activity and decreased fibrosis in a dose-dependent manner, thus showing that AMPK was essential for PAA to exert its anti-fibrotic effects. AMPK deficiency reduced the anti-fibrotic effects of PAA, while AMPK overexpression enhanced its effect.ConclusionPAA activated AMPK and further inhibited Smad3 specifically to suppress fibrosis by preventing aberrant ECM accumulation and remodelling and facilitating the deactivation of fibroblasts.  相似文献   

6.
Renal fibrosis is characterized by chronic inflammation and excessive accumulation of extracellular matrix and progressively leads to functional insufficiency and even total loss of kidney function. In this study we investigated the anti-fibrotic potential of two highly selective and potent SK2 inhibitors, SLM6031434 and HWG-35D, in unilateral ureter obstruction (UUO), a model for progressive renal fibrosis, in mice. In both cases, treatment with SLM6031434 or HWG-35D resulted in an attenuated fibrotic response to UUO in comparison to vehicle-treated mice as demonstrated by reduced collagen accumulation and a decreased expression of collagen-1 (Col1), fibronectin-1 (FN-1), connective tissue growth factor (CTGF), and α-smooth muscle actin (α-SMA). Similar to our previous study in Sphk2−/− mice, we found an increased protein expression of Smad7, a negative regulator of the pro-fibrotic TGFβ/Smad signalling cascade, accompanied by a strong accumulation of sphingosine in SK2 inhibitor-treated kidneys. Treatment of primary renal fibroblasts with SLM6031434 or HWG-35D dose-dependently increased Smad7 expression and ameliorated the expression of Col1, FN-1 and CTGF.In summary, these data prove the anti-fibrotic potential of SK2 inhibition in a mouse model of renal fibrosis, thereby validating SK2 as pharmacological target for the treatment of fibrosis in chronic kidney disease.  相似文献   

7.
Transforming growth factor-β (TGF-β) signaling plays a key role in excessive fibrosis. As a class IIa family histone deacetylase (HDAC), HDAC5 shows a close relationship with TGF-β signaling and fibrosis. However, the effect and regulatory mechanism of HDAC5 in hypertrophic scar (HS) formation remain elusive. We show that HDAC5 was overexpressed in HS tissues and depletion of HDAC5 attenuated HS formation in vivo and inhibited fibroblast activation in vitro. HDAC5 knockdown (KD) significantly downregulated TGF-β1 induced Smad2/3 phosphorylation and increased Smad7 expression. Meanwhile, Smad7 KD rescued the Smad2/3 phosphorylation downregulation and scar hyperplasia inhibition mediated by HDAC5 deficiency. Luciferase reporter assays and ChIP-qPCR assays revealed that HDAC5 interacts with myocyte enhancer factor 2A (MEF2A) suppressing MEF2A binding to the Smad7 promoter region, which results in Smad7 promoter activity repression. HDAC4/5 inhibitor, LMK235, significantly alleviated hypertrophic scar formation. Our study provides clues for the development of HDAC5 targeting strategies for the therapy or prophylaxis of fibrotic diseases.  相似文献   

8.
Obstructive nephropathy is the end result of a variety of diseases that block drainage from the kidney(s). Transforming growth factor‐β1 (TGF‐β1)/Smad3‐driven renal fibrosis is the common pathogenesis of obstructive nephropathy. In this study, we identified petchiether A (petA), a novel small‐molecule meroterpenoid from Ganoderma, as a potential inhibitor of TGF‐β1‐induced Smad3 phosphorylation. The obstructive nephropathy was induced by unilateral ureteral obstruction (UUO) in mice. Mice received an intraperitoneal injection of petA/vehicle before and after UUO or sham operation. An in vivo study revealed that petA protected against renal inflammation and fibrosis by reducing the infiltration of macrophages, inhibiting the expression of proinflammatory cytokines (interleukin‐1β and tumour necrosis factor‐α) and reducing extracellular matrix deposition (α‐smooth muscle actin, collagen I and fibronectin) in the obstructed kidney of UUO mice; these changes were associated with suppression of Smad3 and NF‐κB p65 phosphorylation. Petchiether A inhibited Smad3 phosphorylation in vitro and down‐regulated the expression of the fibrotic marker collagen I in TGF‐β1‐treated renal epithelial cells. Further, we found that petA dose‐dependently suppressed Smad3‐responsive promoter activity, indicating that petA inhibits gene expression downstream of the TGF‐β/Smad3 signalling pathway. In conclusion, our findings suggest that petA protects against renal inflammation and fibrosis by selectively inhibiting TGF‐β/Smad3 signalling.  相似文献   

9.
Renal fibrosis is a major factor in the progression of chronic kidney diseases. Obstructive nephropathy is a common cause of renal fibrosis, which is also accompanied by inflammation. To explore the effect of human-specific CHRFAM7A expression, an inflammation-related gene, on renal fibrosis during obstructive nephropathy, we studied CHRFAM7A transgenic mice and wild type mice that underwent unilateral ureteral obstruction (UUO) injury. Transgenic overexpression of CHRFAM7A gene inhibited UUO-induced renal fibrosis, which was demonstrated by decreased fibrotic gene expression and collagen deposition. Furthermore, kidneys from transgenic mice had reduced TGF-β1 and Smad2/3 expression following UUO compared with those from wild type mice with UUO. In addition, the overexpression of CHRFAM7A decreased release of inflammatory cytokines in the kidneys of UUO-injured mice. In vitro, the overexpression of CHRFAM7A inhibited TGF-β1-induced increase in expression of fibrosis-related genes in human renal tubular epithelial cells (HK-2 cells). Additionally, up-regulated expression of CHRFAM7A in HK-2 cells decreased TGF-β1-induced epithelial-mesenchymal transition (EMT) and inhibited activation f TGF-β1/Smad2/3 signalling pathways. Collectively, our findings demonstrate that overexpression of the human-specific CHRFAM7A gene can reduce UUO-induced renal fibrosis by inhibiting TGF-β1/Smad2/3 signalling pathway to reduce inflammatory reactions and EMT of renal tubular epithelial cells.  相似文献   

10.
11.
Renal fibrosis is the final common pathway of various renal injuries and it leads to chronic kidney disease. Recent studies reported that FOXD1-lineage pericyte plays a critical role in tubulointerstitial fibrosis (TIF). However the regulatory mechanisms remain unclear. Autophagy is a cellular process of degradation of damaged cytoplasmic components that regulates cell death and proliferation. To investigate the role of autophagy in FOXD1-lineage pericytes on renal TIF, we generated the FOXD1-lineage stromal cell-specific Atg7 deletion (Atg7△FOXD1) mice. FOXD1-lineage stromal cell-specific Atg7 deletion enhanced renal TIF through Smad-dependent transforming growth factor (TGF)-β signaling after unilateral ureteral obstruction (UUO). FOXD1-lineage stromal cell-specific Atg7 deletion increased the accumulation of interstitial myofibroblasts and enhanced the differentiation of pericytes into myofibroblasts after UUO. Peritubular capillary rarefaction was accelerated in Atg7△FOXD1 mice after UUO. Atg7△FOXD1 mice increased the accumulation of SQSTM1/p62-positive aggregates in the obstructed kidney and resulted in increased expression of NLRP3 inflammasome, interleukin (IL) 1-β and caspase-1 signaling pathway, which enhanced apoptosis of interstitial cells after UUO. In summary, our data showed that autophagy in FOXD1-lineage stromal cells plays a protective role in renal TIF through regulating the Smad4 dependent TGF-β an NLRP3 inflammasome signaling pathway.  相似文献   

12.
13.
Introduction and Aims: Elevated plasma levels of C-reactive protein (CRP) are closely associated with progressive renal injury in patients with chronic kidney disease (CKD). Here, we tested a hypothesis that CRP may promote renal fibrosis and inflammation via a TGF-β/Smad3-dependent mechanism.Methods: Role and mechanisms of TGF-β/Smad3 in CRP-induced renal fibrosis and inflammation were examined in a mouse model of unilateral ureteral obstruction (UUO) induced in CRP Tg/Smad3 KO mice and in a rat tubular epithelial cell line in which Smad3 gene is stably knocked down (S3KD-NRK52E).Results: We found that mice overexpressing the human CRP gene were largely promoted renal inflammation and fibrosis as evidenced by increasing IL-1β, TNF-α, MCP-1 expression, F4/80+ macrophages infiltration, and marked accumulation of α-smooth muscle actin (α-SMA), collagen I and fibronectin in the UUO kidney, which were blunted when Smad3 gene was deleted in CRPtg-Smad3KO. Mechanistically, we found that the protection of renal inflammation and fibrosis in the UUO kidney of CRPtg-Smad3KO mice was associated with the inactivation of CD32-NF-κB and TGF-β/Smad3 signaling.Conclusion: In conclusion, Smad3 deficiency protects against CRP-mediated renal inflammation and fibrosis in the UUO kidney by inactivating CD32-NF-κB and TGF-β/Smad3 signaling.  相似文献   

14.
15.
Bone morphogenic protein (BMP)-7 is a member of the BMP family which are structurally and functionally related, and part of the TGFβ super family of growth factors. BMP-7 has been reported to inhibit renal fibrosis and TGFβ1-induced epithelial-mesenchymal transition (EMT), in part through negative interactions with TGFβ1 induced Smad 2/3 activation. We utilized in vivo bleomycin-induced fibrosis models in the skin and lung to determine the potential therapeutic effect of BMP-7. We then determined the effect of BMP-7 on TGFβ1-induced EMT in lung epithelial cells and collagen production by human lung fibroblasts. We show that BMP-7 did not affect bleomycin-induced fibrosis in either the lung or skin in vivo; had no effect on expression of pro-fibrotic genes by human lung fibroblasts, either at rest or following exposure to TGFβ1; and did not modulate TGFβ1 -induced EMT in human lung epithelial cells. Taken together our data indicates that BMP-7 has no anti-fibrotic effect in lung or skin fibrosis either in vivo or in vitro. This suggests that the therapeutic options for BMP-7 may be confined to the renal compartment.  相似文献   

16.
HDACs epigenetically regulate cellular processes by modifying chromatin and influencing gene expression. We previously reported that conditional deletion of Hdac3 in osteo-chondroprogenitor cells with Osx1-Cre caused severe osteopenia due to abnormal maturation of osteoblasts. The mice were also smaller. To address the abnormal longitudinal growth in these animals, the role of Hdac3 in chondrocyte differentiation was evaluated. We found that Hdac3 is highly expressed in resting and prehypertrophic growth plate chondrocytes, as well as in articular chondrocytes. Hdac3-deficient chondrocytes entered hypertrophy sooner and were smaller than normal chondrocytes. Extracellular matrix production was suppressed as glycosaminoglycan secretion and production of aggrecan, osteopontin, and matrix extracellular phosphoglycoprotein were reduced in Hdac3-deficient chondrocytes. These phenotypes led to the hypothesis that the Akt/mTOR pathway was repressed in these Hdac3-deficient chondrocytes because Akt promotes hypertrophy and matrix production in many tissues. The phosphorylation and activation of Akt, its substrate mTOR, and the mTOR substrate, p70 S6 kinase, were indeed reduced in Hdac3-deficient primary chondrocytes as well as in chondrocytes exposed to HDAC inhibitors. Expression of constitutively active Akt restored phosphorylation of mTOR and p70 S6K and matrix gene expression levels. Reduced phosphorylation of Akt and its substrates in Hdac3-deficient or HDAC inhibitors treated chondrocytes correlated with increased expression of the phosphatase Phlpp1. Hdac3 associated with a Phlpp1 promoter region containing Smad binding elements and was released after TGFβ was added to the culture. These data demonstrate that Hdac3 controls chondrocyte hypertrophy and matrix content by repressing Phlpp1 expression and facilitating Akt activity.  相似文献   

17.

Aims

While overexpression of TGFα has been reported in human pancreatic ductal adenocarcinoma (PDAC), mice with overexpressed TGFα develop premalignant pancreatic acinar-to-ductal metaplasia (ADM) but not PDAC. TGF-β signaling pathway is pivotal to the development of PDAC and tissue fibrosis. Here we sought to investigate the interplay between TGFα and TGF-β signaling in pancreatic tumorigenesis and fibrosis, namely via Smad4 inactivation.

Methods

The MT-TGFα mouse was crossed with a new Smad4 conditional knock-out mouse (Smad4flox/flox;p48-Cre or S4) to generate Smad4flox/flox;MT-TGFα;p48-Cre (STP). After TGFα overexpression was induced with zinc sulfate water for eight months, the pancreata of the STP, MT-TGFα, and S4 mice were examined for tumor development and fibrotic responses. PanIN lesions and number of ducts were counted, and proliferation was measured by Ki67 immunohistochemistry (IHC). Qualitative analysis of fibrosis was analyzed by Trichrome Masson and Sirius Red staining, while vimentin was used for quantification. Expression analyses of fibrosis, pancreatitis, or desmoplasia associated markers (α-SMA, Shh, COX-2, Muc6, Col1a1, and Ctgf) were performed by IHC and/or qRT-PCR.

Results

Our STP mice exhibited advanced ADM, increased fibrosis, increased numbers of PanIN lesions, overexpression of chronic pancreatitis-related marker Muc6, and elevated expression of desmoplasia-associated marker Col1A1, compared to the MT-TGFα mice. The inactivation of Smad4 in the exocrine compartment was responsible for both the enhanced PanIN formation and fibrosis in the pancreas. The phenotype of the STP mice represents a transient state from ADMs to PanINs, closely mimicking the interface area seen in human chronic pancreatitis associated with PDAC.

Conclusion

We have documented a novel mouse model, the STP mice, which displayed histologic presentations reminiscent to those of human chronic pancreatitis with signs of early tumorigenesis. The STP mice could be a suitable animal model for interrogating the transition of chronic pancreatitis to pancreatic cancer.  相似文献   

18.
Kidney fibrosis is a common feature of chronic kidney disease (CKD). A recent study suggests that abnormal Notch signaling activation contributes to the development of renal fibrosis. However, the molecular mechanism that regulates this process remains unexplored. Unilateral ureteral obstruction (UUO) or sham-operated C57BL6 mice (aged 10 weeks) were randomly assigned to receive dibenzazepine (DBZ, 250 μg/100 g/d) or vehicle for 7 days. Histologic examinations were performed on the kidneys using Masson's trichrome staining and immunohistochemistry. Real-time PCR and western blot analysis were used for detection of mRNA expression and protein phosphorylation. The expression of Notch 1, 3, and 4, Notch intracellular domain (NICD), and its target genes Hes1 and HeyL were upregulated in UUO mice, while the increase in NICD protein was significantly attenuated by DBZ. After 7 days, the severity of renal fibrosis and expression of fibrotic markers, including collagen 1α1/3α1, fibronectin, and α-smooth muscle actin, were markedly increased in UUO compared with sham mice. In contrast, administration of DBZ markedly attenuated these effects. Furthermore, DBZ significantly inhibited UUO-induced expression of transforming growth factor (TGF)-β, phosphorylated Smad 2, and Smad 3. Mechanistically, Notch signaling activation in tubular epithelial cells enhanced fibroblast proliferation and activation in a coculture experiment. Our study provides evidence that Notch signaling is implicated in renal fibrogenesis. The Notch inhibitor DBZ can ameliorate this process via inhibition of the TGF-β/Smad2/3 signaling pathway, and might be a novel drug for preventing chronic kidney disease.  相似文献   

19.
Renal expression of the klotho gene is markedly suppressed in chronic kidney disease (CKD). Since renal fibrosis is the final common pathology of CKD, we tested whether decreased Klotho expression is a cause and/or a result of renal fibrosis in mice and cultured renal cell lines. We induced renal fibrosis by unilateral ureteral obstruction (UUO) in mice with reduced Klotho expression (kl/+ mice) and compared them with wild-type mice. The UUO kidneys from kl/+ mice expressed significantly higher levels of fibrosis markers such as α-smooth muscle actin (α-SMA), fibronectin, and transforming growth factor-β(1) (TGF-β(1)) than those from wild-type mice. In addition, in cultured renal fibroblast cells (NRK49F), the levels of α-SMA and PAI1 expression were significantly suppressed by addition of recombinant Klotho protein to the medium. The similar effects were observed by a TGF-β(1) receptor inhibitor (ALK5 inhibitor). These observations suggest that low renal Klotho expression enhances TGF-β(1) activity and is a cause of renal fibrosis. On the other hand, TGF-β(1) reduced Klotho expression in renal cultured epithelial cells (inner medullary collecting duct and human renal proximal tubular epithelium), suggesting that low renal Klotho expression is a result of renal fibrosis. Taken together, renal fibrosis can trigger a deterioration spiral of Klotho expression, which may be involved in the pathophysiology of CKD progression.  相似文献   

20.
Transforming growth factor-β (TGF-β) plays a pivotal role in renal fibrosis. Endoglin, a 180 KDa membrane glycoprotein, is a TGF-β co-receptor overexpressed in several models of chronic kidney disease, but its function in renal fibrosis remains uncertain. Two membrane isoforms generated by alternative splicing have been described, L-Endoglin (long) and S-Endoglin (short) that differ from each other in their cytoplasmic tails, being L-Endoglin the most abundant isoform. The aim of this study was to assess the effect of L-Endoglin overexpression in renal tubulo-interstitial fibrosis. For this purpose, a transgenic mouse which ubiquitously overexpresses human L-Endoglin (L-ENG+) was generated and unilateral ureteral obstruction (UUO) was performed in L-ENG+ mice and their wild type (WT) littermates. Obstructed kidneys from L-ENG+ mice showed higher amounts of type I collagen and fibronectin but similar levels of α-smooth muscle actin (α-SMA) than obstructed kidneys from WT mice. Smad1 and Smad3 phosphorylation were significantly higher in obstructed kidneys from L-ENG+ than in WT mice. Our results suggest that the higher increase of renal fibrosis observed in L-ENG+ mice is not due to a major abundance of myofibroblasts, as similar levels of α-SMA were observed in both L-ENG+ and WT mice, but to the higher collagen and fibronectin synthesis by these fibroblasts. Furthermore, in vivo L-Endoglin overexpression potentiates Smad1 and Smad3 pathways and this effect is associated with higher renal fibrosis development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号