首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a novel direct protocol for deep proteome characterization of microorganisms in soil. The method employs thermally assisted detergent-based cellular lysis (SDS) of soil samples, followed by TCA precipitation for proteome extraction/cleanup prior to liquid chromatography-mass spectrometric characterization. This approach was developed and optimized using different soils inoculated with genome-sequenced bacteria (Gram-negative Pseudomonas putida or Gram-positive Arthrobacter chlorophenolicus). Direct soil protein extraction was compared to protein extraction from cells isolated from the soil matrix prior to lysis (indirect method). Each approach resulted in identification of greater than 500 unique proteins, with a wide range in molecular mass and functional categories. To our knowledge, this SDS-TCA approach enables the deepest proteome characterizations of microbes in soil to date, without significant biases in protein size, localization, or functional category compared to pure cultures. This protocol should provide a powerful tool for ecological studies of soil microbial communities.  相似文献   

2.
Simplified proteomics approach to discover protein-ligand interactions   总被引:1,自引:0,他引:1  
Identifying targets of biologically active small molecules is an essential but still challenging task in drug research and chemical genetics. Energetics-based target identification is an approach that utilizes the change in the conformational stabilities of proteins upon ligand binding in order to identify target proteins. Different from traditional affinity-based capture approaches, energetics-based methods do not require any labeling or immobilization of the test molecule. Here, we report a surprisingly simple version of energetics-based target identification, which only requires ion exchange chromatography, SDS PAGE, and minimal use of mass spectrometry. The complexity of a proteome is reduced through fractionation by ion exchange chromatography. Urea-induced unfolding of proteins in each fraction is then monitored by the significant increase in proteolytic susceptibility upon unfolding in the presence and the absence of a ligand. Proteins showing a different degree of unfolding with the ligand are identified by SDS PAGE followed by mass spectrometry. Using this approach, we identified ATP-binding proteins in the Escherichia coli proteome. In addition to known ATP-binding proteins, we also identified a number of proteins that were not previously known to interact with ATP. To validate one such finding, we cloned and purified phosphoglyceromutase, which was not previously known to bind ATP, and confirmed that ATP indeed stabilizes this protein. The combination of fractionation and pulse proteolysis offers an opportunity to investigate protein-drug or protein-metabolite interactions on a proteomic scale with minimal instrumentation and without modification of a molecule of interest.  相似文献   

3.
Platelets play a key role in the control of bleeding and wound healing, contributing to the formation of vascular plugs. Under pathologic circumstances, they are involved in thrombotic disorders, including heart disease. Since platelets do not have a nucleus, proteomics offers a powerful alternative approach to provide data on protein expression in these cells, helping to address their biology. In this publication we extend the previously reported analysis of the pI 4-5 region of the human platelet proteome to the pI 5-11 region. By using narrow pI range two-dimensional electrophoresis (2-DE) for protein separation followed by high-throughput tandem mass spectrometry (MS/MS) for protein identification, we were able to identify 760 protein features, corresponding to 311 different genes, resulting in the annotation of 54% of the pI 5-11 range 2-DE proteome map. We evaluated the physicochemical properties and functions of the identified platelet proteome. Importantly, the main group of proteins identified is involved in intracellular signalling and regulation of the cytoskeleton. In addition, 11 hypothetical proteins are reported. In conclusion, this study provides a unique inventory of the platelet proteome, contributing to our understanding of platelet function and building the basis for the identification of new drug targets.  相似文献   

4.
Identifying the target proteins of bioactive small molecules is a key step in understanding mode‐of‐action of the drug and addressing the underlying mechanisms responsible for a particular phenotype. Proteomics has been successfully used to elucidate the target protein profiles of unmodified and ligand‐modified bioactive small molecules. In the latter approach, compounds can be modified via click chemistry and combined with activity‐based protein profiling. Target proteins are then enriched by performing a pull‐down with the modified ligand. Methods that utilize unmodified bioactive small molecules include the cellular thermal shift assay, thermal proteome profiling, stability of proteins from rates of oxidation, and the drug affinity responsive target stability (DARTS) determination (or read‐out). This review highlights recent proteomic approaches utilizing data‐dependent analysis and data‐independent analysis to identify target proteins by DARTS. When combined with liquid chromatography/tandem mass spectrometry, DARTS enables the identification of proteins that bind to drug molecules that leads to a conformational change in the target protein(s). In addition, an effective strategy is proposed for selecting the target protein(s) from within the pool of analyzed candidates. With additional complementary methods, the biologically relevant target proteins that bind to the small bio‐active molecules can be further validated.  相似文献   

5.
We describe a chemical proteomics approach to profile the interaction of small molecules with hundreds of endogenously expressed protein kinases and purine-binding proteins. This subproteome is captured by immobilized nonselective kinase inhibitors (kinobeads), and the bound proteins are quantified in parallel by mass spectrometry using isobaric tags for relative and absolute quantification (iTRAQ). By measuring the competition with the affinity matrix, we assess the binding of drugs to their targets in cell lysates and in cells. By mapping drug-induced changes in the phosphorylation state of the captured proteome, we also analyze signaling pathways downstream of target kinases. Quantitative profiling of the drugs imatinib (Gleevec), dasatinib (Sprycel) and bosutinib in K562 cells confirms known targets including ABL and SRC family kinases and identifies the receptor tyrosine kinase DDR1 and the oxidoreductase NQO2 as novel targets of imatinib. The data suggest that our approach is a valuable tool for drug discovery.  相似文献   

6.
The presenilin/gamma-secretase complex, an unusual intramembrane aspartyl protease, plays an essential role in cellular signaling and membrane protein turnover. Its ability to liberate numerous intracellular signaling proteins from the membrane and also mediate the secretion of amyloid-beta protein (Abeta) has made modulation of gamma-secretase activity a therapeutic goal for cancer and Alzheimer disease. Although the proteolysis of the prototypical substrates Notch and beta-amyloid precursor protein (APP) has been intensely studied, the full spectrum of substrates and the determinants that make a transmembrane protein a substrate remain unclear. Using an unbiased approach to substrate identification, we surveyed the proteome of a human cell line for targets of gamma-secretase and found a relatively small population of new substrates, all of which are type I transmembrane proteins but have diverse biological roles. By comparing these substrates to type I proteins not regulated by gamma-secretase, we determined that besides a short ectodomain, gamma-secretase requires permissive transmembrane and cytoplasmic domains to bind and cleave its substrates. In addition, we provide evidence for at least two mechanisms that can target a substrate for gamma cleavage: one in which a substrate with a short ectodomain is directly cleaved independent of sheddase association, and a second where a substrate requires ectodomain shedding to instruct subsequent gamma-secretase processing. These findings expand our understanding of the mechanisms of substrate selection as well as the diverse cellular processes to which gamma-secretase contributes.  相似文献   

7.
For effective bioactive small molecule discovery and development into new therapeutic drug, a systematic screening and target protein identification is required. Different from the conventional screening system, herein phenotypic screening in combination with multi-omics-based target identification and validation (MOTIV) is introduced. First, phenotypic screening provides visual effect of bioactive small molecules in the cell or organism level. It is important to know the effect on the cell or organism level since small molecules affect not only a single target but the entire cellular mechanism within a cell or organism. Secondly, MOTIV provides systemic approach to discover the target protein of bioactive small molecule. With the chemical genomics and proteomics approach of target identification methods, various target protein candidates are identified. Then network analysis and validations of these candidates result in identifying the biologically relevant target protein and cellular mechanism. Overall, the combination of phenotypic screening and MOTIV will provide an effective approach to discover new bioactive small molecules and their target protein and mechanism identification.  相似文献   

8.
Fränzel B  Wolters DA 《Proteomics》2011,11(18):3651-3656
We present a simple, time- and cost-efficient approach to tackle the proteome of prokaryotic organisms. To obtain large data sets of complex biological experiments high-throughput and time- and cost-efficient methods still have to be developed and refined. In this study, we combined well-approved techniques, namely elevated chromatographic temperatures, long RP columns and the multidimensional protein identification technology MudPIT to achieve high proteome coverage. The advanced MudPIT approach has been evaluated and delivered very comprehensive results for Gram-positive as well as Gram-negative bacteria (53% proteome coverage for Corynebacterium glutamicum and 46% proteome coverage for Escherichia coli). Also, a high identification rate for the challenging integral membrane proteins was achieved. The competitiveness of the advanced MudPIT technology is strengthened by the fact that in this approach only two fractions were analyzed with both, simple and time-efficient sample preparation, and a moderate data acquisition time.  相似文献   

9.
Stable isotope probing (SIP) has been used to track nutrient flows in microbial communities, but existing protein-based SIP methods capable of quantifying the degree of label incorporation into peptides and proteins have been demonstrated only by targeting usually less than 100 proteins per sample. Our method automatically (i) identifies the sequence of and (ii) quantifies the degree of heavy atom enrichment for thousands of proteins from microbial community proteome samples. These features make our method suitable for comparing isotopic differences between closely related protein sequences, and for detecting labeling patterns in low-abundance proteins or proteins derived from rare community members. The proteomic SIP method was validated using proteome samples of known stable isotope incorporation levels at 0.4%, ~50%, and ~98%. The method was then used to monitor incorporation of (15)N into established and regrowing microbial biofilms. The results indicate organism-specific migration patterns from established communities into regrowing communities and provide insights into metabolism during biofilm formation. The proteomic SIP method can be extended to many systems to track fluxes of (13)C or (15)N in microbial communities.  相似文献   

10.
The identification of 114 integral membrane proteins from Halobacterium salinarum was achieved using liquid chromatography/tandem mass spectrometric (LC/MS/MS) techniques, representing 20% of the predicted alpha-helical transmembrane proteins of the genome. For this experiment, a membrane preparation with only minor contamination by soluble proteins was prepared. From this membrane preparation a number of peripheral membrane proteins were identified by the classical two dimensional gel electrophoresis (2-DE) approach, but identification of integral membrane proteins largely failed with only a very few being identified. By use of a fluorescently labeled membrane preparation, we document that this is caused by an irreversible precipitation of the membrane proteins upon isoelectric focusing (IEF). Attempts to overcome this problem by using alternative IEF methods and IEF strip solubilisation techniques were not successful, and we conclude that the classical 2-DE approach is not suited for the identification of integral membrane proteins. Computational analysis showed that the identification of integral membrane proteins is further complicated by the generation of tryptic peptides, which are unfavorable for matrix assisted laser desorption/ionization time of flight mass spectrometric peptide mass fingerprint analysis. Together with the result from the analysis of the cytosolic proteome (see preceding paper), we could identify 34% (943) of all gene products in H. salinarum which can be theoretically expressed. This is a cautious estimate as very stringent criteria were applied for identification. These results are available under www.halolex.mpg.de.  相似文献   

11.
Seven in absentia homologue (Siah) family proteins bind ubiquitin-conjugating enzymes and target proteins for proteasome-mediated degradation. Recently we identified a novel Siah-interacting protein (SIP) that is a Sgt1-related molecule that provides a physical link between Siah family proteins and the Skp1-Cullin-F-box ubiquitin ligase component Skp1. In the present study, a structure-based approach was used to identify interacting residues in Siah that are required for association with SIP. In Siah1 a large concave surface is formed across the dimer interface. Analysis of the electrostatic surface potential of the Siah1 dimer reveals that the beta-sheet concavity is predominately electronegative, suggesting that the protein-protein interactions between Siah1 and SIP are mediated by ionic contacts. The structural prediction was confirmed by site-directed mutagenesis of these electronegative residues, resulting in loss of binding of Siah1 to SIP in vitro and in cells. The results also provide a structural basis for understanding the mechanism by which Siah family proteins interact with partner proteins such as SIP.  相似文献   

12.
Banana (Musa spp.) multiple shoot meristems are an excellent model to study the meristem proteome. Using a 2-DE protocol developed for small amounts of tissue and MS-based cross species polypeptide identification, we have revealed the meristem proteome and investigated the influence of sucrose-mediated osmotic stress in a dehydration-tolerant variety. Proteins that were significantly up- or down-regulated due to the high-sucrose treatment were classified using non-parametric univariate statistics. Our results suggest that the maintenance of an osmoprotective intracellular sucrose concentration, the enhanced expression of particular genes of the energy-conserving glycolysis and the conservation of the cell wall integrity are essential to maintain homeostasis, to acclimate and to survive dehydration. By comparing the dehydration-tolerant variety with a dehydration-sensitive variety, we were able to distinguish several genotype-specific proteins (isoforms), and could associate the dehydration-tolerant variety with proteins involved in energy metabolism (e.g., phosphoglycerate kinase, phosphoglucomutase, UDP-glucose pyrophosphorylase) and proteins that are associated with stress adaptation (e.g., OSR40-like protein, abscisic stress ripening protein-like protein). This work shows that proteome analysis can be used successfully to perform quantitative difference analysis and to characterize genetic variations in a recalcitrant crop.  相似文献   

13.
14.
The functional isolation of proteome subsets based on small molecule–protein interactions is an increasingly popular and promising field in functional proteomics. Entire protein families may be profiled on the basis of their common interaction with a metabolite or small molecule inhibitor. This is enabled by novel multifunctional small molecule probes. One platform approach in this field are Capture Compounds that contain a small molecule of interest to bind target proteins, a photo-activatable reactivity function to covalently trap bound proteins, and a sorting function to isolate Capture Compound–protein conjugates from complex biological samples for direct trypsinisation and protein identification by liquid chromatography/mass spectrometry (CCMS). We here present the synthesis and application of a novel GDP-Capture Compound for the functional enrichment of GTPases, a pivotal protein family that exerts key functions in signal transduction. We present data from CCMS experiments on two biological lysates from Escherichia coli and from human-derived Hek293 cells. The GDP-Capture Compound robustly captures a wide range of different GTPases from both systems and will be a valuable tool for the proteomic profiling of this important protein family.  相似文献   

15.
16.
We tested whether proteome reference maps established for one species can be used for cross-species protein identification by comparing two-dimensional protein gel patterns and protein identification data of two closely related bacterial strains and four plant species. First, proteome profiles of two strains of the fully sequenced bacterium Sinorhizobium meliloti were compared as an example of close relatedness, high reproducibility and sequence availability. Secondly, the proteome profiles of three legumes (Medicago truncatula, Melilotus alba and Trifolium subterraneum), and the nonlegume rice (Oryza sativa) were analysed to test cross-species similarities. In general, we found stronger similarities in gel patterns of the arrayed proteins between the two bacterial strains and between the plant species than could be expected from the sequence similarities. However, protein identity could not be concluded from their gel position, not even when comparing strains of the same species. Surprisingly, in the bacterial strains peptide mass fingerprinting was more reliable for species-specific protein identification than N-terminal sequencing. While peptide masses were found to be unreliable for cross-species protein identification, we present useful criteria to determine confident matching against species-specific expressed sequence tag databases. In conclusion, we present evidence that cautions the use of proteome reference maps and peptide mass fingerprinting for cross-species protein identification.  相似文献   

17.
Proteins and small molecules are the effectors of physiological action in biological systems and comprehensive methods are needed to analyze their modifications, expression levels and interactions. Systems-scale characterization of the proteome requires thousands of components in high-complexity samples to be isolated and simultaneously probed. While protein microarrays offer a promising approach to probe systems-scale changes in a high-throughput format, they are limited by the need to individually synthesize tens of thousands of proteins. We present an alternative technique, which we call diffusive gel (DiG) stamping, for patterning a microarray using a cellular lysate enabling rapid visualization of dynamic changes in the proteome as well protein interactions. A major advantage of the method described is that it requires no specialized equipment or in-vitro protein synthesis, making it widely accessible to researchers. The method can be integrated with mass spectrometry, allowing for the discovery of novel protein interactions. Here, we describe and characterize the sensitivity and physical features of DiG-Stamping. We demonstrate the biologic utility of DiG-Stamping by (1) identifying the binding partners of a target protein within a cellular lysate and by (2) visualizing the dynamics of proteins with multiple post-translational modifications.  相似文献   

18.
19.
This paper describes the application of the recently introduced fluorescence stain Ruthenium(II)-tris-(bathophenanthroline-disulphonate) (RuBP) on a comparative proteome analysis of two phenotypically different barley lines. We carried out an analysis of protein patterns from 2-D gels of the parental lines of the Oregon Wolfe Barley mapping population DOM and REC and stained with either the conventional colloidal Coomassie Brilliant Blue (cCBB) or with the novel RuBP solution. We wished to experimentally verify the usefulness of such a stain in evaluating the complex pattern of a seed proteome, in comparison to the previously used cCBB staining technique. To validate the efficiency of visualization by both stains, we first compared the overall number of detected protein spots. On average, 790 spots were visible by cCBB staining and 1200 spots by RuBP staining. Then, the intensity of a set of spots was assessed, and changes in relative abundance were determined using image analysis software. As expected, staining with RuBP performed better in quantitation in terms of sensitivity and dynamic range. Furthermore, spots from a cultivar-specific region in the protein map were chosen for identification to asses the gain of biological information due to the staining procedure. From this particular region, eight spots were visualized exclusively by RuBP and identification was successful for all spots, proving the ability to identify even very low abundant proteins. Performance in MS analysis was comparable for both protein stains. Proteins were identified by MALDI-TOF MS peptide mass fingerprinting. This approach was not successful for all spots, due to the restricted entry number for barley in the database. Therefore, we subsequently used LC-ESI-Q-TOF MS/MS and de novo sequencing for identification. Because only an insufficient number of proteins from barley is annotated, an EST-based identification strategy was chosen for our experiment. We wished to test whether under these limitations the application of a more sensitive stain would lead to a more advanced proteome approach. In summary, we demonstrate here that the application of RuBP as an economical but reliable and sensitive fluorescence stain is highly suitable for quantitative proteome analysis of plant seeds.  相似文献   

20.
SIPP1 (splicing factor that interacts with PQBP1 and PP1) is a widely expressed protein of 70 kDa that has been implicated in pre-mRNA splicing. It interacts with protein Ser/Thr phosphatase-1 (PP1) and with the polyglutamine-tract-binding protein 1 (PQBP1), which contributes to the pathogenesis of X-linked mental retardation and neurodegenerative diseases caused by polyglutamine tract expansions. We show here that SIPP1 is a nucleocytoplasmic shuttling protein. Under basal circumstances SIPP1 was largely nuclear, but it accumulated in the cytoplasm following UV- or X-radiation. Nuclear import was mediated by two nuclear localization signals. In addition, SIPP1 could be piggy-back transported to the nucleus with its ligand PQBP1. In the nucleus SIPP1 and PQBP1 formed inclusion bodies similar to those detected in polyglutamine diseases. SIPP1 did not function as a nuclear targeting subunit of PP1 but re-localized nuclear PP1 to storage sites for splicing factors. The C-terminal residues of SIPP1, which do not conform to a classic nuclear export signal, were required for its nuclear export via the CMR-1 pathway. Finally, SIPP1 activated pre-mRNA splicing in intact cells, and the extent of splicing activation correlated with the nuclear concentration of SIPP1. We conclude that SIPP1 is a positive regulator of pre-mRNA splicing that is regulated by nucleocytoplasmic shuttling. These findings also have potential implications for a better understanding of the pathogenesis of X-linked mental retardation and polyglutamine-linked neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号