首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To understand the regulation mechanism of fission yeast telomeric DNA, we analysed the structural properties of Gn: d(GnTTAC) (n=2-6) and 4Gn: d(GnTTAC)4 (n=3 and 4), and their interaction with the single-stranded telomeric DNA binding domain of telomere-binding protein Pot1 (Pot1DBD). G4, G5 and G6 formed a parallel tetraplex in contrast with no tetraplex formation by G2 and G3. Also, 4G4 adopted only an antiparallel tetraplex in spite of a mixture of parallel and antiparallel tetraplexes of 4G3. The variety of tetraplex structures was governed by the number of consecutive guanines in a single copy and the number of repeats. The antiparallel tetraplex of 4G4 became unfolded upon the interaction with Pot1DBD. The interaction with mutant Pot1DBD proteins revealed that the ability to unfold the antiparallel tetraplex was strongly correlated with the specific binding affinity for the single-stranded telomeric DNA. The result suggests that the decrease in the free single strand upon the complex formation with Pot1DBD may shift the equilibrium from the tetraplex to the single strand, which may cause the tetraplex unfolding. Considering that the antiparallel tetraplex inhibits telomerase-mediated telomere elongation, we conclude that the ability of Pot1 to unfold the antiparallel tetraplex is required for telomerase-mediated telomere regulation.  相似文献   

2.
The fission yeast (Schizosaccharomyces pombe) taz1 gene encodes a telomere-associated protein. It contains a single copy of a Myb-like motif termed the telobox that is also found in the human telomere binding proteins TRF1 and TRF2, and Tbf1p, a protein that binds to sequences found within the sub-telomeric regions of budding yeast (Saccharomyces cerevisiae) chromosomes. Taz1p was synthesised in vitro and shown to bind to a fission yeast telomeric DNA fragment in a sequence specific manner that required the telobox motif. Like the mammalian TRF proteins, Taz1p bound to DNA as a preformed homodimer. The isolated Myb-like domain was also capable of sequence specific DNA binding, although with less specificity than the full-length dimer. Surprisingly, a protein extract produced from a taz1–fission yeast strain still contained the major telomere binding activity (complex I) we have characterised previously, suggesting that there could be other abundant telomere binding proteins in fission yeast. One candidate, SpX, was also synthesised in vitro, but despite the presence of two telobox domains, no sequence specific binding to telomeric DNA was detected.  相似文献   

3.
4.
5.
To understand the regulation mechanism of fission yeast telomeric DNA, we analyzed the structural properties of 4Gn: d(G(n)TTAC)(4) (n = 3, 4) and their interaction with the single-stranded telomeric DNA binding domain of telomere-binding protein Pot1 (Pot1DBD). 4G4 adopted only an antiparallel tetraplex in spite of a mixture of parallel and antiparallel tetraplexes of 4G3. The antiparallel tetraplex of 4G4 became unfolded upon the interaction with Pot1DBD. Considering that the antiparallel tetraplex inhibits telomerase-mediated telomere elongation, we conclude that the ability of Pot1 to unfold the antiparallel tetraplex is required for telomerase-mediated telomere regulation.  相似文献   

6.
Crystals of a 60-amino-acid C-terminal deletion mutant of the herpes simplex virus 1 single-stranded DNA binding protein, ICP8, have been grown by hanging drop vapor diffusion. The colorless crystals grow as thin plates to a maximum size of approximately 0.3 mm x 0.3 mm x 0.05 mm. The space group is P2(1)2(1)2(1) with unit cell constants a = 101.2 A, b = 145.8 A, and c = 162.9 A. There are one or two molecules of ICP8 per asymmetric unit.  相似文献   

7.
Similar to its human homologues TRF1 and TRF2, fission yeast Taz1 protein is a component of telomeric chromatin regulating proper telomere maintenance. As mammalian TRF1 and TRF2 proteins have been shown to directly bind telomeric DNA to form protein arrays and looped structures, termed t-loops, the ability of Taz1p to act on fission yeast telomeric DNA in similar ways was examined using purified protein and model DNA templates. When incubated with Taz1p, model telomeres containing 3' single-stranded telomeric overhangs formed t-loops at a frequency approaching 13%. Termini with blunt ends and non-telomeric overhangs were deficient in t-loop formation. In addition, we observed arrays of multiple Taz1p molecules bound to the telomeric regions, resembling the pattern of TRF1 binding. The presence of t-loops larger than the telomeric tract, a high frequency of end-bound DNAs and a donut shape of the Taz1p complex suggest that Taz1p binds the 3' overhang then extrudes a loop that grows in size as the donut slides along the duplex DNA. Based on these in vitro results we discuss possible general implications for fission yeast telomere dynamics.  相似文献   

8.
Lei M  Baumann P  Cech TR 《Biochemistry》2002,41(49):14560-14568
The fission yeast Pot1 (protection of telomeres) protein is a single-stranded telomeric DNA-binding protein and is required to protect the ends of chromosomes. Its N-terminal DNA-binding domain, Pot1pN, shows sequence similarity to the first OB fold of the telomere-binding protein alpha subunit of Oxytricha nova. The minimal-length telomeric ssDNA required to bind Pot1pN was determined to consist of six nucleotides, GGTTAC, by gel filtration chromatography and filter-binding assay (K(D) = 83 nM). Pot1pN is a monomer, and each monomer binds one hexanucleotide. Experiments with nucleotide substitutions demonstrated that the central four nucleotides are crucial for binding. The dependence of Pot1pN-ssDNA binding on salt concentration was consistent with a single ionic contact between the protein and the ssDNA phosphate backbone, such that at physiological salt condition 83% of the free energy of binding is nonelectrostatic. Subsequent binding experiments with longer ssDNAs indicated that Pot1pN binds to telomeric ssDNA with 3' end preference and in a highly cooperative manner that mainly results from DNA-induced protein-protein interactions. Together, the binding properties of Pot1pN suggest that the protein anchors itself at the very 3' end of a chromosome and then fills in very efficiently, coating the entire single-stranded overhang of the telomere.  相似文献   

9.
Eukaryotic chromosome ends are protected from illicit DNA joining by protein-DNA complexes called telomeres. In most studied organisms, telomeric DNA is composed of multiple short G-rich repeats that end in a single-stranded tail that is protected by the protein POT1. Mammalian POT1 binds two telomeric repeats as a monomer in a sequence-specific manner, and discriminates against RNA of telomeric sequence. While addressing the RNA discrimination properties of SpPot1, the POT1 homolog in Schizosaccharomyces pombe, we found an unanticipated ssDNA-binding mode in which two SpPot1 molecules bind an oligonucleotide containing two telomeric repeats. DNA binding seems to be achieved via binding of the most N-terminal OB domain of each monomer to each telomeric repeat. The SpPot1 dimer may have evolved to accommodate the heterogeneous spacers that occur between S. pombe telomeric repeats, and it also has implications for telomere architecture. We further show that the S. pombe telomeric protein Tpz1, like its mammalian homolog TPP1, increases the affinity of Pot1 for telomeric single-stranded DNA and enhances the discrimination of Pot1 against RNA.  相似文献   

10.

Background  

Schizosaccharomyces pombe cells lacking the catalytic subunit of telomerase (encoded by trt1 +) lose telomeric DNA and enter crisis, but rare survivors arise with either circular or linear chromosomes. Survivors with linear chromosomes have normal growth rates and morphology, but those with circular chromosomes have growth defects and are enlarged. We report the global gene-expression response of S. pombe to loss of trt1 +.  相似文献   

11.
The telomeres of the yeast Saccharomyces cerevisiae consist of a duplex region of TG1–3 repeats that acquire a single-stranded 3’ extension of the TG1–3 strand at the end of S-phase. The length of these repeats is kept within a defined range by regulators such as the TEL2-encoded protein (Tel2p). Here we show that Tel2p can specifically bind to single-stranded TG1–3. Tel2p binding produced several shifted bands; however, only the slowest migrating band contained Tel2p. Methylation protection and interference experiments as well as gel shift experiments using inosine-containing probes indicated that the faster migrating bands resulted from Tel2p-mediated formation of DNA secondary structures held together by G-G interactions. Tel2p bound to single-stranded substrates that were at least 19 bases in length and contained 14 bases of TG1–3, and also to double-stranded/single-stranded hybrid substrates with a 3’ TG1–3 overhang. Tel2p binding to a hybrid substrate with a 24 base single-stranded TG1–3 extension also produced a band characteristic of G-G-mediated secondary structures. These data suggest that Tel2p could regulate telomeric length by binding to the 3’ single-stranded TG1–3 extension present at yeast telomeres. Received: 12 November 1998; in revised form: 6 April 1999 / Accepted: 13 April 1999  相似文献   

12.
Whereas mammalian cells harbor two double strand telomeric repeat binding factors, TRF1 and TRF2, the fission yeast Schizosaccharomyces pombe has been thought to harbor solely the TRF1/TRF2 ortholog Taz1p to perform comparable functions. Here we report the identification of telomeric repeat binding factor 1 (Tbf1), a second TRF1/TRF2 ortholog in S. pombe. Like the Taz1p, the identified Tbf1p shares amino acid sequence similarity, as well as structural and functional characteristics, with the mammalian TRF1 and TRF2 proteins. This family of proteins shares a common architecture with two separate structural domains. An N-terminal domain is necessary and sufficient for the formation of homodimers, and a C-terminal MYB/homeodomain mediates sequence specific recognition of double-stranded telomeric DNA. The identified Tbf1p binds S. pombe telomeric DNA with high sequence specificity in vitro. Targeted deletion of the tbf1 gene reveals that it is essential for survival, and overexpression of the tbf1 gene leads to telomere elongation in vivo, which is dependent upon the MYB domain. These data suggest that fission yeast, like mammals, have two factors that bind double-stranded telomeric DNA and perform distinct roles in telomere length regulation.  相似文献   

13.
The Schizosaccharomyces pombe pfh1+ gene (PIF1 homolog) encodes an essential enzyme that has both DNA helicase and ATPase activities and is implicated in lagging strand DNA processing. Mutations in the pfh1+ gene suppress a temperature-sensitive allele of cdc24+, which encodes a protein that functions with Schizosaccharomyces pombe Dna2 in Okazaki fragment processing. In this study, we describe the enzymatic properties of the Pfh1 helicase and the genetic interactions between pfh1 and cdc24, dna2, cdc27 or pol 3, all of which are involved in the Okazaki fragment metabolism. We show that a full-length Pfh1 fusion protein is active as a monomer. The helicase activity of Pfh1 displaced only short (<30 bp) duplex DNA regions efficiently in a highly distributive manner and was markedly stimulated by the presence of a replication-fork-like structure in the substrate. The temperature-sensitive phenotype of a dna2-C2 or a cdc24-M38 mutant was suppressed by pfh1-R20 (a cold-sensitive mutant allele of pfh1) and overexpression of wild-type pfh1+ abolished the ability of the pfh1 mutant alleles to suppress dna2-C2 and cdc24-M38. Purified Pfh1-R20 mutant protein displayed significantly reduced ATPase and helicase activities. These results indicate that the simultaneous loss-of-function mutations of pfh1+ and dna2+ (or cdc24+) are essential to restore the growth defect. Our genetic data indicate that the Pfh1 DNA helicase acts in concert with Cdc24 and Dna2 to process single-stranded DNA flaps generated in vivo by pol δ-mediated lagging strand displacement DNA synthesis.  相似文献   

14.
The double-stranded telomeric repeat-binding protein (TRP) AtTRP1 is isolated from Arabidopsis thaliana. Using gel retardation assays, we defined the C-terminal 97 amino acid residues, Gln464 to Val560 (AtTRP1(464-560)), as the minimal structured telomeric repeat-binding domain. This region contains a typical Myb DNA-binding motif and a C-terminal extension of 40 amino acid residues. The monomeric AtTRP1(464-560) binds to a 13-mer DNA duplex containing a single repeat of an A.thaliana telomeric DNA sequence (GGTTTAG) in a 1:1 complex, with a K(D) approximately 10(-6)-10(-7) M. Nuclear magnetic resonance (NMR) examination revealed that the solution structure of AtTRP1(464-560) is a novel four-helix tetrahedron rather than the three-helix bundle structure found in typical Myb motifs and other TRPs. Binding of the 13-mer DNA duplex to AtTRP1(464-560) induced significant chemical shift perturbations of protein amide resonances, which suggests that helix 3 (H3) and the flexible loop connecting H3 and H4 are essential for telomeric DNA sequence recognition. Furthermore, similar to that in hTRF1, the N-terminal arm likely contributes to or stabilizes DNA binding. Sequence comparisons suggested that the four-helix structure and the involvement of the loop residues in DNA binding may be features unique to plant TRPs.  相似文献   

15.
In this study it is established by calculation which regular conformations single-stranded DNA and RNA can adopt in the complex with the single-stranded DNA binding protein GP32 of bacteriophage T4. In order to do so, information from previous experiments about base orientations and the length and diameter of the complexes is used together with knowledge about bond lengths and valence angles between chemical bonds. It turns out that there is only a limited set of similar conformations which are in agreement with experimental data. The arrangement of neighboring bases is such that there is ample space for aromatic residues of the protein to partly intercalate between the bases, which is in agreement with a previously proposed model for the binding domain of the protein [Prigodich, R. V., Shamoo, Y., Williams, K. R., Chase, J. W., Konigsberg, W. H., & Coleman, J. E. (1986) Biochemistry 25, 3666-3671]. Both C2'endo and C3'endo sugar conformations lead to calculated DNA conformations that are consistent with experimental data. The orientation of the O2' atoms of the sugars in RNA can explain why the binding affinity of GP32 for polyribonucleotides is lower than for polydeoxyribonucleotides.  相似文献   

16.
Cdc13p is a single strand telomere-binding protein of Saccharomyces cerevisiae; its telomere-binding region is within amino acids 451-693, Cdc13(451-693)p. In this study, we used purified Cdc13p and Cdc13(451-693)p to characterize their telomere binding activity. We found that the binding specificity of single-stranded TG(1-3) DNA by these two proteins is similar. However, the affinity of Cdc13(451-693)p to DNA was slightly lower than that of Cdc13p. The binding of telomeric DNA by these two proteins was disrupted at NaCl concentrations higher than 0.3 m, indicating that electrostatic interaction contributed significantly to the binding process. Because both proteins bound to strand TG(1-3) DNA positioned at the 3' end, the 5' end, or in the middle of the oligonucleotide substrates, our results indicated that the location of TG(1-3) in single-stranded DNA does not appear to be important for Cdc13p binding. Moreover, using DNase I footprint analysis, the structure of the telomeric DNA complexes of Cdc13p and Cdc13(451-693)p was analyzed. The DNase I footprints of these two proteins to three different telomeric DNA substrates were virtually identical, indicating that the telomere contact region of Cdc13p is within Cdc13(451-693)p. Together, the binding properties of Cdc13p and its binding domain support the theory that the specific binding of Cdc13p to telomeres is an important feature of telomeres that regulate telomerase access and/or differentiate natural telomeres from broken ends.  相似文献   

17.
In the budding yeast Saccharomyces cerevisiae, chromosome end protection is provided by a heterotrimeric complex composed of Cdc13 in association with the RPA-like proteins Stn1 and Ten1. We report here that the high affinity and specificity of the S. cerevisiae Cdc13 DNA binding domain for single-stranded telomeric DNA are not widely shared by other fungal Cdc13 proteins, suggesting that restriction of this complex to telomeres may be limited to the Saccharomyces clade. We propose that the evolutionarily conserved task of Stn1 and Ten1 (and their associated large subunit) is a genome-wide role in DNA replication rather than a telomere-dedicated activity.  相似文献   

18.
The ends of eukaryotic chromosomes are protected by specialized telomere chromatin structures. Rap1 and Cdc13 are essential for the formation of functional telomere chromatin in budding yeast by binding to the double-stranded part and the single-stranded 3' overhang, respectively. We analyzed the binding properties of Saccharomyces castellii Rap1 and Cdc13 to partially single-stranded oligonucleotides, mimicking the junction of the double- and single-stranded DNA (ds-ss junction) at telomeres. We determined the optimal and the minimal DNA setup for a simultaneous binding of Rap1 and Cdc13 at the ds-ss junction. Remarkably, Rap1 is able to bind to a partially single-stranded binding site spanning the ds-ss junction. The binding over the ds-ss junction is anchored in a single double-stranded hemi-site and is stabilized by a sequence-independent interaction of Rap1 with the single-stranded 3' overhang. Thus, Rap1 is able to switch between a sequence-specific and a nonspecific binding mode of one hemi-site. At a ds-ss junction configuration where the two binding sites partially overlap, Rap1 and Cdc13 are competing for the binding. These results shed light on the end protection mechanisms and suggest that Rap1 and Cdc13 act together to ensure the protection of both the 3' and the 5' DNA ends at telomeres.  相似文献   

19.
Local sequence similarity exists between the subunit 2 of eukaryotic RNA polymerases II and the barnase-type bacterial RNases. The RNase-like domain from the Rpb2 ofSchizosaccharomyces pombe was expressed inEscherichia coli as a GST fusion protein and examined for its RNase activity. When the GST fusion protein was incubated in vitro with32P-labeled RNA, the RNA degradation activity was less than 0.1%, if any, of the level of synthetic barnase. In order to check the in vivo function of this region, we constructed two mutantrpb2 alleles,rpb2 E357A andrpb2 H3a6L , each carrying a single amino acid substitution at the site correponding to one of the three essential amino acid residues forming the catalytic site in barnase (mutation of barnase at the corresponding sites results in complete loss of RNase activity) and five other mutantrpb2 alleles, each carrying a single mutation at various positions within the RNase-like domain but outside the putative catalytic site for RNase activity. When these mutantrpb2 alleles were expressed in anrpb2-disruptedS. pombe strain, all the mutants grew as well as the wild-type parent and did not show any clear defective phenotypes. These results suggest either that the RNase-like domain in Rpb2 does not function as an RNase in vivo or that the RNase activity of this domain, if present at all, is not essential for cell growth.  相似文献   

20.
We have mutated several residues of the first of the two HMG-boxes of mammalian HMG1. Some mutants cannot be produced in Escherichia coli, suggesting that the peptide fold is grossly disrupted. A few others can be produced efficiently and have normal DNA binding affinity and specificity; however, they are more sensitive towards heating and chaotropic agents than the wild type polypeptide. Significantly, the mutation of the single most conserved residue in the rather diverged HMG-box family falls in this 'in vitro temperature-sensitive' category, rather than in the non-folded category. Finally, two other mutants have reduced DNA binding affinity but unchanged binding specificity. Overall, it appears that whenever the HMG-box can fold, it will interact specifically with kinked DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号