首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
HL-60 cells are an attractive model for studies of human myeloid cell differentiation. Among the well-examined parameters correlated to differentiation of HL-60 cells are the expression and phosphorylation of the small heat shock protein Hsp27. Here we demonstrate that PMA treatment of HL-60 cells stimulates different MAP kinase cascades, leading to significant activation of ERK2 and p38 reactivating kinase (p38RK). Using the protein kinase inhibitor SB 203580, we specifically inhibited p38RK and, thereby, activation of its target MAP kinase-activated protein kinase 2(MAPKAP kinase 2), which is the major enzyme responsible for small Hsp phosphorylation. As a result, PMA-induced Hsp27 phosphorylation is inhibited in SB 203580-treated HL-60 cells indicating that p38RK and MAPKAP kinase 2 are components of the PMA-induced signal transduction pathway leading to Hsp27 phosphorylation. We further demonstrate that, although PMA-induced phosphorylation is inhibited, SB 203580-treated HL-60 cells are still able to differentiate to the macrophage-like phenotype as judged by decrease in cell proliferation, induction of expression of the cell surface antigen CD11b and changes in cell morphology. These results indicate that, although correlated, Hsp27 phosphorylation is not required for HL-60 cell differentiation. However, the results do not exclude that increased Hsp27 expression is involved in HL-60 cell differentiation.  相似文献   

4.
5.
HL-60 cells, a promyelocytic leukemic cell line, provide a good model for studying the role of adhesion molecules and associated receptors involved in cell differentiation. When exposed to factors such as phorbol esters, these cells grown in suspension differentiate into monocytes and adhere to tissue culture dishes. In this study we showed that HL-60 cells exposed to phorbol esters express osteopontin (OPN), a cell adhesion molecule linked with osteoclast function. Moreover, the timed expression of OPN, in phorbol ester treated cells, was linked to increased cell adhesion. Subsequent to the expression of OPN, an increase in mRNA levels for αV integrin subunit was observed. The αVβ3 integrin, a cell surface receptor found in high concentrations in osteoclasts, is considered to be a receptor for OPN. Furthermore, during differentiation we detected an increase in two cell surface markers specific for osteoclasts, 75B and 121F. This is the first report to demonstrate expression of OPN during differentiation of HL-60 cells, indicating that HL-60 cells can be used as a tool to enhance our understanding as to the role of OPN in cell differentiation.  相似文献   

6.
In an HL-60 cell subline (PR-17) which was greater than 100-fold resistant to the differentiating and cytostatic activities of phorbol 12-myristate 13-acetate (PMA), the protein kinase C phenotype was found to be nearly identical to that of wild-type HL-60 cells. A measurable decrease (30%) in the specific activities of crude preparations of PR-17 cell protein kinase C was observed when the enzyme was measured with histone as the phosphate acceptor substrate, but other aspects of the protein kinase C phenotype (intracellular concentrations and binding affinities of phorbol diester receptors, translocation of activated enzyme from cytosolic to particulate subcellular fractions, relative expression of the alpha and beta isozyme proteins) were equivalent in both PMA-resistant PR-17 cells and in wild-type HL-60 cells. Direct analysis of the behavior of the alpha and beta isozymes after the exposure of each cell type to 100 nM PMA for 12 h revealed that the activities and intracellular concentrations of both isozymes were downregulated to an equivalent extent in both wild-type and PMA-resistant cells. These results suggest that the cellular basis for the resistance to the effects of PMA was present "down-stream" from the activation and down-regulation of protein kinase C and was perhaps a nuclear component. Among the genes which were likely to be differentially regulated when each of the two cell lines were treated with PMA were those for the protein kinase C isozymes themselves. In wild-type HL-60 cells, the intracellular concentrations of type HL-60 cells, the intracellular concentrations of mRNA for each of the beta isozymes were increased (up to 5-fold) 48 h after the initiation of PMA treatment; further studies indicate that an activator of protein kinase C could influence the expression of HL-60 cell protein kinase C genes in an isozyme-specific manner. Comparable PMA-induced alterations in mRNA levels were not observed in PMA-resistant cells, even under conditions of significant activation and subsequent down-regulation of protein kinase C protein. Taken together, these data suggest that activation and down-regulation of the isozymes of protein kinase C may not represent absolute determinants of the PMA-induced differentiation of HL-60 cells, but that specific alterations in the levels of the mRNA for the beta isozymes of protein kinase C, or of other genes which may be regulated by the activated kinase isozymes, are important to the induction of leukemia cell differentiation by PMA.  相似文献   

7.
Interleukin-18 (IL-18) is a novel proinflammatory cytokine found in serum and joints of patients with rheumatoid arthritis (RA). We studied a novel role for IL-18 in mediating cell adhesion, a vital component of the inflammation found in RA and other inflammatory diseases. We examined the expression of cellular cell adhesion molecules E-selectin, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) on endothelial cells and RA synovial fibroblasts using flow cytometry. Adhesion of the monocyte-like cell line HL-60 to endothelial cells was determined by immunofluorescence. IL-18 significantly enhanced ICAM-1 and VCAM-1 expression on endothelial cells and RA synovial fibroblasts. In addition, IL-18 induced E-selectin expression on endothelial cells and promoted the adhesion of HL-60 cells to IL-18-stimulated endothelial cells. Neutralizing anti-VCAM-1 and anti-E-selectin could completely inhibit HL-60 adherence to endothelial cells. IL-18-induced adhesion molecule expression appears to be mediated through nuclear factor kappa B (NF kappa B) and phosphatidyl-inositol 3 kinase (PI 3-kinase) since addition of inhibitors to either NF kappa B (pyrrolidine dithiocarbamate and N-acetyl-l-cysteine) or PI 3-kinase (LY294002) inhibited RA synovial fibroblast VCAM-1 expression by 50 to 60%. Addition of both inhibitors resulted in inhibition of VCAM-1 expression by 85%. In conclusion, the ability of IL-18 to induce adhesion molecule expression on endothelial cells and RA synovial fibroblasts indicates that IL-18 may contribute to RA joint inflammation by enhancing the recruitment of leukocytes into the joint. IL-18 requires NF kappa B as well as PI 3-kinase to induce VCAM-1 on RA synovial fibroblasts, suggesting that there may be two distinct pathways in IL-18-induced adhesion molecule expression.  相似文献   

8.
Tumor necrosis factor-alpha (TNFalpha) critically regulates several cellular functions during monocyte/macrophage differentiation. We therefore investigated during the phorbol ester (phorbol 12-myristate 13-acetate (PMA))-induced monocyte/macrophage differentiation of the human HL-60 leukemia cells, if TNFalpha contributed to plasminogen activator inhibitor type-1 (PAI-1) synthesis that is initiated by a protein kinase Cbeta-extracellular signal-regulated kinase 2-dependent pathway (Lopez, S., Peiretti, F., Morange, P., Laouar, A., Fossat, C., Bonardo, B., Huberman, E., Juhan-Vague, I., and Nalbone, G. (1999) Thromb. Haemostasis 81, 415-422). Following PMA treatment, the level of TNFalpha mRNA strongly increased and appeared earlier than PAI-1 mRNA. An anti-TNFalpha antibody significantly inhibited the PMA-induced PAI-1 mRNA and protein levels. The recombinant human TNFalpha, which is inactive on native HL-60 cells in terms of PAI-1 synthesis, optimally potentiates it once HL-60 cells are committed into the differentiation process. The use of 1) the HL-525 cell line, a clone issued from HL-60 cells rendered resistant to PMA-induced differentiation, and 2) the transforming growth factorbeta-1/vitamin D3 differentiative mixture confirmed the relationships between the induction of differentiation and the potency of TNFalpha to up-regulate PAI-1 synthesis. In conclusion, we showed that during the induction of monocyte/macrophage differentiation, TNFalpha and PAI-1 gene expressions are activated and that synthesized TNFalpha up-regulates and prolongs, in an autocrine manner, the synthesis of PAI-1.  相似文献   

9.
10.
Activation of protein kinase C (PKC) prevents apoptosis in certain cells; however, the mechanisms are largely unknown. Inhibitors of apoptosis (IAP) family members, including NAIP, cIAP-1, cIAP-2, XIAP/hILP, survivin, and BRUCE, block apoptosis by binding and potently inhibiting caspases. Activation of NF-kappa B contributes to cIAP-2 induction; however, the cellular mechanisms regulating cIAP-2 expression have not been entirely defined. In this study, we examined the role of the PKC and NF-kappa B pathways in the regulation of cIAP-2 in human colon cancers. We found that cIAP-2 mRNA levels were markedly increased in human colon cancer cells by treatment with the phorbol ester, phorbol-12-myristate-13-acetate (PMA), or bryostatin 1. Inhibitors of the Ca2+-independent, novel PKC isoforms, but not inhibitors of MAPK, PI3-kinase, or PKA, blocked PMA-stimulated cIAP-2 mRNA expression, suggesting a role of PKC in PMA-mediated cIAP-2 induction. Pretreatment with the PKC delta-selective inhibitor rottlerin or transfection with an antisense PKC delta oligonucleotide inhibited PMA-induced cIAP-2 expression, whereas cotransfection with a PKC delta plasmid induced cIAP-2 promoter activity, which, taken together, identifies a role for PKC delta in cIAP-2 induction. Treatment with the proteasome inhibitor, MG132 or inhibitors of NF-kappa B (e.g. PDTC and gliotoxin), decreased PMA-induced up-regulation of cIAP-2. PMA-induced NF-kappa B activation was blocked by either GF109203x, MG132, PDTC, or gliotoxin. Moreover, overexpression of PKC delta-induced cIAP-2 promoter activity and increased NF-kappa B transactivation, suggesting regulation of cIAP-2 expression by a PKC delta/NF-kappa B pathway. In conclusion, our findings demonstrate a role for a PKC/NF-kappa B-dependent pathway in the regulation of cIAP-2 expression in human colon cancer cells. These data suggest a novel mechanism for the anti-apoptotic function mediated by the PKC delta/NF-kappa B/cIAP-2 pathway in certain cancers.  相似文献   

11.
The signaling mechanisms leading to phorbol ester myristate (PMA)-induced differentiation of HL-60 cells to the macrophagelike phenotype were investigated by using different protein kinase inhibitors. The protein kinase C inhibitor Ro 31-8220 specifically blocks PMA-induced differentiation, activation of the p42/44ERK- and p38RK-MAP kinase cascades and Hsp27-phosphorylation in HL-60 cells. Because Ro 31-8220 does not inhibit activation of the MAP kinase cascades by protein kinase C (PKC)-independent signals such as epidermal growth factor (EGF), heat shock, or anisomycin in these cells, only PMA-induced activation of the MAP kinases can be downstream of PKC. The MEK1 inhibitor PD 098059 and the p38RK inhibitor SB 203580 also were used to analyze whether the PMA-induced PKC-dependent activation of MAP kinases is involved in the differentiation process. Under certain conditions, PD 098059 can completely block the PMA-induced activation of the p42ERK as monitored by imunoprecipitation kinase assay by using the substrate myelin basic protein. SB 203580 specifically inhibits activation of p38RK as judged by MAPKAP kinase 2 activity against the substrate Hsp27 and also blocks Hsp27 phosphorylation in the cells. In contrast, neither PD 098059 nor SB 203580 nor both inhibitors together prevent PMA-induced differentiation of the HL-60 cells to the macrophagelike phenotype. The results suggest the existence of a diversification of PMA-induced signaling in HL-60 cells downstream of PKC, leading to activation of MAP kinases that are not essential for differentiation and to phosphorylation of other, so far unidentified, targets responsible for differentiation. J. Cell. Physiol. 173:310–318, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
13.
The regulation of Mac-1, LFA-1, and p150,95 expression during leukocyte differentiation was examined. LFA-1 was present on almost all cell types studied. Both Mac-1 and p150,95 were present on the more mature cells of the myelomonocytic series, but only p150,95 was detected on some B cell lines and cloned cytotoxic T lymphocytes. Phorbol myristate acetate (PMA) stimulation of B chronic lymphocytic leukemia cells dramatically increased p150,95 expression. The resultant Mac-1, LFA-1, p150,95 phenotype resembled hairy cell leukemia, a B cell plasmacytoid leukemia. The promonocytic cell line U937 and the promyeloblastic cell line HL-60 expressed only LFA-1. Monocytic differentiation of U937 cells was stimulated by PMA, and induced the concomitant expression of Mac-1 and p150,95, with more p150,95 induced than Mac-1. Granulocyte/macrophage colony-stimulating factor (GM-CSF) stimulation of U937 cells gave similar results. PMA-stimulated monocytic differentiation of the HL-60 cell line also induced expression of both Mac-1 and p150,95. The number of p150,95 molecules on PMA-stimulated U937 and HL-60 cells were 5 X 10(5) and 3 X 10(5), respectively. Retinoic acid stimulated myeloid differentiation of HL-60 cells and induced expression of both Mac-1 and p150,95. These cells acquired a Mac-1, LFA-1, p150,95 profile that resembled that of granulocytes, with more Mac-1 than p150,95 induced. GM-CSF stimulation of HL-60 cells induced a similar Mac-1 and p150,95 phenotype. The contributions of Mac-1, LFA-1, and p150,95 to aggregation of PMA-differentiated U937 cells were assessed. Monoclonal antibodies to the beta subunit and the LFA-1 alpha subunit, but not those to p150,95 or Mac-1 alpha subunit, inhibited this homotypic adherence.  相似文献   

14.
15.
HL-60 is a human promyelocytic cell line which was found to be capable of differentiating toward a macrophage-like or granulocyte-like phenotype. Histochemical analysis demonstrated that incubation of cells in the presence of phorbol myristate acetate (PMA) or 1,25-dihydroxyvitamin D3 induced varying degrees of monocytic differentiation, while incubation in the presence of retinoic acid (RA) or dimethyl sulfoxide (DMSO) induced granulocytic differentiation. The differentiation induced by PMA, RA, and to a lesser extent DMSO, was accompanied by the induction of plasminogen activator inhibitor expression. mRNA analysis of control and PMA-induced cultures revealed the induction of a 2-kb message in treated cells which hybridized with a PAI-2-specific oligonucleotide probe. This is consistent with the literature concerning the expression of PAI by macrophages and granulocytes. No hybridization was detected with a PAI-1 specific probe. Expression of PAI by cells of hematopoietic origin appears to be associated with differentiation or stimulation of committed cells. Furthermore, PAI-2 expression by HL-60 cells is not restricted to one specific hematopoietic lineage. Since other cells of hematopoietic origin such as platelets express PAI-1, future studies using pluripotential cell lines could provide information on the initial events of lineage commitment and gene expression.  相似文献   

16.
Many proteins require the binding of trace metals such as Ca, Fe, Cu, or Zn, which may modulate their structure, function, or activity. To determine if there were any overall changes in metalloprotein distribution or metal concentration during the process of macrophage differentiation we induced human myeloid HL-60 leukemia cells with phorbol 12-myristate 13-acetate (PMA) and quantitatively mapped their metal content using hard X-ray fluorescence micro-analysis. We found a transient increase in the zinc content of HL-60 cell nuclei during the early stages of differentiation induction. This finding was confirmed by spectrofluorometry in HL-60 cells and extended to U-937 leukemia cells. A role for protein kinase C-beta (PKC-beta) in this process was established by examining zinc content in an HL-60 variant, HL-525, which is PKC-beta deficient, and in HL-525 cells in which PKC-beta was restored by stable overexpression. Chemical chelation of both Cu and Zn served to inhibit macrophage differentiation in HL-60 cells, indicating a requirement for these metals during this process. Finally, we demonstrate that growth of HL-60 cells in a low-zinc environment removes their susceptibility to PMA-induced differentiation, and that this capacity can be partially restored by the addition of exogenous zinc.  相似文献   

17.
Prior to morphologic and functional maturation, terminally differentiating hematopoietic cells first exit the cell cycle and undergo growth arrest. Relatively little is known about which molecules regulate differentiation-induced growth arrest. In the present report, we sought to determine whether the mammalian low molecular weight heat shock protein (hsp28) was a candidate growth-regulatory molecule during human hematopoiesis. To this end, hsp28 protein expression was examined during phorbol ester (PMA)-induced macrophage differentiation of the human HL-60 promyelocytic leukemic cell line. Whereas hsp28 was constitutively expressed at relatively low levels in an unphosphorylated state, hsp28 was rapidly phosphorylated within 4 hr following PMA-induced differentiation, preceding increased hsp28 protein levels at 24–48 h. In contrast to other differentiative agents, hsp28 steady state mRNA and protein were regulated concordantly in response to macrophage differentiation. More importantly, these changes were transient, and occurred concomitant with the down-regulation of cellular proliferation and the onset of G1 phase cell cycle arrest. In total, these observations implicate hsp28 as an intermediary in the myelomonocytic differentiative pathway of promyelocytic leukemic cells, and will shed light on the events regulating this process. © 1993 Wiley-Liss, Inc.  相似文献   

18.
In an attempt to develop a constant and reproducible in vitro system for a detailed analysis of cytotoxic effector mechanisms of nonimmune mononuclear phagocytes, the HL-60 promyelocytic cell line was studied for its cytotoxic action on chicken erythrocyte target cells. HL-60 cells cultured in complete medium were found to be noncytotoxic for chicken erythrocytes in an 18-hr 51Cr-release assay. These cells have been shown to acquire several characteristics of mature macrophages upon incubation with phorbol myristate acetate (PMA), and when PMA was included in the medium during the assay, the HL-60 cells became strongly cytotoxic to the target cells in the absence of exogenous antibody, lectin, or serum complement. Freshly isolated peripheral blood monocytes also became cytotoxic in the presence of PMA, whereas peripheral blood lymphocytes and the U937 histiocytic cell line did not. Detectable target lysis was observed between 4 and 8 hr after HL-60 stimulation with PMA, and HL-60 cells prestimulated with PMA for 24 hr retained their cytotoxic activity following washing and assay in PMA-free medium. Cytotoxic HL-60 cells developed after exposure to 10(-6) to 10(-9) M PMA, and significant target cell lysis occurred at effector:target cell ratios as low as 0.5:1. The PMA-induced HL-60-mediated cytotoxic response was markedly inhibited by blockers of protein synthesis, inhibition of microfilament function, and depletion of cellular superoxide and hydrogen peroxide. Interestingly, cytotoxicity of HL-60 cells for chicken erythrocyte targets was modulated by the direct addition of certain simple saccharides to the assay in a fashion similar to that observed with spontaneously cytotoxic mononuclear cells from several vertebrate and invertebrate species. Thus, the cytolytic effector function induced in HL-60 cells by incubation with PMA presents a useful model for the study of cellular cytotoxic mechanisms as well as the mechanisms utilized by nonimmune cells in the recognition of non-self.  相似文献   

19.
A variety of cell surface adhesion molecules can exist as both transmembrane proteins and soluble circulating forms. Increases in the levels of soluble adhesion molecules have been correlated with a variety of inflammatory diseases, suggesting a pathological role. Although soluble forms are thought to result from proteolytic cleavage from the cell surface, relatively little is known about the proteases responsible for their release. In this report we demonstrate that under normal culture conditions, cells expressing vascular cell adhesion molecule 1 (VCAM-1) release a soluble form of the extracellular domain that is generated by metalloproteinase-mediated cleavage. VCAM-1 release can be rapidly simulated by phorbol 12-myristate 13-acetate (PMA), and this induced VCAM-1 shedding is mediated by metalloproteinase cleavage of VCAM-1 near the transmembrane domain. PMA-induced VCAM-1 shedding occurs as the result of activation of a specific pathway, as the generation of soluble forms of three other adhesion molecules, E-selectin, platelet-endothelial cell adhesion molecule 1, and intercellular adhesion molecule 1, are not altered by PMA stimulation. Using cells derived from genetically deficient mice, we identify tumor necrosis factor-alpha-converting enzyme (TACE or ADAM 17) as the protease responsible for PMA-induced VCAM-1 release, including shedding of endogenously expressed VCAM-1 by murine endothelial cells. Therefore, TACE-mediated shedding of VCAM-1 may be important for the regulation of VCAM-1 function at the cell surface.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号