首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection of cultures of peritoneal macrophages with both lactate dehydrogenase-elevating virus (LDV) and mouse hepatitis virus (MHV) resulted in the formation of pseudotype virions containing LDV RNA which productively infected cells that are resistant to infection by intact LDV virions but not to infection by MHV. These cells were mouse L-2 and 3T3-17Cl-1 cells as well as residual peritoneal macrophages from persistently LDV-infected mice. Productive LDV infection of these cells via pseudotype virions was inhibited by antibodies to the MHV spike protein or to the MHV receptor, indicating that LDV RNA entered the cells via particles containing the MHV envelope. Simultaneous exposure of L-2 cells to both LDV and MHV resulted in infection by MHV but not by LDV. The results indicate that an internal block to LDV replication is not the cause of the LDV nonpermissiveness of many cell types, including the majority of the macrophages in an adult mouse. Instead, LDV permissiveness is restricted to a subpopulation of mouse macrophages because only these cells possess a surface component that acts as an LDV receptor.  相似文献   

2.
Lactate dehydrogenase-elevating virus (LDV) replicates primarily and most likely solely in a subpopulation of macrophages in extraneuronal tissues. Infection of mice, regardless of age, with LDV leads to the rapid cytocidal replication of the virus in these cells, resulting in the release of large amounts of LDV into the circulation. The infection then progresses into life-long, asymptomatic, low-level viremic persistence, which is maintained by LDV replication in newly generated LDV-permissive cells which escapes all antiviral immune responses. In situ hybridization studies of tissue sections of adult FVB mice revealed that by 1 day postinfection (p.i.), LDV-infected cells were present in practically all tissues but were present in the highest numbers in the lymph nodes, spleen, and skin. In the central nervous system, LDV-infected cells were restricted to the leptomeninges. Most of the infected cells had disappeared at 3 days p.i., consistent with the cytocidal nature of the LDV infection, except for small numbers in lymph node, spleen, liver, and testis tissues. These tissues harbored infected cells until at least 90 days p.i. The results suggest that the generation of LDV-permissive cells during the persistent phase is restricted to these tissues. The continued presence of LDV-infected cells in testis tissue suggests the possibility of LDV release in semen and sexual transmission. Most striking was the accumulation of large amounts of LDV RNA in newly generated germinal centers of lymph nodes and the spleen. The LDV RNA was not associated with infected cells but was probably associated with virions or debris of infected, lysed cells. The appearance of LDV RNA in germinal centers in these mice coincided in time with the polyclonal activation of B cells, which leads to the accumulation of polyclonal immunoglobulin G2a and low-molecular-weight immune complexes in the circulation.  相似文献   

3.
We established a human cell line which was persistently infected (PI) by the normally cytolytic echovirus 6. All of the cultured PI cells contained genome-size viral RNA which was synthesized continuously and incorporated into virus particles. This steady-state infection has been maintained for more than 6 years. In contrast to RNA of wild-type echovirus 6, the viral RNA from PI cells was not lytic when transfected into uninfected, susceptible cells. The capsid polypeptides of the virus particles produced during lytic infections were compared with those of virus particles from PI cells. Wild-type virions contained five polypeptides with molecular masses of 31.5, 27, 25.8, 21.2, and 9.5 kilodaltons. Comparison of polypeptide profiles of virions and empty immature capsids along with peptide analyses by immunoblotting and partial proteolysis of isolated viral proteins identified the cleavage products of the 31.5-kilodalton polypeptide (VP0) as the two smaller polypeptides (VP2 and VP4). The virus particles produced by PI cells as well as cellular extracts of PI cells contained only the three largest proteins (VP0, VP1, and VP3), indicating that VP0 was not processed during persistent infection. The lack of VP2 and VP4 in the defective virus particles coincided with their inability to attach to uninfected, susceptible cells. The maintenance of the steady-state infection of echovirus 6 was not dependent upon the release of virus particles from PI cells.  相似文献   

4.
Cytopathic effects were produced in fetal rhesus monkey kidney (FRhK-4) cells 7 days postinfection by a serially BS-C-1-passaged strain of hepatitis A virus. Typical enterovirus cytopathology was produced by the HM-175 strain after 15 passages at 7-day intervals in BS-C-1 cells. No cytopathic effects were obtained after neutralization of virus with human anti-hepatitis A virus immunoglobulin G. Normal human serum had no effect on development of cytopathology. Maximum antigen and cDNA probe-based hybridization activity were associated with a CsCl gradient fraction having a density of 1.34 g/cm3. Large quantities of 27- to 30-nm virions typical of hepatitis A virus were associated with the same fraction. These data led to the conclusion that the observed cytopathology was caused by hepatitis A virus.  相似文献   

5.
Cytopathic effects were produced in fetal rhesus monkey kidney (FRhK-4) cells 7 days postinfection by a serially BS-C-1-passaged strain of hepatitis A virus. Typical enterovirus cytopathology was produced by the HM-175 strain after 15 passages at 7-day intervals in BS-C-1 cells. No cytopathic effects were obtained after neutralization of virus with human anti-hepatitis A virus immunoglobulin G. Normal human serum had no effect on development of cytopathology. Maximum antigen and cDNA probe-based hybridization activity were associated with a CsCl gradient fraction having a density of 1.34 g/cm3. Large quantities of 27- to 30-nm virions typical of hepatitis A virus were associated with the same fraction. These data led to the conclusion that the observed cytopathology was caused by hepatitis A virus.  相似文献   

6.
Zhou J  Aiken C 《Journal of virology》2001,75(13):5851-5859
The human immunodeficiency virus type 1 (HIV-1) accessory protein Nef stimulates viral infectivity by facilitating an early event in the HIV-1 life cycle. Although no structural or biochemical defects in Nef-defective HIV-1 particles have been demonstrated, the Nef protein is incorporated into HIV-1 particles. To localize the function of Nef within the virus particle, we developed a novel technology involving fusion of enveloped donor HIV-1 particles bearing core defects with envelope-defective target virions bearing HIV-1 receptors. Although neither virus alone was capable of infecting CD4(+) target cells, the incubation of donor and target virions prior to addition to target cells resulted in infection. This effect, termed "virion transcomplementation," required a functional Env protein on the donor virus and CD4 and an appropriate coreceptor on target virions. To provide evidence for intervirion fusion as the mechanism of complementation, experiments were performed using dual-enveloped HIV-1 particles bearing both HIV-1 and ecotropic murine leukemia virus (E-MLV) Env proteins as donor virions. Infection of CD4-negative target cells bearing E-MLV receptors was prevented by HIV-1 entry inhibitors when added before, but not after, incubation of donor and target virions prior to the addition to cells. When we used Nef(+) and Nef(-) donor and target virions, Nef enhanced infection when present in donor virions. In contrast, no effect of Nef was detected when present in the target virus. These results reveal a potential mechanism for enhancing HIV-1 diversity in vivo through the rescue of defective viral genomes and provide a novel genetic system for the functional analysis of virion-associated proteins in HIV-1 infection.  相似文献   

7.
We have identified three types of cytoskeletal proteins inside human immunodeficiency virus type 1 (HIV-1) virions by analyzing subtilisin-digested particles. HIV-1 virions were digested with protease, and the treated particles were isolated by sucrose density centrifugation. This method removes both exterior viral proteins and proteins associated with microvesicles that contaminate virion preparations. Since the proteins inside the virion are protected from digestion by the viral lipid envelope, they can be isolated and analyzed after treatment. Experiments presented here demonstrated that this procedure removed more than 95% of the protein associated with microvesicles. Proteins in digested HIV-1(MN) particles from infected H9 and CEM(ss) cell lines were analyzed by high-pressure liquid chromatography, protein sequencing, and immunoblotting. The data revealed that three types of cytoskeletal proteins are present in virions at different concentrations relative to the molar level of Gag: actin (approximately 10 to 15%), ezrin and moesin (approximately 2%), and cofilin (approximately 2 to 10%). Our analysis of proteins within virus particles detected proteolytic fragments of alpha-smooth muscle actin and moesin that were cleaved at sites which might be recognized by HIV-1 protease. These cleavage products are not present in microvesicles from uninfected cells. Therefore, these processed proteins are most probably produced by HIV-1 protease digestion. The presence of these fragments, as well as the incorporation of a few specific cytoskeletal proteins into virions, suggests an active interaction between cytoskeletal and viral proteins.  相似文献   

8.
The arterivirus lactate dehydrogenase-elevating virus (LDV) causes life-long viremia in mice. Although LDV infection generally does not cause disease, infected mice that are homozygous for the Fv1(n) allele are prone to develop poliomyelitis when immunosuppressed, a condition known as age-dependent poliomyelitis. The development of age-dependent poliomyelitis requires coinfection with endogenous murine leukemia virus. Even though LDV is a common contaminant of transplantable tumors, clinical signs of poliomyelitis after inadvertent exposure to LDV have not been described in recent literature. In addition, LDV-induced poliomyelitis has not been reported in SCID or ICR mice. Here we describe the occurrence of poliomyelitis in ICR-SCID mice resulting from injection of LDV-contaminated basement membrane matrix. After exposure to LDV, a subset of mice presented with clinical signs including paresis, which was associated with atrophy of the hindlimb musculature, and tachypnea; in addition, some mice died suddenly with or without premonitory signs. Mice presenting within the first 6 mo after infection had regions of spongiosis, neuronal necrosis and astrocytosis of the ventral spinal cord, and less commonly, brainstem. Axonal degeneration of ventral roots prevailed in more chronically infected mice. LDV was identified by RT-PCR in 12 of 15 mice with typical neuropathology; positive antiLDV immunolabeling was identified in all PCR-positive animals (n = 7) tested. Three of 8 mice with neuropathology but no clinical signs were LDV negative by RT-PCR. RT-PCR yielded murine leukemia virus in spinal cords of all mice tested, regardless of clinical presentation or neuropathology.  相似文献   

9.
Sequential effects of rubella virus infection in BHK-21 cells were studied by electron microscopy of thin sections of control and infected cells, 2 to 7 days after infection. Vacuolization of cytoplasm in Golgi areas apparently preceded budding of virions from vacuole membranes and involvement of the endoplasmic reticulum. Newly formed endoplasmic reticulum cisternae encircled and segregated virionforming vacuoles together with other cellular elements. Large vacuolar complexes with numerous virus particles developed, and virus release from these areas occurred with disruption at the cell periphery. The viral particles, with a mean diameter of about 56 nm, consisted of an electron-dense core surrounded by a less dense capsid, enveloped by a typical unit membrane derived from the vacuole membrane.  相似文献   

10.
Cytomegalovirus virions and dense bodies were purified by sucrose velocity and equilibrium centrifugation from the medium of fibroblasts infected with the strain AD169. The final virus preparations were purified more than 228-fold with respect to cellular proteins as determined by double-isotopic labeling and at least 1,600-fold on the basis of changes in the ratio of total protein to virus particles. The protein content of purified particles approximated that found for purified preparations of other herpesviruses. Twenty polypeptides ranging from 22,000 to greater than 230,000 molecular weight were detected in purified virus preparations by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Polypeptides of virions and dense bodies were allocated on the basis of analyses of preparations containing differing percentages of virions and dense bodies. Six polypeptides were represented predominantly or exclusively in virions, and four polypeptides were represented predominantly or exclusively in dense bodies, whereas the remainder appeared to be shared by both types of particles. Four polypeptides were glycosylated, and at least three of these appeared to be shared by both particles. Four polypeptides were glycosylated, and at least three of these appeared to be shared by both particle types. The protein composition of cytomegalovirus differs profoundly from that of herpes simplex virus.  相似文献   

11.
Lactate dehydrogenase-elevating virus (LDV) was purified from culture fluid of infected primary cultures of various mouse tissues (peritoneal macrophage, bone marrow, spleen, and embryo) and from plasma of infected mice. Electron microscopy of negatively stained virus and positively stained sections of LDV revealed spherical particles of uniform size with a diameter of about 55 nm, containing an electron-dense core with a diameter of about 30 nm. During sample preparation the envelope had a tendency to slough off and disintegrate to form aggregates of various sizes and small hollow particles with a diameter of 8 to 14 nm. Two strains of LDV exhibited a density of 1.13 g/cm3 in isopycnic sucrose density gradient centrifugation whether propagated in primary cultures of the various mouse tissues or isolated from plasma of infected mice. A brief incubation of LDV in a solution containing 0.01% Nonidet P-40 or Triton X was sufficient to release the viral nucleocapsid, whereas a similar treatment had no effect on Sindbis virus. The nucleocapdis of LDV exhibited a density of 1.17 g/cm3, was devoid of phosphatidylcholine, and contained only the smallest of the viral proteins, VP-1, which had a molecular weight of about 15,000. The envelope contained two proteins. VP-2 with a molecular weight of 18,000 and a glycoprotein, VP-3, which migrated heterogenously (24,000 to 44,000 daltons) during polyacrylamide gel electrophoresis. When compared to the sedimentation rate of 29S rRNA, the RNAs of LDV and Sindbis virus sedimented at 48 and 45S, respectively, whether analyzed by zone sedimentation in sucrose density gradients containing low or high salt concentrations or denatured by treatment with formaldehyde. Our results indicate that LDV should be classified as a togavirus, but that LDV is sufficiently different from alpha and flaviviruses to be excluded from these groups.  相似文献   

12.
Ultrastructure of Measles Virus in Cultures of Hamster Cerebellum   总被引:15,自引:6,他引:9       下载免费PDF全文
Replication of Edmonston strain of measles virus in cultures of hamster central nervous system tissue was studied by electron microscopy of ultrathin sections. Infected cultures were fixed from 3 hr to 39 days postinoculation (PI). Measles nucleocapsid was first seen within the cytoplasm of giant cells, the latter appearing 5 to 6 days PI. Measles virus particles were most abundant at 10 days PI and appeared to bud off from areas of the cell membrane along which nucleocapsid was aligned. Intranuclear nucleocapsid was more abundant at later stages, and by 39 days PI entire nuclei were seen to be occupied. By this time, the cytoplasmic formations, which had been sequestered by membranes, appeared to lose their regular structure. Budding viral particles at 39 days PI were of a much simplified structure and did not involve the alignment of nucleocapsid about their periphery.  相似文献   

13.
Study of the possibilities of virions and viral proteins modifications and structural remodeling is an important problem of the modern molecular virology. A technique of heat treatment of rod-shaped tobacco mosaic virus that allowed producing structurally modified spherical particles consisting of the virus coat protein was previously developed in our laboratory. These particles possessed unique adsorption and immunogenic properties and were successfully used to develop a new candidate vaccine against rubella virus. Later, the possibility of thermal remodeling of the filamentous virions of potato virus X was demonstrated. The present work reports a comparative study of thermal remodeling of viruses with different structure belonging to various taxonomic groups. The generation of structurally modified spherical particles by the heat treatment of rod-shaped virions with helical symmetry (dolichos enation mosaic virus and barley stripe mosaic virus) has been demonstrated. The dependence of the size of spherical particles derived from dolichos enation mosaic virus on the initial virus concentration was revealed. The process of thermal remodeling of the filamentous virions and virus-like particles of alternanthera mosaic virus was studied. Heat treatment of plant viruses with icosahedral symmetry was shown to cause no morphological changes.  相似文献   

14.
Deer mice (Peromyscus maniculatus) were inoculated with a sublethal dose of a field strain of Modoc virus to determine patterns of viral persistence, shedding, and transmission. Blood, serum, urine, fecal, and oral swab samples were collected at selected intervals until 63 days postinoculation (PI) after which lung, liver, spleen, kidney, and salivary glands were explanted. Viral assays were conducted by intracranial inoculations of suckling mice and antibody titers were determined by the micro-complement-fixation test. Viremias lasted for up to 4 days PI. Antibody titers were present by day 8 PI, peaked at day 13-20 PI, and persisted until day 63 PI. There was no evidence of viral shedding in urine, fecal, or oral swab samples. Virus was detected in explanted lungs only. In a separate experiment, deer mice were inoculated with virus and lungs were removed from five mice per wk for 10 wk. Indirect fluorescent antibody (IFA) techniques were used to determine the location of virus in lung tissue and to examine fixed tissue for lesions. IFA showed virus in lung parenchymal cells beginning 42 days PI and persisting at least 70 days PI. No histopathologic changes were seen. Horizontal transmission of the virus was studied by placing uninoculated mice with inoculated mice for 42 days and determining if the test animals developed antibodies or had virus in their lungs. Fifty-percent of the uninoculated mice developed antibody. One of these animals had virus in its lungs. Therefore, Modoc virus may be transmitted by direct contact.  相似文献   

15.
The nature, polypeptide composition, and antigenic composition of the particles formed by six human adenovirus type 2 temperature-sensitive (ts) mutants were studied. ts115, ts116, and ts125 were phenotypically fiber-defective mutants, and ts103, ts104, and ts136 failed to synthesize detectable amounts of fiber plus penton base at 39.5 degrees C. The mutants belonged to five complementation groups, one group including ts116 and ts125. Except for ts103 and ts136, the other mutants were capable of producing particles at 39.5 degrees C. ts116 and ts125 accumulated light assembly intermediate particles (or top components) at nonpermissive temperatures, with few virus particles. The sodium dodecyl sulfate polypeptide pattern of ts116- or ts125-infected cells, intermediate particles, and virus particles showed that polypeptide IV (fiber) was smaller by a molecular weight of 2,000 than that in the wild-type virion and was glycosylated. In fiber plus penton base-defective ts104-infected cells, equivalent quantities of top components and viruses with a buoyant density (rho) of 1.345 g/ml (rho = 1.345 particles) were produced at 39.5 degrees C. These rho = 1.345 particles corresponded to young virions, as evidenced by the presence of uncleaved precursors to proteins VI, VIII, and VII. These young virions matured upon a shift down. Virus capsid vertex antigenic components underwent a phase of eclipse during their incorporation into mature virus particles. No antigenic penton base or IIa was detected in intermediate particles of all the ts mutants tested. Only hexon and traces of fiber antigens were found in ts104 young virions. Penton base and IIIa appeared as fully antigenically expressed capsid subunits in mature wild-type virions or ts104 virions after a shift down. The ts104 lesion is postulated to affect a regulatory function related in some way to penton base and fiber overproduction and the maturation processing of precursors PVI, PVII, and PVII.  相似文献   

16.
17.
A spontaneous mutant that produces a single abnormally large cubic polyhedron per infected cell was isolated from a polyhedra-positive recombinant Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Both wild-type and mutant virus produce two forms of virus particles, budded virions and occluded virions. However, occluded virions are not found within the polyhedra of cells infected with mutant virus, as with the wild-type virus. These large cubic polyhedra do not have the typical lattice-like structure normally seen in wild-type polyhedra and are noninfectious. Spodoptera frugiperda 9 (SF9) cells which were infected with this virus had low infectivity to larvae. No significant alterations were found in the viral genome by restriction enzyme analysis, and no mutations were found in the 25K gene. A single point mutation resulting in an amino acid change of Gly25 to Asp was identified in the polyhedrin gene. A transfer vector containing the entire polyhedrin gene including the point mutation was constructed and used to cotransfect Sf9 cells with a polyhedron-negative recombinant virus. Large cubic polyhedra were once again observed, confirming that the Gly25 to Asp mutation is responsible for the formation of abnormal polyhedra.  相似文献   

18.
X Lu  T M Block    W H Gerlich 《Journal of virology》1996,70(4):2277-2285
The human hepatoblastoma cell line HepG2 produces and secretes hepatitis B virus (HBV) after transfection of cloned HBV DNA. Intact virions do not infect these cells, although they attach to the surface of the HepG2 cell through binding sites in the pre-S1 domain. Entry of enveloped virions into the cell often requires proteolytic cleavage of a viral surface protein that is involved in fusion between the cell membrane and the viral envelope. Recently, we observed pre-S-independent, nonspecific binding between hepatitis B surface (HBs) particles and HepG2 cells after treatment of HBs antigen particles with V8 protease, which cleaves next to a putative fusion sequence. Chymotrypsin removed this fusion sequence and did not induce binding. In this study, we postulate that lack of a suitable fusion-activating protease was the reason why the HepG2 cells were not susceptible to HBV. To test this hypothesis, virions were partially purified from the plasma of HBV carriers and treated with either staphylococcal V8 or porcine chymotrypsin protease. Protease-digested virus lost reactivity with pre-S2-specific antibody but remained morphologically intact as determined by electron microscopy. After separation from the proteases, virions were incubated with HepG2 cells at pH 5.5. Cultures inoculated with either intact or chymotrypsin-digested virus did not contain detectable levels of intracellular HBV DNA at any time following infection. However, in cultures inoculated with V8-digested virions, HBV-specific products, including covalently closed circular DNA, viral RNA, and viral pre-S2 antigen, could be detected in a time-dependent manner following infection. Immunofluorescence analysis revealed that 10 to 30% of the infected HepG2 cells produced HBV antigen. Persistent secretion of virus by the infected HepG2 cells lasted at least 14 days and was maintained during several reseeding steps. The results show that V8-digested HBV can productively infect tissue cultures of HepG2 cells. It is suggested that proteolysis-dependent exposure of a fusion domain within the envelope protein of HBV is necessary during natural infection.  相似文献   

19.
Morphogenesis of aura virus   总被引:1,自引:1,他引:0       下载免费PDF全文
Aura virus, a member of the Western equine-encephalitis-Whataroa subgroup of group A arboviruses, was studied by electron microscopy in suckling mouse brain and chick embryo cultured cells. Virus precursors, budding particles, and complete virus particles were first detected 10 hr after infection in chick embryo cells and 24 hr after inoculation in mouse brain. Virus precursors were generally seen aligned along cytomembranes, and were less frequently seen closely associated with viroplasm-like foci, tubular aggregates, or scattered in the cytoplasmic matrix without an apparent connection to any other structure. The assembly of mature virus was observed to take place by a budding process of the virus precursor from the plasma membrane into the extracellular space, and from the cytoplasmic membranes into the lumina of vacuoles and cisternae. It was demonstrated that the endoplasmic reticulum participates in the assembly of intracellular virions. Indirect evidence was found to indicate that the Golgi complex may also form mature virus. Aura virions had a size, shape, and structure similar to those of the previously described group A arboviruses.  相似文献   

20.
Purification of Rabies Virus Grown in Tissue Culture   总被引:32,自引:20,他引:12       下载免费PDF全文
Extracellular rabies virus, grown in monolayer cultures of BHK21 cells in the presence of medium supplemented with bovine serum albumin, was purified by the following procedure. Virus was precipitated from infectious tissue culture fluid by zinc acetate and was resuspended in a solution of ethylenediaminetetraacetate. The suspension was filtered through a Sephadex column and was treated with ribonuclease and deoxyribonuclease. The virions were then pelleted by centrifugation at high speed and were resuspended in buffer solution. Banding of the virus by centrifugation in a sucrose density gradient was the final step in the purification procedure. Purified preparations contained bullet-shaped virus particles of variable length and little (up to 5%) contaminating host-cell material. Most of the virions were "complete", i.e., 180 nm long, but some virus particles were shorter. The length distribution of the virions was nonrandom. Shorter virions seemed to be noninfectious and showed markedly decreased hemagglutinating activity. The complement-fixing activity and the ribonucleic acid to protein ratio of the virions were not related to the length of the virus particles. Although the properties of extracellular and intracellular viruses were similar, the procedure was not suitable for purification of intracellular rabies virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号