首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reaction of vanadium(III) chloride with 8-quinolinol (Hqn) gave a mononuclear vanadium(IV) complex, [VOCl2(H2O)2] 1) · 2H2qn · 2Cl · CH3CN, and three dinuclear vanadium(IV) complexes: [V2O2Cl2(qn)2(H2O)2] (2) · Hqn, [V2O2Cl2(qn)2(C3H7OH)2] (3), and [V2O2Cl2(qn)2(C4H9OH)2] (4). Reaction of vanadium(III) chloride with 5-chloro-8-quinolinol (HClqn) gave four dinuclear vanadium(IV) complexes: [V2O2Cl2(Clqn)2(H2O)2] (5) · 2HClqn, [V2O2Cl2(Clqn)2(C3H7OH)2] (6), [V2O2Cl2(Clqn)2(C6H5CH2OH)2] (7), and [V2O2Cl2(Clqn)2(C4H9OH)2] (8) · 2C4H9OH. Reaction of vanadium(III) chloride with 5-fluoro-8-quinolinol (HFqn) gave two dinuclear vanadium(IV) complexes: [V2O2Cl2(Fqn)2(H2O)2] (9) · HFqn · 2H2O and V2O2Cl2(Fqn)2(C3H7OH)2] (10). X-ray structures of 1 · 2H2qn · 2Cl · CH3CN, 3, 4, 6, 7, 8 · 2 t-BuOH, and 10 have been determined. As to the mononuclear species 1 · 2H2qn · 2Cl · CH3CN, coordination of Hqn to vanadium does not occur, but protonation to Hqn occurs to give H2qn+, which links 1’s through hydrogen bonding, while each of the dinuclear species has a terminal and a bridging qn (or Clqn, Fqn) ligand, giving rise to a (V-O)2 ring. Magnetic measurements of 3, 4, 6, 7, and 10 in solid form show very weak antiferromagnetic behavior, and the effective magnetic moments are close to spin only value (2.44) of d1-d1 system, while ESR of 3 in THF shows dissociation to monomeric species. Change from mononuclear, 1, to dinuclear, 2, species was followed by the change of electronic spectrum.  相似文献   

2.
Oxovanadium(IV) complexes of the polyalcohols sorbitol, galactitol, and mannitol, of stoichiometry Na(2)[VO(L)(2)].H(2)O, were obtained from aqueous alkaline solutions. They were characterized by elemental analysis, infrared and UV-vis spectroscopies, thermoanalytical (thermogravimetric and differential thermal analysis) data, and magnetic susceptibility measurements. The biological activities of the complexes on the proliferation, differentiation, and glucose consumption were tested on osteoblast-like cells (MC3T3E1 osteoblastic mouse calvaria-derived cells and UMR106 rat osteosarcoma-derived cells) in culture. The three complexes exerted a biphasic effect on cell proliferation, being slight stimulating agents at low concentrations and inhibitory in the range of 25-100 microM. All the complexes inhibited cell differentiation in tumor osteoblasts. Their effects on glucose consumption were also discussed. The free ligands did not show any effect on the studied biological parameters.  相似文献   

3.
Syntheses of two novel ligand precursors O,O'-diisopropyl- (1a) and O,O'-diisobutyl-(S,S)-ethylenediamine-N,N'-di-2-propanoate dihydrochloride monohydrate (1b) and the corresponding dichloroplatinum(II) (2a and 2b) and tetrachloroplatinum(IV) complexes (3a and 3b) are described here. The substances were characterized by IR, (1)H and (13)C spectroscopy and elemental analysis. Crystal structures were determined for 1a and the corresponding platinum(IV) complex, 3a. In vitro antiproliferative activity was determined against tumor cell lines: human adenocarcinoma HeLa, human myelogenous leukemia K562, human malignant melanoma Fem-x, rested and stimulated normal immunocompetent cells (human peripheral blood mononuclear PBMC cells) using KBR test (Kenacid Blue Dye binding test). The IC(50)(microM) values for the most active compound 3a were: 30.48+/-2.54; 12.26+/-2.60; 13.68+/-3.22; 80.18+/-24.07 and 71.30+/-21.70, respectively.  相似文献   

4.
A series of novel glycosyl thiazol-2-imines (3a-g) have been synthesized regioselectively in good yields from the hydrolysis of thiazol-2(3H)-imine-linked glycoconjugates. The glycosyl thiazol-2-imines were evaluated for their antitumor activity against Hela (cervical carcinoma), HCT-8 (colon carcinoma) and Bel-7402 (liver carcinoma). Among the compounds screened, 1-benzoyl-4-(4-nitrophenyl)-3-β-d-glucopyranosyl-thiazol-2(3H)-imine (3c) was found to be the most active compound against HCT-8.  相似文献   

5.
Eight rare earth metal(II) complexes with quercetin ML3 x 6H2O [L=quercetin (3-OH group deprotonated); M = La, Nd, Eu, Gd, Tb, Dy, Tm and Y] have been synthesized and characterized by elemental analysis, complexometric titration, thermal analysis, conductivity, IR, UV, 1HNMR and fluorescence spectra techniques as well as cyclic voltammetry. The quercetin:metal stoichiometry and the equilibrium stability constant for metal binding to quercetin have been determined. The antioxidative and antitumor activities of quercetin x 2H2O and the complexes were tested by both the MTT and SRB methods. The results show that the suppression ratio of the complexes against the tested tumour cells are superior to quercetin x 2H2O. The property of LaL3 x 6H2O reacting with calf thymus DNA was studied by fluorescence methods. The La-complex binding to DNA has been determined by fluorescence titration in 0.05 M Tris-HCl, 0.5 M NaCl buffer (pH 7.0). The results indicate that the interaction of the complex with DNA is very evident.  相似文献   

6.
Vanadium compounds are known for a variety of pharmacological properties. Many of them display antitumoral and osteogenic effects in several cell lines. Free radicals induce the development of tumoral processes. Natural polyphenols such as flavonoids have antioxidant properties since they scavenge different free radicals. For these reasons it is interesting to investigate the effects of a new complex generated between the vanadyl(IV) cation and the flavonoid hesperidin. The complex has been synthesized and characterized by physicochemical methods. Spectroscopic analysis revealed a 1:1 stoichiometry of ligand:VO and coordination by deprotonated cis-hydroxyl groups to the disaccharide moiety of the ligand. The complex improves the superoxide dismutase (SOD)-like activity of the ligand, but the scavenging of other radicals tested does not change upon complexation. When tested on two tumoral cell lines in culture (one of them derived from a rat osteosarcoma UMR106 and the other from human colon adenocarcinoma Caco-2), the complex enhanced the antiproliferative effects of the free ligand, and this effect correlated with the morphological alterations toward apoptosis. Also, on the osteoblastic cell line the complex stimulated cell proliferation and collagen type I production at low concentrations. At higher doses the complex behaved as a cytotoxic compound for the osteoblasts.  相似文献   

7.
The synthesis, spectroscopic, enzyme-inhibition, and free-radical-scavenging properties of a series of vanadium(IV) complexes, compounds 1-10, were investigated. These complexes exhibit a dimeric structure with hydrazide ligands coordinated in a bidentate fashion. All complexes are stable in the solid state, but exhibit varying degrees of stability in solution. In coordinating solvent such as DMSO, stepwise binding of two solvent molecules at the 6th positions trans to the V double bond O bond of the dimeric unit is observed. The dimeric compounds are converted to monomeric species in which both solvent molecules and the hydrazide ligands are coordinated to the V(IV) center. The free hydrazide ligands 11-20 were inactive against alpha-glucosidase, but the V(IV) complexes showed varying degrees of inhibition, depending on the type of ligand. The DPPH-radical-scavenging activities of 1-20 were determined, which indicated that steric and/or electronic effects responsible for changes in geometry play important roles in terms of antioxidant potential.  相似文献   

8.
We synthesized vanadyl (oxidation state +IV) and vanadate (oxidation state +V) complexes with the same hydroxamic acid derivative ligand, and assessed their glucose-lowering activities in relation to the vanadium biodistribution behavior in streptozotocin-induced diabetic mice. When the mice received an intraperitoneal injection of the complexes, the vanadate complex more effectively lowered the elevated glucose levels compared with the vanadyl one. The glucose-lowering effect of the vanadate complex was linearly related to its dose within the range from 2.5 to 7.5 mg V/kg. In addition, pretreatment of the vanadate complex induced a larger insulin-enhancing effect than the vanadyl complex. Both complexes were more effective than the corresponding inorganic vanadium compounds. The vanadyl and vanadate complexes, but not the inorganic vanadium compounds, resulted in almost the same organ vanadium distribution. Consequently, the observed differences in the insulin-like activity between the complexes would reflect the potency of the two compounds in the +IV and +V oxidation states in the subcellular region.  相似文献   

9.
A series of zirconium(IV) complexes, [ZrX2(XDK)], where XDK is the constrained carboxylate ligand m-xylylenediamine bis(Kemp's triacid imide), were prepared and structurally characterized. The solid state structure of the mononuclear carboxylate alkyl complex [Zr(CH2Ph)2(XDK)] reveals that one benzyl group is bonded in an η2-fashion to the metal center. The reactivity of [Zr(CH2Ph)2(XDK)] displays its electrophilic character toward nucleophiles strong enough to displace the η2-benzyl group. Thus, weak sigma donor ligands such as CO, alkynes and anilines do not react, whereas strong sigma donors, such as pyridines and isocyanides, rapidly form the monoadduct [Zr(CH2Ph)2(4-tert-butylpyridine)(XDK)] and [Zr{η2-2,6-Me2PhNCCH2Ph}2(XDK)], an η2-iminoacyl derivative, respectively. Attempts to prepare zirconium amido complexes with H2XDK generally afforded the eight-coordinate [Zr(XDK)2] complex but use of the small amido ligand precursorZr(NMe2)4 allowed [Zr(NMe2)2(4-tert-butylpyridine)(XDK)] to be isolated in good yield.  相似文献   

10.
Platinum (IV) complexes [Pt (L)2Cl2] [where, L= benzyl-N-thiohydrazide (L1), (benzyl-N-thio)-1,3-propanediamine (L2), benzaldehyde-benzyl-N-thiohydrazone (L3) and salicylaldehyde-benzyl-N-thiohydrazone (L4)] have been synthesized. The thiohydrazide, thiodiamine and thiohydrazones can exist as thione-thiol tautomer and coordinate as a bidentate N-S ligand. The ligands were found to act in monobasic bidentate fashion. Analytical data reveal that metal to ligand stoichiometry is 1:2. The complexes have been characterized by elemental analysis, IR, mass, electronic and 1H NMR spectroscopic studies. In vitro antibacterial and cytotoxic studies have been carried out for some complexes. Various kinetic and thermodynamic parameters like order of reaction (n), activation energy (Ea), apparent activation entropy (S#) and heat of reaction (DeltaH) have also been carried out for some complexes.  相似文献   

11.
New Pd(II) and Pt(II) complexes [ML2] (HL=a substituted 2,5-dihydro-5-oxo-1H-pyrazolone-1-carbothioamide) have been synthesized by reacting K2MCl4 (M=Pd, Pt) or Pd(OAc)2 with beta-ketoester thiosemicarbazones. The structures of seven of these complexes were determined by X-ray diffraction. Although all exhibit a distorted square-planar coordination with trans- or (in one case) cis-[MN2S2] kernels, their supramolecular arrangements vary widely from isolated molecules to 3D-networks. The in vitro antitumoral assays performed with two HL ligands and their metal complexes showed significant cytostatic activity for the latter, with the most active [ML2] derivative (a palladium complex) being about sixteen times more active than cis-DDP against the cisplatinum-resistant cell line A2780cisR.  相似文献   

12.
Vanadium plays an important role in biological systems and exhibits a variety of bioactivities. In an effort to uncover the chemistry and biochemistry of vanadium with nitrogen- and oxygen-containing ligands, we report herein the synthesis and spectroscopic characterization of vanadium(IV) complexes with hydrazide ligands. Substituents on these ligands exhibit systematic variations of electronic and steric factors. Elemental and spectral data indicate the presence of a dimeric unit with two vanadium(IV) ions coordinated with two hydrazide ligands along with two H(2)O molecules. The stability studies of these complexes over time in coordinating solvent, DMSO, indicates binding of the solvent molecules to give [V2O2L2(H2O)2(DMSO)2]2+ (L=hydrazide ligand) and then conversion of it to a monomeric intermediate species, [VOL(DMSO)3]1+. Hydrazide ligands are inactive against urease, whereas vanadium(IV) complexes of these ligands show significant inhibitory potential against this enzyme and are found to be non-competitive inhibitors. These complexes also show low phytotoxicity indicating their usefulness for soil ureases. Structure-activity relationship studies indicate that the steric and/or electronic effects that may change the geometry of the complexes play an important role in their inhibitory potential and phytotoxicity.  相似文献   

13.
Two platinum(IV) complexes, [Pt(4bt)Cl4] (4) and [Pt(dpyam)Cl4]·DMF (5) (where 4bt is 4,4′-bithiazole and dpyam is 2,2′-dipyridylamine) were prepared from the reaction of H2PtCl6·6H2O with 4,4′-bithiazole and 2,2′-dipyridylamine, respectively, in methanol. Both complexes were fully characterized and their structures were determined by the X-ray diffraction method. These complexes have a bidentate nitrogenous ligand with four chloride anions attached to a Pt(IV) metal in a distorted octahedral environment. These complexes along with three previously reported analogous complexes were used for in vitro cytotoxicity evaluation against four cultures, NIH-3T3, Caco-2, HT-29 and T47D by MTT assay. The methyl group position in the ligand plays an important role in the cytotoxicity of relevant compounds in different cultures. Interestingly, in some cases, the IC50 values of the new complexes were higher for normal cells but lower against cancer cells in comparison with cisplatin, especially in T47D (breast ductal carcinoma).  相似文献   

14.
In order to investigate the influence of ligand distortion on metal centers of porphyrin complexes, distorted vanadyl porphyrin complexes, VO(OPP) (OPP = 2,3,5,10,12,13,15,20-octaphenylporphinato) and VO(DPP) (DPP = 2,3,5,7,8,10,12,13,15,17,18,20-dodecaphenylporphinato), have been prepared. In the crystal structures, VO(OPP) and VO(DPP) had a ruffled structure and a saddle-shaped structure, respectively. In addition, these complexes exhibited red shift and broadening of the absorption bands in the UV-Vis spectra and significant negative shifts of oxidation potentials of the porphyrin ligands in the cyclic voltammograms compared with those of the planar VO(TPP) (TPP = tetraphenylporphinato). These results indicate that the OPP and DPP complexes have the distorted structures both in solids and in solutions. The VO bond characters of VO(TPP), VO(OPP), and VO(DPP) do not show the significant difference in their crystal structures and resonance Raman spectra. This suggests that the distortion of porphyrin ligand little affects the Lewis acidity of the metal center. The non-planar porphyrin distortion gives the change of HOMO-LUMO gap.  相似文献   

15.
Novel platinum(IV) complexes were synthesized having octahedral structure for new antitumor agents. The series of (1,4-butanediamine)Pt(IV) complexes of the type trans,cis-[PtA(2)Cl(2)(1,4-butanediamine)] (A=hydroxo 9, acetato 12, trifluoroacetato 13 as axial ligands) and trans-[PtA(2)(malonate)(1,4-butanediamine)] (A=hydroxo 16, acetato 17, trifluoroacetato 18) were synthesized and characterized by IR, NMR and elemental analysis. The molecular structures of 12, 13 and 18 have been determined by X-ray diffraction methods. The crystals are monoclinic, P2 1/c with a=21.165 (5), b=9.050 (3), c=15.293 (3) A, beta=103.89 (2) degrees and Z=8 for 12, a=10.178 (5), b=12.894 (9), c=12.182 (8) A, beta=91.01 (5) degrees and Z=4 for 13 and a=10.460 (5), b=11.199 (8), c=15.641 (7) A, beta=98.41 (5) degrees, Z=4 for 18. Three crystallographically independent molecules of 12, 13 and 18 have octahedral coordination around Pt(IV) cation. The trans,cis-[PtA(2)Cl(2)(1,4-butanediamine)] were prepared by acetylation or trifluoroacetylation of trans,cis-[Pt(OH)(2)Cl(2)(1,4-butanediamine)]. The trans-[PtA(2)malonate(1,4-butanediamine)] 17 and 18 was prepared by a similar method. The in vitro cytotoxicity of theses Pt(IV) complexes have been evaluated against 12 cancer cell lines assayed by MTS method. The IC(50) values of the compounds 12 and 13 were shown to be lower than those of cisplatin. The in vivo antitumor activity of the Pt(IV) complexes was evaluated using mice bearing L1210 leukemia, B16 melanoma and L1210/cis-DDP cancer animal models. The compound 18 was found to highest activity against cisplatin-resistant cancer cells, L1210/cis-DDP, in vivo.  相似文献   

16.
Seven new mixed-ligand vanadyl complexes, [VIVO(5-Br-SAA)(NN)] and [VIVO(2-OH-NAA)(NN)] (1-7) (5-Br-SAA for 5-bromosalicylidene anthranilic acid, 2-OH-NAA for 2-hydroxy-1-naphthaldehyde anthranilic acid and NN for N,N′-donor heterocyclic base, namely, 2,2′-bipyridine (bpy, 1 and 5), 1,10-phenanthroline (phen, 2 and 6), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq, 3 and 7), dipyrido[3,2-a:2′,3′-c]phenazine (dppz, 4)), were synthesized and characterized. X-ray crystal structure of [VIVO(5-Br-SAA)(phen)] revealed a distorted octahedral geometry with the Schiff base ligand coordinated in a tridentate ONO-fashion and the phenanthroline ligand in a bidentate fashion. Density-functional theory (DFT) calculations suggest a similar structure and the same coordination mode for all the other oxovanadium complexes synthesized. Biochemical assays demonstrate that the mixed-ligand oxovanadium(IV) complexes are potent inhibitors of protein tyrosine phosphatase 1B (PTP1B), with IC50 values approximately 41-75 nM. Kinetics assays suggest that the complexes inhibit PTP1B in a competitive manner. Notably, they had moderate selectivity of PTP1B over T-cell protein tyrosine phosphatase (TCPTP) (about 2-fold) and good selectivity over Src homology phosphatase 1 (SHP-1) (about 4∼7-fold). Thus, these mixed-ligand complexes represent a promising class of PTP1B inhibitors for future development as anti-diabetic agents.  相似文献   

17.
Extracellularly applied vanadyl(IV) hyperpolarized the membrane potential of mouse diaphragm muscle from about −74.0 mV up to −81.7 mV. The hyperpolarizing effect of 10−4 mol·l−1 vanadyl(IV) is comparable with hyperpolarization induced by 100 mU·ml−1 insulin. Both compounds increased the intracellular K+ concentration, the hyperpolarizing effect of vanadyl(IV) and insulin is blocked by ouabain and is unaffected by removal of K+ from the external medium. Triggering of the release of intracellular K+ associated with cellular proteins is proposed as the mechanism of vanadyl(IV) and insulin-induced hyperpolarization.  相似文献   

18.
The high mortality caused by Crotalus durissus terrificus snake venom is mainly due to crotoxin, which acts on the neuromuscular junction inhibiting the mechanism mediating acetylcholine release, thus leading to motor and respiratory paralysis and subsequently to animal death. We recently demonstrated that the aqueous extract (AE) of Tabernaemontana catharinensis can inhibit the lethal activity of C. d. terrificus venom. Eight fractions, PI to PVIII, were obtained by gel filtration of the extract on Sephadex G-10, and assayed for lethality and cytotoxicity. Fraction PVII [2.0 mg/100 g rat/50 microl saline solution (ss)] injected intramuscularly (i.m.) 20 s after the venom (240 microg) or crotoxin (200 microg/50 microl ss) neutralized the lethal activity of 2 LD50 of both. Fractions PI, PVI and PVIII (5.0 mg/100 g rat/50 microl ss) presented potent antitumoral activity in vitro against cells from human breast carcinoma (SK-BR-3) after 24 h incubation, as measured by Mosmann colorimetric method. Fraction PVII contains 12-methoxy-4-methylvoachalotine as its major component. These results demonstrate that the antivenom and antitumoral activities of the AE of T. catharinensis are exerted by different substances present in fraction PVII and fractions PI, PVI and PVIII, respectively, whose characteristics are distinct in terms of staining and Rf when analyzed by thin layer chromatography. The results also show that a preliminary fractionation by Sephadex G-10 gel filtration is a good option as a first step for isolation of biologically active substances from T. catharinensis.  相似文献   

19.
Four organotin(IV) complexes with general formula [RSnCln−1(TCB)] [R = Ph2, n = 2 (2); R = Me, n = 3 (3); R = Bu, n = 3 (4); R = Ph, n = 3 (5)] have been synthesized by direct reaction of thiophene-2-carboxaldehyde benzhydrazone ligand [HTCB, (1)], base and organotin(IV) chloride in absolute methanol under N2 atmosphere. All organotin(IV) complexes were characterized by elemental analyses, molar conductivity, UV-Vis, FT-IR, 1H and 13C NMR spectral studies. Among them, diphenyltin(IV) complex (2) has also been characterized by X-ray crystallography diffraction analyses. The cytotoxicity of the hydrazone ligand as well as its organotin(IV) complexes (2-5) were determined with Artemia salina. While no-choice bioassay was employed on Coptotermes sp. to evaluate the termiticidal effect of all the complexes. Besides, the ligand (1) and its organotin(IV) complexes (2-4) were also tested against five types of bacteria namely Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi.  相似文献   

20.
Oxovanadium (IV) complexes of the cyclic polyols conduritol C (cond) and myo-inositol (inos) of stoichiometry Na(2)[VO(cond)(2)].2H(2)O and Na(2)[VO(inos)(2)].H(2)O were obtained in aqueous alkaline solutions. They were characterized by infrared and UV-Vis spectroscopies, thermoanalytical (thermogravimetric and differential thermal analysis) data and magnetic susceptibility measurements. The biological activities of the complexes on the proliferation, differentiation and glucose consumption were tested on osteoblast-like cells in culture. Conduritol C and myo-inositol did not produce any effect on these parameters. Normal and tumoral cell proliferation was inhibited about (ca.40-60%) by the two oxovanadium (IV) complexes in concentrations as low as 100microM. The complexes were also inhibitory on cell differentiation (ca. 70-80%) while they stimulate glucose consumption. Comparisons of these effects with those of the oxovanadium (IV) cation, under the same experimental conditions, were also performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号