首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Susceptibility and resistance of ruminal bacterial species to avoparcin, narasin, salinomycin, thiopeptin, tylosin, virginiamycin, and two new ionophore antibiotics, RO22-6924/004 and RO21-6447/009, were determined. Generally, antimicrobial compounds were inhibitory to gram-positive bacteria and those bacteria that have gram-positive-like cell wall structure. MICs ranged from 0.09 to 24.0 micrograms/ml. Gram-negative bacteria were resistant at the highest concentration tested (48.0 micrograms/ml). On the basis of their fermentation products, ruminal bacteria that produce lactic acid, butyric acid, formic acid, or hydrogen were susceptible and bacteria that produce succinic acid or ferment lactic acid were resistant to the antimicrobial compounds. Selenomonas ruminantium was the only major lactic acid-producing bacteria resistant to all the antimicrobial compounds tested. Avoparcin and tylosin appeared to be less inhibitory (MIC greater than 6.0 micrograms/ml) than the other compounds to the two major lactic acid-producing bacteria, Streptococcus bovis and Lactobacillus sp. Ionophore compounds seemed to be more inhibitory (MIC, 0.09 to 1.50 micrograms/ml) than nonionophore compounds (MIC, 0.75 to 12.0 micrograms/ml) to the major butyric acid-producing bacteria. Treponema bryantii, an anaerobic rumen spirochete, was less sensitive to virginiamycin than to the other antimicrobial compounds. Ionophore compounds were generally bacteriostatic, and nonionophore compounds were bactericidal. The specific growth rate of Bacteroides ruminicola was reduced by all the antimicrobial compounds except avoparcin. The antibacterial spectra of the feed additives were remarkably similar, and it appears that MICs may not be good indicators of the potency of the compounds in altering ruminal fermentation characteristics.  相似文献   

2.
Listeria monocytogenes survived in meat, cheese and egg ravioli stored at 5°C for 14 d. Ravioli were considered edible for the first 9 d of storage. Initial L. monocytogenes populations of 3 × 105 cfu/g of ravioli were reduced to non-detectable levels after heat treatment simulating that which would be used by the consumer.  相似文献   

3.
Abstract Several purple and green sulfur bacteria (genera Chromatium, Thiocapsa and Chlorobium ) were tested for their sensitivity to different antimicrobial agents by a disc diffusion assay, using thioacetamide as a source of hydrogen sulfide for plate growth. Chlorobium limicola strains were more sensitive to amoxicillin, erythromycin and nalidixic acid, whereas gentamicin and netilmicin were more active against the purple bacteria tested. None of the organisms were sensitive to oxacillin and trimethoprim + sulfamethoxazole. The critical concentrations at the edge of the inhibition zone were also calculated for three organisms and the antimicrobials colistin, mitomycin C, penicillin G, rifampicin, and streptomycin. The results obtained suggest that colistin, mitomycin C, penicillin G would provide selective conditions against the growth of Chlorobium limicola strains, while streptomycin and other aminoglycoside antibiotics would select against purple bacteria.  相似文献   

4.
Antibiosis between ruminal bacteria and ruminal fungi   总被引:6,自引:0,他引:6  
Cellulose digestion, bacterial numbers, and fungal numbers were monitored over time in vitro by using a purified cellulose medium with and without antibiotics (penicillin and streptomycin). All fermentations were inoculated with a 1:10 dilution of whole rumen contents (WRC). Without antibiotics, cellulose digestion was higher (P < 0.01) at 24, 30, 48, and 72 h; fungi had almost disappeared by 24 h, while bacterial concentrations increased over 100-fold in 24 h and then decreased gradually up to 72 h. In those fermentations with added antibiotics, fungal concentrations increased 4-fold by 30 h and up to 42-fold at 72 h; bacterial concentrations were markedly reduced by 24 h and remained low through 72 h. Similar results were obtained with ground alfalfa as a substrate. In further studies, the in vitro fermentation of purified cellulose without antibiotics was stopped after 18 to 20 h, and the microbial population was killed by autoclaving. Antibiotics were added to half of the tubes, and all tubes were reinoculated with WRC. After 72 h, extensive cellulose digestion had occurred in those tubes without antibiotics, as compared to very low cellulose digestion with added antibiotics. The extent of this inhibition was found to increase in proportion to the length of the initial fermentation period, suggesting the production of a heat-stable inhibitory factor or factors. The inhibitory activity was present in rumen fluid, could be extracted from lyophilized rumen fluid (LRF) with water, and was stable in response to proteolytic enzymes. In addition, the water-extracted residue of LRF was found to contain growth factor activity for rumen fungi in vitro.  相似文献   

5.
6.
In recent years, there has been a debate concerning the causes of antibiotic resistance and the steps that should be taken. Beef cattle in feedlots are routinely fed a class of antibiotics known as ionophores, and these compounds increase feed efficiency by as much as 10%. Some groups have argued that ionophore resistance poses the same public health threat as conventional antibiotics, but humans are not given ionophores to combat bacterial infection. Many ruminal bacteria are ionophore-resistant, but until recently the mechanism of this resistance was not well defined. Ionophores are highly lipophilic polyethers that accumulate in cell membranes and catalyze rapid ion movement. When sensitive bacteria counteract futile ion flux with membrane ATPases and transporters, they are eventually de-energized. Aerobic bacteria and mammalian enzymes can degrade ionophores, but these pathways are oxygen-dependent and not functional in anaerobic environments like the rumen or lower GI tract. Gram-positive ruminal bacteria are in many cases more sensitive to ionophores than Gram-negative species, but this model of resistance is not always clear-cut. Some Gram-negative ruminal bacteria are initially ionophore-sensitive, and even Gram-positive bacteria can adapt. Ionophore resistance appears to be mediated by extracellular polysaccharides (glycocalyx) that exclude ionophores from the cell membrane. Because cattle not receiving ionophores have large populations of resistant bacteria, it appears that this trait is due to a physiological selection rather than a mutation per se. Genes responsible for ionophore resistance in ruminal bacteria have not been identified, but there is little evidence that ionophore resistance can be spread from one bacterium to another. Given these observations, use of ionophores in animal feed is not likely to have a significant impact on the transfer of antibiotic resistance from animals to man.  相似文献   

7.
The effects of avilamycin, zinc bacitracin, and flavophospholipol on broiler gut microbial community colonization and bird performance in the first 17 days posthatch were investigated. Significant differences in gut microbiota associated with gut section, dietary treatment, and age were identified by terminal restriction fragment length polymorphism (T-RFLP), although no performance-related differences between dietary treatments were detected. Similar age-related shifts in the gut microbiota were identified regardless of diet but varied between the ilea and ceca. Interbird variabilities in ileal bacterial communities were reduced (3 to 7 days posthatch) in chicks fed with feed containing antimicrobial agents. Avilamycin and flavophospholipol had the most consistent effect on gut microbial communities. Operational taxonomic units (OTU) linked to changes in gut microbiota in birds on antimicrobial-supplemented diets were characterized and identified. Some OTUs could be identified to the species level; however, the majority could be only tentatively classified to the genus, family, order, or domain level. OTUs 140 to 146 (Lachnospiraceae), OTU 186/188 (Lactobacillus johnsonii), OTU 220 (Lachnospiraceae), OTUs 284 to 288 (unclassified bacterial spp. or Ruminococcaceae), OTU 296/298 (unclassified bacterium or Clostridiales), and OTU 480/482 (Oxalobacteraceae) were less prevalent in the guts of chicks fed antimicrobial-supplemented diets. OTU 178/180 (Lactobacillus crispatus), OTU 152 (Lactobacillus reuteri or unclassified Clostridiales), OTU 198/200 (Subdoligranulum spp.), and OTU 490/492 (unclassified bacterium or Enterobacteriaceae) were less prevalent in the gut of chicks raised on the antimicrobial-free diet. The identification of key bacterial species influenced by antimicrobial-supplemented feed immediately posthatch may assist in the formulation of diets that facilitate beneficial gut microbial colonization and, hence, the development of alternatives to current antimicrobial agents in feed for sustainable poultry production.  相似文献   

8.
Integrated livestock-fish aquaculture utilizes animal excreta, urine, and feed leftovers as pond fertilizers to enhance the growth of plankton and other microorganisms eaten by the fish. However, antimicrobial-resistant bacteria may be transferred and develop in the pond due to selective pressure from antimicrobials present in animal feed, urine, and feces. In an experimental pig-fish farm located in periurban Hanoi, Vietnam, nine piglets were provided feed containing 5 μg of tetracycline (TET)/kg pig weight/day and 0.45 μg of enrofloxacin (ENR)/kg pig weight/day during the second and fourth (last) months of the experiment. The aim of this study was to determine the association between the provision of pig feed with antimicrobials and the development of antimicrobial resistance, as measured in a total of 520 Escherichia coli and 634 Enterococcus strains isolated from pig manure and water-sediment pond samples. MIC values for nalidixic acid (NAL) and ENR showed that E. coli and Enterococcus spp. overall exhibited significant higher frequencies of resistance toward NAL and ENR during the 2 months when pigs were administered feed with antimicrobials, with frequencies reaching 60 to 80% in both water-sediment and manure samples. TET resistance for both indicators was high (>80%) throughout the study period, which indicates that TET-resistant E. coli and Enterococcus spp. were present in the piglets before the initiation of the experiment. PCR-based identification showed similar relative occurrences of Enterococcus faecium, Enterococcus faecalis, and other Enterococcus spp. in the water-sediment and manure samples, suggesting that Enterococcus spp. isolated in the ponds originated mainly from the pig manure. The development of antimicrobial resistance in integrated animal husbandry-fish farms and possible transfers and the impact of such resistance on food safety and human health should be further assessed.  相似文献   

9.
10.
Similar sequences of distribution of structural genes encoding enterocin A (isolated from the ruminal strainE. faecium BC25) and enterolysin A (isolated from the ruminal amylolytic strainS. bovis II/I) were demonstrated by PCR using oligonucleotide primers specific for these bacteriocins within the ruminal enterococcal and streptococcal strains. Variable occurrence of these bacteriocins was found within the populations of Gram-positive ruminal cocci. An erratum to this article is available at .  相似文献   

11.
12.
目的了解血流感染中的病原菌种类、分布及耐药性,为临床合理选用抗菌药物提供依据。方法按照无菌操作方法采集疑为血流感染患者的血液标本进行血培养,采用美国BD公司PHOENIX-100全自动细菌鉴定药敏系统进行细菌鉴定及药敏试验,并对结果进行统计分析。结果共检出1080株病原菌,其中革兰阴性杆菌630株(占58.3%),革兰阳性球菌428株(占39.6%),真菌22株(占2.1%)。药敏结果显示:革兰阳性球菌对万古霉素、利奈唑胺敏感率最高,对青霉素、红霉素、头孢菌素等耐药率较高。革兰阴性杆菌对碳青霉烯类、哌拉西林/他唑巴坦、头孢哌酮/舒巴坦敏感率较高,对青霉素类、头孢菌素类和喹诺酮类耐药率较高。结论引起血流感染的病原菌分布复杂,耐药率较高,临床应提高血培养送检率,根据药敏结果合理选用抗菌药物,以减少多重耐药菌的发生和传播。  相似文献   

13.
14.
Adhesion of cellulolytic ruminal bacteria to barley straw   总被引:1,自引:0,他引:1  
Adhesion of the cellulolytic ruminal bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes to barley straw was measured by incubating bacterial suspensions with hammer-milled straw for 30 min, filtering the mixtures through sintered glass filters, and measuring the optical densities of the filtrates. Maximum adhesion of both species occurred at pH 6.0 and during mid- to late-exponential phase. Adhesion was saturable at 33 and 23 mg (dry weight) g of straw for R. flavefaciens and F. succinogenes, respectively. Methyl cellulose and carboxymethyl cellulose inhibited adhesion by 24 to 33%. Competition between species was determined by measuring characteristic cell-associated enzyme activities in filtrates of mixtures incubated with straw; p-nitrophenyl-beta-d-lactopyranoside hydrolysis was used as a marker for F. succinogenes, while either beta-xylosidase or carboxymethyl cellulase was used for R. flavefaciens, depending on the other species present. R. flavefaciens had no influence on F. succinogenes adhesion, and F. succinogenes had only a minor (<20%) effect on R. flavefaciens adhesion. The noncellulolytic ruminal bacteria Bacteroides ruminicola and Selenomonas ruminantium had no influence on adhesion of either cellulolytic species, although these organisms also adhered to the straw. We concluded that R. flavefaciens and F. succinogenes have separate, specific adhesion sites on barley straw that are not obscured by competition with non-cellulolytic species.  相似文献   

15.
Studies of susceptibility, development of resistance, and synergy were performed with 32 antimicrobics againstClostridium difficile strains. A microtiter technique was used to demonstrate the in vitro activities of 40C. difficile isolates. Rifampin inhibited 73% of the strains at a concentration of 0.06 g/ml, and metronidazole inhibited 90% at 0.5 g/ml. Penicillin, vancomycin, cephaloridine, and chloramphenicol were also active. Development of resistance to penicillin or chloramphenicol was not found, but vancomycin, methicillin, and minocycline showed development of low levels of resistance. Rifampin in combination with erythromycin, methicillin, or penicillin was synergistic against more than 90% of theC. difficile isolates. Rifampin-ampicillin was synergistic against 85%, and vancomycin-metronidazole was synergistic against 68% of the isolates.  相似文献   

16.
Aim:  To assess the antimicrobial effects of hops ( Humulus lupulus L.) on hyper ammonia producing-bacteria (HAB), which catabolize amino acids and peptides in the bovine rumen.
Methods and Results:  When media were amended with dried hops or hops extract (30·7% lupulone), ammonia production by mixed rumen bacteria was inhibited. The growth and ammonia production of pure cultures ( Peptostreptococcus anaerobius, Clostridium aminophilum, or Clostridium sticklandii ) was inhibited by 30 ppm lupulone at pH 6·7, and bactericidal activity was observed at pH 5·6. When hops extract was added to energized cell suspensions, the intracellular pH rapidly decreased and intracellular potassium was lost.
Conclusions:  The three HAB species were sensitive to the antimicrobial components in hops, and the inhibition of ammonia production by mixed rumen bacteria indicates that similar effects could be expected in the rumen.
Significance and Impact of the Study:  As much as half of the amino acids consumed by ruminants can be lost due to microbial degradation in the rumen. This study supports the idea that biologically active plant metabolites can be used to mitigate this wasteful process.  相似文献   

17.
Austin MN  Meyn LA  Hillier SL 《Anaerobe》2006,12(5-6):227-230
In vitro antimicrobial susceptibility testing was performed on 470 vaginal isolates from women with bacterial vaginosis and three species of Lactobacillus, to metronidazole and tinidazole using the agar dilution method. There was no significant difference observed in the inhibitory activity of either drug to any of the isolates tested.  相似文献   

18.
19.
Bacteria encounter a myriad of potentially growth-compromising conditions in nature and in hosts of pathogenic bacteria. These 'stresses' typically elicit protective and/or adaptive responses that serve to enhance bacterial survivability. Because they impact upon many of the same cellular components and processes that are targeted by antimicrobials, adaptive stress responses can influence antimicrobial susceptibility. In targeting and interfering with key cellular processes, antimicrobials themselves are 'stressors' to which protective stress responses have also evolved. Cellular responses to nutrient limitation (nutrient stress), oxidative and nitrosative stress, cell envelope damage (envelope stress), antimicrobial exposure and other growth-compromising stresses, have all been linked to the development of antimicrobial resistance in Gram-negative bacteria - resulting from the stimulation of protective changes to cell physiology, activation of resistance mechanisms, promotion of resistant lifestyles (biofilms), and induction of resistance mutations.  相似文献   

20.
Cox DL  Sun Y  Liu H  Lehrer RI  Shafer WM 《Peptides》2003,24(11):1741-1746
LL-37 displays potent broad-spectrum activity against a number of pathogenic bacteria and is the only cathelicidin thus far identified in humans. In this study, we examined the capacity of human LL-37 and the similar CAP-18-derived peptide from rabbits to exert antimicrobial activity against the causative agent of syphilis, Treponema pallidum. We found that both peptides, as well as a truncated version of human LL-37 that contains its bactericidal domain, could exert rapid, but salt-sensitive antimicrobial activity against T. pallidum. Infectivity of T. pallidum in a rabbit model could effectively be blocked with the synthetic truncated LL-37-derived peptide WS22-N-amide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号