首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ten healthy young men (21.0 +/- 1.5 yr, 1.79 +/- 0.1 m, 82.7 +/- 14.7 kg, means +/- SD) participated in 8 wk of intense unilateral resistance training (knee extension exercise) such that one leg was trained (T) and the other acted as an untrained (UT) control. After the 8 wk of unilateral training, infusions of L-[ring-d(5)]phenylalanine, L-[ring-(13)C(6)]phenylalanine, and d(3)-alpha-ketoisocaproic acid were used to measure mixed muscle protein synthesis in the T and UT legs by the direct incorporation method [fractional synthetic rate (FSR)]. Protein synthesis was determined at rest as well as 4 h and 28 h after an acute bout of resistance exercise performed at the same intensity relative to the gain in single repetition maximum before and after training. Training increased mean muscle fiber cross-sectional area only in the T leg (type I: 16 +/- 10%; type II: 20 +/- 19%, P < 0.05). Acute resistance exercise increased muscle protein FSR in both legs at 4 h (T: 162 +/- 76%; UT: 108 +/- 62%, P < 0.01 vs. rest) with the increase in the T leg being significantly higher than in the UT leg at this time (P < 0.01). At 28 h postexercise, FSR in the T leg had returned to resting levels; however, the rate of protein synthesis in the UT leg remained elevated above resting (70 +/- 49%, P < 0.01). We conclude that resistance training attenuates the protein synthetic response to acute resistance exercise, despite higher initial increases in FSR, by shortening the duration for which protein synthesis is elevated.  相似文献   

2.
To evaluate the contribution of working muscle to whole body lipid oxidation, we examined the effects of exercise intensity and endurance training (9 wk, 5 days/wk, 1 h, 75% Vo(2 peak)) on whole body and leg free fatty acid (FFA) kinetics in eight male subjects (26 +/- 1 yr, means +/- SE). Two pretraining trials [45 and 65% Vo(2 max) (45UT, 65UT)] and two posttraining trials [65% of pretraining Vo(2 peak) (ABT), and 65% of posttraining Vo(2 peak) (RLT)] were performed using [1-(13)C]palmitate infusion and femoral arteriovenous sampling. Training increased Vo(2 peak) by 15% (45.2 +/- 1.2 to 52.0 +/- 1.8 ml.kg(-1).min(-1), P < 0.05). Muscle FFA fractional extraction was lower during exercise (EX) compared with rest regardless of workload or training status ( approximately 20 vs. 48%, P < 0.05). Two-leg net FFA balance increased from net release at rest ( approximately -36 micromol/min) to net uptake during EX for 45UT (179 +/- 75), ABT (236 +/- 63), and RLT (136 +/- 110) (P < 0.05), but not 65UT (51 +/- 127). Leg FFA tracer measured uptake was higher during EX than rest for all trials and greater during posttraining in RLT (716 +/- 173 micromol/min) compared with pretraining (45UT 450 +/- 80, 65UT 461 +/- 72, P < 0.05). Leg muscle lipid oxidation increased with training in ABT (730 +/- 163 micromol/min) vs. 65UT (187 +/- 94, P < 0.05). Leg muscle lipid oxidation represented approximately 62 and 30% of whole body lipid oxidation at lower and higher relative intensities, respectively. In summary, training can increase working muscle tracer measured FFA uptake and lipid oxidation for a given power output, but both before and after training the association between whole body and leg lipid metabolism is reduced as exercise intensity increases.  相似文献   

3.
The study investigated the effect of training on lactate and H+ release from human skeletal muscle during one-legged knee-extensor exercise. Six subjects were tested after 7-8 wk of training (fifteen 1-min bouts at approximately 150% of thigh maximal O2 uptake per day). Blood samples, blood flow, and muscle biopsies were obtained during and after a 30-W exercise bout and an incremental test to exhaustion of both trained (T) and untrained (UT) legs. Blood flow was 16% higher in the T than in the UT leg. In the 30-W test, venous lactate and lactate release were lower in the T compared with the UT leg. In the incremental test, time to fatigue was 10.6 +/- 0.7 and 8.2 +/- 0.7 min, respectively, in the T and UT legs (P < 0.05). At exhaustion, venous blood lactate was 10.7 +/- 0.4 and 8.0 +/- 0.9 mmol/l in T and UT legs (P < 0.05), respectively, and lactate release was 19.4 +/- 3.6 and 10.6 +/- 2.0 mmol/min (P < 0.05). H+ release at exhaustion was higher in the T than in the UT leg. Muscle lactate content was 59.0 +/- 15.1 and 96.5 +/- 14.5 mmol/kg dry wt in the T and UT legs, and muscle pH was 6.82 +/- 0.05 and 6.69 +/- 0.04 in the T and UT legs (P = 0.06). The membrane contents of the monocarboxylate transporters MCT1 and MCT4 and the Na+/H+ exchanger were 115 +/- 5 (P < 0.05), 111 +/- 11, and 116 +/- 6% (P < 0.05), respectively, in the T compared with the UT leg. The reason for the training-induced increase in peak lactate and H+ release during exercise is a combination of an increased density of the lactate and H+ transporting systems, an improved blood flow and blood flow distribution, and an increased systemic lactate and H+ clearance.  相似文献   

4.
Cellular antioxidant capacity and oxidative stress are postulated to be critical factors in the aging process. The effects of resistance exercise training on the level of skeletal muscle oxidative stress and antioxidant capacity have not previously been examined in older adults. Muscle biopsies from both legs were obtained from the vastus lateralis muscle of 12 men 71 +/- 7 years of age. Subjects then engaged in a progressive resistance exercise-training program with only one leg for 12 weeks. After 12 weeks, the nontraining leg underwent an acute bout of exercise (exercise session identical to that of the trained leg at the same relative intensity) at the same time as the last bout of exercise in the training leg. Muscle biopsies were collected from the vastus lateralis of both legs 48 h after the final exercise bout. Electron transport chain enzyme activity was unaffected by resistance training and acute resistance exercise (p < 0.05). Training resulted in a significant increase in CuZnSOD (pre--7.2 +/- 4.2, post--12.6 +/- 5.6 U.mg protein(-1); p = 0.02) and catalase (pre--8.2 +/- 2.3, post--14.9 +/- 7.6 micromol.min(-1).mg protein(-1); p = 0.02) but not MnSOD activity, whereas acute exercise had no effect on the aforementioned antioxidant enzyme activities. Furthermore, basal muscle total protein carbonyl content did not change as a result of exercise training or acute exercise. In conclusion, unilateral resistance exercise training is effective in enhancing the skeletal muscle cellular antioxidant capacity in older adults. The potential long-term benefits of these adaptations remain to be evaluated.  相似文献   

5.
Insulin and muscle contractions are major stimuli for glucose uptake in skeletal muscle and have in young healthy people been shown to be additive. We studied the effect of superimposed exercise during a maximal insulin stimulus on glucose uptake and clearance in trained (T) (1-legged bicycle training, 30 min/day, 6 days/wk for 10 wk at approximately 70% of maximal O(2) uptake) and untrained (UT) legs of healthy men (H) [n = 6, age 60 +/- 2 (SE) yr] and patients with Type 2 diabetes mellitus (DM) (n = 4, age 56 +/- 3 yr) during a hyperinsulinemic ( approximately 16,000 pmol/l), isoglycemic clamp with a final 30 min of superimposed two-legged exercise at 70% of individual maximal heart rate. With superimposed exercise, leg glucose extraction decreased (P < 0.05), and leg blood flow and leg glucose clearance increased (P < 0.05), compared with hyperinsulinemia alone. During exercise, leg blood flow was similar in both groups of subjects and between T and UT legs, whereas glucose extraction was always higher (P < 0.05) in T compared with UT legs (15.8 +/- 1.2 vs. 14.6 +/- 1.8 and 11.9 +/- 0.8 vs. 8.8 +/- 1.8% for H and DM, respectively) and leg glucose clearance was higher in T (H: 73 +/- 8, DM: 70 +/- 10 ml. min(-1). kg leg(-1)) compared with UT (H: 63 +/- 8, DM: 45 +/- 7 ml. min(-1). kg leg(-1)) but not different between groups (P > 0.05). From these results it can be concluded that, in both diabetic and healthy aged muscle, exercise adds to a maximally insulin-stimulated glucose clearance and that glucose extraction and clearance are both enhanced by training.  相似文献   

6.
We have developed a new method to determine the fractional synthesis rate (FSR) and breakdown rate (FBR) of muscle protein. This method involves a pulse tracer injection and measurement of enrichment in the arterial blood and muscle at three time points. The calculations of FSR and FBR are based on the precursor-product principle. To test this method, we gave a pulse injection of L-[ring-(13)C(6)]phenylalanine of 4-6 mg/kg in five rabbits. The measured FBR value (0.233 +/- 0.060%/h) was almost identical (P = 0.35) to that (0.217 +/- 0.078%/h) estimated from a leg arteriovenous balance model (Biolo G, Chinkes D, Zhang X-J, and Wolfe RR. J Parenter Enteral Nutr 16: 305-315, 1992). The measured FSR value tended to be lower than that estimated from the leg model (0.125 +/- 0.036 vs. 0.185 +/- 0.086%/h; P = 0.14), possibly because the new method measures only muscle FSR, whereas the leg balance model also includes skin and bone contributions. The pulse tracer injection did not affect muscle protein kinetics as measured by leucine and phenylalanine kinetics in the leg. In another five rabbits, we demonstrated that sampling could be reduced to either one or two muscle biopsies when multiple pulse injections were used. This method can be completed in 1 h with one muscle biopsy and has technical advantages over currently used methods.  相似文献   

7.
8.
We combined tracer and arteriovenous (a-v) balance techniques to evaluate the effects of exercise and endurance training on leg triacylglyceride turnover as assessed by glycerol exchange. Measurements on an exercising leg were taken to be a surrogate for working skeletal muscle. Eight men completed 9 wk of endurance training [5 days/wk, 1 h/day, 75% peak oxygen consumption (Vo(2peak))], with leg glycerol turnover determined during two pretraining trials [45 and 65% Vo(2peak) (45% Pre and 65% Pre, respectively)] and two posttraining trials [65% of pretraining Vo(2peak) (ABT) and 65% of posttraining Vo(2peak) (RLT)] using [(2)H(5)]glycerol infusion, femoral a-v sampling, and measurement of leg blood flow. Endurance training increased Vo(2peak) by 15% (45.2 +/- 1.2 to 52.0 +/- 1.8 mlxkg(-1)xmin(-1), P < 0.05). At rest, there was tracer-measured leg glycerol uptake (41 +/- 8 and 52 +/- 15 micromol/min for pre- and posttraining, respectively) even in the presence of small, but significant, net leg glycerol release (-68 +/- 19 and -50 +/- 13 micromol/min, respectively; P < 0.05 vs. zero). Furthermore, while there was no significant net leg glycerol exchange during any of the exercise bouts, there was substantial tracer-measured leg glycerol turnover during exercise (i.e., simultaneous leg muscle uptake and leg release) (uptake, release: 45% Pre, 194 +/- 41, 214 +/- 33; 65% Pre, 217 +/- 79, 201 +/- 84; ABT, 275 +/- 76, 312 +/- 87; RLT, 282 +/- 83, 424 +/- 75 micromol/min; all P < 0.05 vs. corresponding rest). Leg glycerol turnover was unaffected by exercise intensity or endurance training. In summary, simultaneous leg glycerol uptake and release (indicative of leg triacylglyceride turnover) occurs despite small or negligible net leg glycerol exchange, and furthermore, leg glycerol turnover can be substantially augmented during exercise.  相似文献   

9.
This study was designed to evaluate the effects of enriching an essential amino acid (EAA) mixture with leucine on muscle protein metabolism in elderly and young individuals. Four (2 elderly and 2 young) groups were studied before and after ingestion of 6.7 g of EAAs. EAAs were based on the composition of whey protein [26% leucine (26% Leu)] or were enriched in leucine [41% leucine (41% Leu)]. A primed, continuous infusion of L-[ring-2H5]phenylalanine was used together with vastus lateralis muscle biopsies and leg arteriovenous blood samples for the determinations of fractional synthetic rate (FSR) and balance of muscle protein. FSR increased following amino acid ingestion in both the 26% (basal: 0.048 +/- 0.005%/h; post-EAA: 0.063 +/- 0.007%/h) and the 41% (basal: 0.036 +/- 0.004%/h; post-EAA: 0.051 +/- 0.007%/h) Leu young groups (P < 0.05). In contrast, in the elderly, FSR did not increase following ingestion of 26% Leu EAA (basal: 0.044 +/- 0.003%/h; post-EAA: 0.049 +/- 0.006%/h; P > 0.05) but did increase following ingestion of 41% Leu EAA (basal: 0.038 +/- 0.007%/h; post-EAA: 0.056 +/- 0.008%/h; P < 0.05). Similar to the FSR responses, the mean response of muscle phenylalanine net balance, a reflection of muscle protein balance, was improved (P < 0.05) in all groups, with the exception of the 26% Leu elderly group. We conclude that increasing the proportion of leucine in a mixture of EAA can reverse an attenuated response of muscle protein synthesis in elderly but does not result in further stimulation of muscle protein synthesis in young subjects.  相似文献   

10.
Muscle hypertrophy during resistance training is reportedly increased by creatine supplementation. Having previously failed to find an anabolic effect on muscle protein turnover at rest, either fed or fasted, we have now examined the possibility of a stimulatory effect of creatine in conjunction with acute resistance exercise. Seven healthy men (body mass index, 23 +/- 2 kg/m2, 21 +/- 1 yr, means +/- SE) performed 20 x 10 repetitions of leg extension-flexion at 75% one-repetition maximum in one leg, on two occasions, 4 wk apart, before and after ingesting 21 g/day creatine for 5 days. The subjects ate approximately 21 g maltodextrin + 6 g protein/h for 3 h postexercise. We measured incorporation of [1-13C]leucine into quadriceps muscle proteins in the rested and exercised legs. Leg protein breakdown (as dilution of [2H5]phenylalanine) was also assessed in the exercised and rested leg postexercise. Creatine supplementation increased muscle total creatine by approximately 21% (P < 0.01). Exercise increased the synthetic rates of myofibrillar and sarcoplasmic proteins by two- to threefold (P < 0.05), and leg phenylalanine balance became more positive, but creatine was without any anabolic effect.  相似文献   

11.
Twenty-one subjects with asthma underwent treadmill exercise to exhaustion at a workload that elicited approximately 90% of each subject's maximal O2 uptake (EX1). After EX1, 12 subjects experienced significant exercise-induced bronchospasm [(EIB+), %decrease in forced expiratory volume in 1.0 s = -24.0 +/- 11.5%; pulmonary resistance at rest vs. postexercise = 3.2 +/- 1.5 vs. 8.1 +/- 4.5 cmH2O.l(-1).s(-1)] and nine did not (EIB-). The alveolar-to-arterial Po2 difference (A-aDo2) was widened from rest (9.1 +/- 6.7 Torr) to 23.1 +/- 10.4 and 18.1 +/- 9.1 Torr at 35 min after EX1 in subjects with and without EIB, respectively (P < 0.05). Arterial Po2 (PaO2) was reduced in both groups during recovery (EIB+, -16.0 +/- -13.0 Torr vs. baseline; EIB-, -11.0 +/- 9.4 Torr vs. baseline, P < or = 0.05). Forty minutes after EX1, a second exercise bout was completed at maximal O2 uptake. During the second exercise bout, pulmonary resistance decreased to baseline levels in the EIB+ group and the A-aDo2 and PaO2 returned to match the values seen during EX1 in both groups. Sputum histamine (34.6 +/- 25.9 vs. 61.2 +/- 42.0 ng/ml, pre- vs. postexercise) and urinary 9alpha,11beta-prostaglandin F2 (74.5 +/- 38.6 vs. 164.6 +/- 84.2 ng/mmol creatinine, pre- vs. postexercise) were increased after exercise only in the EIB+ group (P < 0.05), and postexercise sputum histamine was significantly correlated with the exercise PaO2 and A-aDo2 in the EIB+ subjects. Thus exercise causes gas-exchange impairment during the postexercise period in asthmatic subjects independent of decreases in forced expiratory flow rates after the exercise; however, a subsequent exercise bout normalizes this impairment secondary in part to a fast acting, robust exercise-induced bronchodilatory response.  相似文献   

12.
Whereas skin protein synthesis can be measured with different approaches, no method potentially applicable in humans is available for measurement of skin protein breakdown. To that end, we measured mixed skin fractional protein breakdown (FBR) in a rat model by use of a stable isotope method (tracee release method) originally developed to measure muscle protein breakdown. Skin mixed protein and collagen fractional synthesis rates (FSR) were also measured. A primed continuous infusion of L-[ring-(2)H(5)]phenylalanine and alpha-[5,5,5-(2)H(3)]ketoisocaproate (KIC) was given for 6 h. Arterial and skin phenylalanine and leucine free enrichments were measured at plateau (5-6 h) and during the decay that followed after the infusion was stopped. Skin FBR (%/h) was 0.260 +/- 0.011 with phenylalanine and 0.201 +/- 0.032 with KIC/leucine [P = not significant (NS)]. Mixed skin FSR (%/h) was 0.169 +/- 0.055 with phenylalanine and 0.146 +/- 0.020 with KIC/leucine (P = NS). Collagen FSR was 0.124 +/- 0.023%/h (P = NS vs. mixed protein FSR). The tracee release method is a sensitive method for measurement of skin protein breakdown; however, given the high intersubject variability of FSR, the calculation of skin net balance is not advisable.  相似文献   

13.
The aim of the present study was to examine whether ATP production increases and mechanical efficiency decreases during intense exercise and to evaluate how previous exercise affects ATP turnover during intense exercise. Six subjects performed two (EX1 and EX2) 3-min one-legged knee-extensor exercise bouts [66.2 +/- 3.9 and 66.1 +/- 3.9 (+/-SE) W] separated by a 6-min rest period. Anaerobic ATP production, estimated from net changes in and release of metabolites from the active muscle, was 3.5 +/- 1.2, 2.4 +/- 0.6, and 1.4 +/- 0.2 mmol ATP x kg dry wt(-1) x s(-1) during the first 5, next 10, and remaining 165 s of EX1, respectively. The corresponding aerobic ATP production, determined from muscle oxygen uptake, was 0.7 +/- 0.1, 1.4 +/- 0.2, and 4.7 +/- 0.4 mmol ATP x kg dry wt(-1) x s(-1), respectively. The mean rate of ATP production during the first 5 s and next 10 s was lower (P < 0.05) than during the rest of the exercise (4.2 +/- 1.2 and 3.8 +/- 0.7 vs. 6.1 +/- 0.3 mmol ATP x kg dry wt(-1) x s(-1)). Thus mechanical efficiency, expressed as work per ATP produced, was lowered (P < 0.05) in the last phase of exercise (39.6 +/- 6.1 and 40.7 +/- 5.8 vs. 25.0 +/- 1.3 J/mmol ATP). The anaerobic ATP production was lower (P < 0.05) in EX2 than in EX1, but the aerobic ATP turnover was higher (P < 0.05) in EX2 than in EX1, resulting in the same muscle ATP production in EX1 and EX2. The present data suggest that the rate of ATP turnover increases during intense exercise at a constant work rate. Thus mechanical efficiency declines as intense exercise is continued. Furthermore, when intense exercise is repeated, there is a shift toward greater aerobic energy contribution, but the total ATP turnover is not significantly altered.  相似文献   

14.
The purpose of the present study was to determine in human skeletal muscle whether a single exercise bout and 7 days of consecutive endurance (cycling) training 1) increased insulin-stimulated Akt pSer(473) and 2) altered the abundance of the protein tyrosine phosphatases (PTPases), PTP1B and SHP2. In healthy, untrained men (n = 8; 24 +/- 1 yr), glucose infusion rate during a hyperinsulinemic euglycemic clamp, when compared with untrained values, was not improved 24 h following a single 60-min bout of endurance cycling but was significantly increased ( approximately 30%; P < 0.05) 24 h following completion of 7 days of exercise training. Insulin-stimulated Akt pSer(473) was approximately 50% higher (P < 0.05) 24 h following the acute bout of exercise, with this effect remaining after 7 days of training (P < 0.05). Insulin-stimulated insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation were not altered 24 h after acute exercise and short-term training. Insulin did not acutely regulate the localization of the PTPases, PTP1B or SHP2, although cytosolic protein abundance of SHP2 was increased (P < 0.05; main effect) 24 h following acute exercise and short-term training. In conclusion, insulin-sensitive Akt pSer(473) and cytosolic SHP2 protein abundance are higher after acute exercise and short-term training, and this effect appears largely due to the residual effects of the last bout of prior exercise. The significance of exercise-induced alterations in cytosolic SHP2 and insulin-stimulated Akt pSer(473) on the improvement in insulin sensitivity requires further elucidation.  相似文献   

15.
The purpose of the present study was to examine aerobic and muscle anaerobic energy production during supramaximal repeated exercise. Eight subjects performed three 2-min bouts of cycling (EX1-EX3) at an intensity corresponding to about 125 % of VO2 max separated by 15 min of rest. Ventilatory variables were measured breath by breath during the exercise and a muscle biopsy was taken before and after each exercise bout. Blood samples were collected before and after each cycling period and during the recovery periods. Total work in the first 2 min bout of cycling, EX1, [46.3 +/- 2.1 KJ] was greater than in the second, EX2, (p < 0.01) and in the third, EX3, (p < 0.05). The ATP utilization [4.0 +/- 1.4 mmol x (kg dry weight)(-1), EX1] during the three exercise bouts was the same. The decrement in muscle phosphocreatine (PCr) [46.8 +/- 8.5 mmol x (kg dry weight)(-1), EX1] was also similar for the three exercise bouts. Muscle lactate accumulation was greater (p < 0.05) during EX1 compared to EX2 and EX3. The total oxygen consumption was the same for the three exercise bouts, but when it is corrected for the total work performed, oxygen uptake during EX2 (153 +/- 9 ml x KJ(-1)) and EX3 (150 +/- 9 ml x KJ(-1)) was higher (p < 0.01 and p < 0.05, respectively) than during EX1 (139 +/- 8 ml x KJ(-1)). The present data suggest that oxidative metabolism does not compensate for the reduction of anaerobic glycolysis during repeated fatiguing exercise.  相似文献   

16.
We have previously quantified the extent of myofibrillar disruption which occurs following an acute bout of resistance exercise in untrained men, however the response of well-trained subjects is not known. We therefore recruited six strength-trained men, who ceased training for 5 days and then performed 8 sets of 8 uni-lateral repetitions, using a load equivalent to 80% of their concentric (Con) 1-repetition maximum. One arm performed only Con actions by lifting the weight and the other arm performed only eccentric actions (Ecc) by lowering it. Needle biopsy samples were obtained from biceps brachii of each arm approximately 21 h following exercise, and at baseline (i.e., after 5 days without training), and subsequently analyzed using electron microscopy to quantify myofibrillar disruption. A greater (P < or = 0.05) proportion of disrupted fibres was found in the Ecc arm (45 +/- 11%) compared with baseline values (4 +/- 2%), whereas fibre disruption in the Con arm (27 +/- 4%) was not different (P > 0.05) from baseline values. The proportion of disrupted fibres and the magnitude of disruption (quantified by sarcomere counting) was considerably less severe than previously observed in untrained subjects after an identical exercise bout. Mixed muscle protein synthesis, assessed from approximately 21-29 h post-exercise, was not different between the Con- and Ecc-exercised arms. We conclude that the Ecc phase of resistance exercise is most disruptive to skeletal muscle and that training attenuates the severity of this effect. Moreover, it appears that fibre disruption induced by habitual weightlifting exercise is essentially repaired after 5 days of inactivity in trained men.  相似文献   

17.
We examined the effect of two commonly consumed over-the-counter analgesics, ibuprofen and acetaminophen, on muscle protein synthesis and soreness after high-intensity eccentric resistance exercise. Twenty-four males (25 +/- 3 yr, 180 +/- 6 cm, 81 +/- 6 kg, and 17 +/- 8% body fat) were assigned to one of three groups that received either the maximal over-the-counter dose of ibuprofen (IBU; 1,200 mg/day), acetaminophen (ACET; 4,000 mg/day), or a placebo (PLA) after 10-14 sets of 10 eccentric repetitions at 120% of concentric one-repetition maximum with the knee extensors. Postexercise (24 h) skeletal muscle fractional synthesis rate (FSR) was increased 76 +/- 19% (P < 0.05) in PLA (0.058 +/- 0.012%/h) and was unchanged (P > 0.05) in IBU (35 +/- 21%; 0.021 +/- 0.014%/h) and ACET (22 +/- 23%; 0.010 +/- 0.019%/h). Neither drug had any influence on whole body protein breakdown, as measured by rate of phenylalanine appearance, on serum creatine kinase, or on rating of perceived muscle soreness compared with PLA. These results suggest that over-the-counter doses of both ibuprofen and acetaminophen suppress the protein synthesis response in skeletal muscle after eccentric resistance exercise. Thus these two analgesics may work through a common mechanism to influence protein metabolism in skeletal muscle.  相似文献   

18.
With age, skeletal muscle experiences substantial atrophy and weakness. Although resistance training can increase muscle size and strength, the myogenic response to exercise and the capacity for muscle hypertrophy in older humans and animals is limited. In the present study, we assessed the ability of muscle contractile activity to activate cellular pathways involved in muscle cell growth and myogenesis in adult (Y; 6 mo old) and aged (O; 30 mo old) Fischer 344 x Brown Norway rats. A single bout of rat hindlimb muscle contractile activity was elicited by high-frequency electrical stimulation (HFES) of the sciatic nerve. Plantaris (Pla) and tibialis anterior (TA) muscles were assayed for mammalian target of rapamycin (mTOR), 70-kDa ribosomal protein S6 kinase (p70(S6K)), and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and total protein either at baseline, immediately after, or 6 h after HFES. mTOR phosphorylation was elevated in Pla (1.3 +/- 0.3-fold, P < 0.05) immediately after HFES and to a lesser extent 6 h after HFES (0.6 +/- 0.1-fold, P < 0.05) in O rats. Post-HFES, p70(S6K) phosphorylation increased 1.2 +/- 0.3-fold in TA (P < 0.05) and remained elevated 6 h later (0.6 +/- 0.2-fold, P < 0.05) in O rats. ERK phosphorylation was lower in O rats immediately after exercise in both TA (11.1 +/- 2.9 vs. 2.1 +/- 0.5-fold, P < 0.05) and Pla (6.5 +/- 1.5 vs. 1.8 +/- 0.5-fold, P < 0.05) and returned to baseline by 6 h in both Y and O rats. Phosphorylation of mTOR, p70(S6K), and ERK1/2 are increased in skeletal muscle after a single bout of in situ muscle contractile activity in aged animals, and the response is less than that observed in adult animals. These observations suggest that the anabolic response to a single bout of contraction is attenuated with aging and may help explain the reduced capacity for hypertrophy in aged animals.  相似文献   

19.
Increased muscle mitochondria are largely responsible for the increased resistance to fatigue and health benefits ascribed to exercise training. However, very little attention has been given to the likely benefits of increased brain mitochondria in this regard. We examined the effects of exercise training on markers of both brain and muscle mitochondrial biogenesis in relation to endurance capacity assessed by a treadmill run to fatigue (RTF) in mice. Male ICR mice were assigned to exercise (EX) or sedentary (SED) conditions (n = 16-19/group). EX mice performed 8 wk of treadmill running for 1 h/day, 6 days/wk at 25 m/min and a 5% incline. Twenty-four hours after the last training bout a subgroup of mice (n = 9-11/group) were euthanized, and brain (brain stem, cerebellum, cortex, frontal lobe, hippocampus, hypothalamus, and midbrain) and muscle (soleus) tissues were isolated for analysis of mRNA expression of peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1α), Silent Information Regulator T1 (SIRT1), citrate synthase (CS), and mitochondrial DNA (mtDNA) using RT-PCR. A different subgroup of EX and SED mice (n = 7-8/group) performed a treadmill RTF test. Exercise training increased PGC-1α, SIRT1, and CS mRNA and mtDNA in most brain regions in addition to the soleus (P < 0.05). Mean treadmill RTF increased from 74.0 ± 9.6 min to 126.5 ± 16.1 min following training (P < 0.05). These findings suggest that exercise training increases brain mitochondrial biogenesis, which may have important implications, not only with regard to fatigue, but also with respect to various central nervous system diseases and age-related dementia that are often characterized by mitochondrial dysfunction.  相似文献   

20.
The purpose of this study was to determine if the acute anabolic muscle response to resistance exercise and essential amino acids (EAA) reflects the response over 24 h. Seven subjects participated in the following two 24-h studies: 1) resting (REST) and 2) rest plus resistance exercise and consumption of EAA (ES). Net balance (NB) across the leg was determined for four amino acids. [(13)C(6)]phenylalanine was infused to determine mixed muscle fractional synthetic rate (FSR). Twenty-four-hour FSR was significantly greater for ES than for REST (P = 0.003). Exchange of phenylalanine across the leg was -194 +/- 74 (SE) mg for ES and -371 +/- 88 mg for REST (P = 0.07) over 24 h and 229 +/- 42 mg (ES) and 28 +/- 15 mg (REST; P < 0.01) over 3 h corresponding to exercise and EAA consumption for ES. The difference in phenylalanine exchange between REST and ES was not different for measurements over 24 and 3 h. Increases in NB during ES were primarily the result of increases in protein synthesis. Results for other amino acids were similar. The acute anabolic response of muscle to EAA intake and exercise is additive to the response at rest and thus reflects the 24-h response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号