首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pyruvate dehydrogenase complex (PDC) from muscle of the adult parasitic nematode Ascaris suum plays a unique role in its anaerobic mitochondrial metabolism. Resolution of the intact complex in high salt dissociates the pyruvate dehydrogenase subunit but leaves the dihydrolipoyl dehydrogenase subunit (E3) and two other proteins with apparent M(r)s of 45 and 43 kDa bound to the dihydrolipoyl transacetylase (E2) core. These proteins are not observable on Coomassie brilliant blue-stained gels of other eukaryotic PDCs, but the 45-kDa protein is similar in apparent M(r), pI, and sensitivity to trypsin to the Kb subunit of the bovine kidney PDH alpha kinase. Acetylation of the ascarid PDC with [2-14C]pyruvate under conditions designed to maximize the incorporation of label into protein yielded only a single radiolabeled subunit, E2. These results confirm earlier reports that the ascarid PDC lacks protein X, an integral component recently identified in other eukaryotic PDCs. About 1.6 to 1.8 mol of 14C was incorporated/mole of E2, suggesting that the ascarid E2 contained two lipoly-bearing domains. Domain mapping of the 14C-acetylated ascarid E2 by limited tryptic digestion identified two lipoyl-bearing fragments with apparent M(r)s of 50 and 34 kDa and two core fragments with apparent M(r)s of 46 and 30 kDa. The ascarid E2 domain structure appears to be similar to that of other E2s. However, it appears that the subunit-binding domain (E2B) of the ascarid E2 may be significantly larger or be flanked by larger than normal interdomain regions. An enlarged E2B domain may be necessary to accommodate the additional binding of E3 to the E2 subunit in the ascarid complex, in the absence of protein X.  相似文献   

2.
After limited proteolysis of the dihydrolipoyl transacetylase component (E2) of Azotobacter vinelandii pyruvate dehydrogenase complex (PDC), a C-terminal domain was obtained which retained the transacetylase active site and the quaternary structure of E2 but had lost the lipoyl-containing N-terminal part of the chain and the binding sites for the peripheral components, pyruvate dehydrogenase and lipoamide dehydrogenase. The C-terminus of this domain was determined by treatment with carboxypeptidase Y and shown to be identical with the C-terminus of E2. Together with the previously determined N-terminus and the known amino acid sequence of E2, a molecular mass of 27.5 kDa was calculated. From the molecular mass of the native catalytic domain, 530 kDa, and the symmetry of the cubic structures observed on electron micrographs, a 24-meric structure is concluded instead of the 32-meric structure proposed previously. From the effect of guanidine hydrochloride on the light-scattering of intact E2 it was concluded that dissociation occurs in a two-step reaction resulting in particles with an average mass 1/6 that of the original mass before the N----D transition takes place. Cross-linking experiments with the catalytic domain indicated that the multimeric E2 is built from tetramers and that the tetramers are arranged as a dimer of dimers. A model for the quaternary structure of E2 is given, in which it is assumed that the tetrameric E2 core of PDC is formed from each of the six morphological subunits located at the lateral face of the cube. Binding of peripheral components to a site that interferes with the cubic assembly causes dissociation, resulting in the unique small PDC of A. vinelandii.  相似文献   

3.
The dependence of pyruvate dehydrogenase complex (PDC) activity on [Ca2+] was determined in Ehrlich ascites carcinoma cells at different pyruvate concentrations. The resulting family of curves had the following characteristics: a) bell-shaped appearance of all curves with maximum activity at 600 nM Ca2+; b) unchanged position of maxima with changes in pyruvate concentration; c) nonmonotonous changes in PDC activity with increasing pyruvate concentration at fixed [Ca2+]. Feasible mechanisms involving Ca2+-dependent phosphatase and kinase which are consistent with the experimental findings are discussed. To determine the steps in the chain of PDC reactions which determine the observed phenomena, a mathematical model is suggested which is based on the known data on the structural--functional relationships between the complex components--pyruvate dehydrogenase (E1), dihydrolipoyl acetyl transferase (E2), dihydrolipoyl dehydrogenase (E3), protein X, kinase, and phosphatase. To adequately describe the non-trivial dependence of PDC activity on [Ca2+] at different pyruvate concentrations, it was also necessary to consider the interdependence of some steps in the general chain of PDC reactions. Phenomenon (a) is shown to be due only to the involvement of protein X in the PDC reactions, phenomenon (b) to be due to changes in the activity of kinase, and phenomenon (c) to be due to dependence of acetylation and transacetylation rates on pyruvate concentration.  相似文献   

4.
A G Allen  R N Perham 《FEBS letters》1991,287(1-2):206-210
A fragment of DNA incorporating the gene, pdhC, that encodes the dihydrolipoamide acetyltransferase (E2) chain of the pyruvate dehydrogenase multienzyme complex of Streptococcus faecalis was cloned and a DNA sequence of 2360 bp was determined. The pdhC gene (1620 bp) corresponds to an E2 chain of 539 amino acid residues, Mr 56,466, comprising two lipoyl domains, a peripheral subunit-binding domain and an acetyltransferase domain, linked together by regions of polypeptide chain rich in alanine, proline and charged amino acids. The S. faecalis E2 chain differs in the number of its lipoyl domains from the E2 chains of all bacterial pyruvate dehydrogenase complexes hitherto described.  相似文献   

5.
The mammalian pyruvate dehydrogenase complex (PDC) is a mitochondrial multienzyme complex that connects glycolysis to the tricarboxylic acid cycle by catalyzing pyruvate oxidation to produce acetyl-CoA, NADH, and CO2. This reaction is required to aerobically utilize glucose, a preferred metabolic fuel, and is composed of three core enzymes: pyruvate dehydrogenase (E1), dihydrolipoyl transacetylase (E2), and dihydrolipoyl dehydrogenase (E3). The pyruvate-dehydrogenase-specific kinase (PDK) and pyruvate-dehydrogenase-specific phosphatase (PDP) are considered the main control mechanism of mammalian PDC activity. However, PDK and PDP activity are allosterically regulated by several effectors fully overlapping PDC substrates and products. This collection of positive and negative feedback mechanisms confounds simple predictions of relative PDC flux, especially when all effectors are dynamically modulated during metabolic states that exist in physiologically realistic conditions, such as exercise. Here, we provide, to our knowledge, the first globally fitted, pH-dependent kinetic model of the PDC accounting for the PDC core reaction because it is regulated by PDK, PDP, metal binding equilibria, and numerous allosteric effectors. The model was used to compute PDH regulatory complex flux as a function of previously determined metabolic conditions used to simulate exercise and demonstrates increased flux with exercise. Our model reveals that PDC flux in physiological conditions is primarily inhibited by product inhibition (~60%), mostly NADH inhibition (~30–50%), rather than phosphorylation cycle inhibition (~40%), but the degree to which depends on the metabolic state and PDC tissue source.  相似文献   

6.
The pyruvate dehydrogenase complex (PDC) in pea (Pisum sativum L., cv. Little Marvel) was studied immunologically using antibodies to specific subunits of mammalian PDC. Pea mitochondria and chloroplasts were both found to contain PDC, but distinct differences were noted in the subunit relative molecular mass (Mr) values of the individual enzymes in the mitochondrial and chloroplast PDC complexes. In particular, the mitochondrial E3 enzyme (dihydrolipoamide dehydrogenase; EC 1.8.1.4) has a high subunit Mr value of 67 000, while the chloroplast E3 enzyme has a subunit Mr value of 52 000, similar in size to the prokaryotic, yeast ad mammalian E3 enzymes. In addition, component X (not previously noted in plant PDC) was also found to be present in two distinct forms in pea mitochondrial and chloroplast complexes. As in the case of E3, mitochondrial component X has a higher subunit Mr value (67 000) than component X from chloroplasts (48 000), which is similar in size to its mammalian counterpart. The subunit Mr value of E2 (dihydrolipoamide acetyltransferase; EC 2.3.1.12) in both mitochondria and chloroplasts (50 000) is lower than that of mammalian E2 (74 000) but similar to that of yeast E2 (58 000), and is consistent with the presence of only a single lipoyl domain. Neither mitochondria nor chloroplasts showed any appreciable cross-reactivity with antiserum to mammalian E1 (pyruvate dehydrogenase; EC 1.2.4.1). However, mitochondria cross-reacted strongly with antiserum to yeast E1, giving a single band (Mr 41 000) which is thought to be E1a. Chloroplasts showed no cross-reactivity with yeast E1, indicating that the mitochondrial E1a subunit and its chloroplast equivalent are antigenically distinct polypeptides.Abbreviations E1 pyruvate dehydrogenase - E2 dihydrolipoamide acetyltransferase - E3 dihydrolipoamide dehydrogenase - Mr relative molecular mass - PDC pyruvate dehydrogenase multienzyme complex - SDS sodium dodecyl sulphate The financial support of the Agricultural and Food Research Council is gratefully acknowledged. We thank Steve Hill (Department of Botany, University of Edinburgh, UK) for advice on mitochondrial isolation, and James Neagle (Department of Biochemistry, University of Glasgow) and Ailsa Carmichael for helpful discussion.  相似文献   

7.
The lipoate acetyltransferase (E2, Mr 70,000) and protein X (Mr 51,000) subunits of the bovine pyruvate dehydrogenase multienzyme complex (PDC) core assembly are antigenically distinct polypeptides. However comparison of the N-terminal amino acid sequence of the E2 and X polypeptides reveals significant homology between the two components. Selective tryptic release of the 14C-labelled acetylated lipoyl domains of E2 and protein X from native PDC generates stable, radiolabelled 34 and 15 kDa fragments, respectively. Thus, in contrast to E2 which contains two tandemly-arranged lipoyl domains, protein X appears to contain only a single lipoyl domain located at its N-terminus.  相似文献   

8.
The dihydrolipoyl transacetylase (E2p) component of the pyruvate dehydrogenase complex (PDC) of Escherichia coli is a multidomain polypeptide comprising a catalytic domain, a domain that binds dihydrolipoyl dehydrogenase (E3-binding domain), and three domains containing lipoic acid (lipoyl domains). In PDC 24 subunits of E2p associate by means of interactions involving the catalytic domains to form the structural core of PDC. From cryoelectron microscopy and computer image analysis of frozen-hydrated isolated E2p cores it appears that the lipoyl domains are located peripherally about the core complex and do not assume fixed positions. To further test this interpretation the visibility of the lipoyl domains in electron micrographs was enhanced by specifically biotinylating the lipoic acids and labeling them with streptavidin. In agreement with the studies of native, unlabeled E2p cores, cryoelectron microscopy of the streptavidin-labeled E2p cores showed that the lipoic acid moieties are capable of extending approximately 13 nm from the surface of the core. Localization of the E3-binding domains was accomplished by cryoelectron microscopy of E2p-E3 subcomplexes prepared by reconstitution in vitro. Frequently an apparent gap of several nanometers separated the bound E3 from the surface of the core. The third component of PDC, pyruvate dehydrogenase (E1p), appeared to bind to the E2p core in a manner similar to that observed for E3. These results support a structural model of the E2p core in which the catalytic, E3-binding, and three lipoyl domains are interconnected by linker sequences that assume extended and flexible conformations.  相似文献   

9.
The pyruvate dehydrogenase complex of Lactococcus lactis subsp. lactis bv. diacetylactis has a specific activity of 6.6 U/mg and a Km of 1 mM for pyruvate. The specific activities of E2 and E3 in the complex are 30 and 0.36 U/mg, respectively. The complex is very sensitive to NADH inhibition and consists of four subunits: E1 alpha (44 kDa), E1 beta (35 kDa), E2 (73 kDa), and E3 (60 kDa). The L. lactis alpha-acetolactate synthase has a specific activity of 103 U/mg and a Km of 50 mM for pyruvate. Thiamine pyrophosphate (Km = 3.2 microM) and divalent cations are essential for activity. The native enzyme measures 172 kDa and consists of 62-kDa monomers. The role of both enzymes in product formation is discussed in view of NADH inhibition and competition for pyruvate.  相似文献   

10.
In the present study, the effects of 4-hydroxy-2-nonenal (HNE) on highly purified pyruvate dehydrogenase complex (PDC) and its catalytic components in vitro and on PDC, alpha-ketoglutarate dehydrogenase complex (KGDC), and the branched-chain alpha-keto acid dehydrogenase complex (BCKDC) activities in cultured human HepG2 cells were investigated. Among the PDC components, the activity of the dihydrolipoamide acetyltransferase-E3-binding protein subcomplex (E2-E3BP) only was decreased by HNE. Dihydrolipoamide dehydrogenase (E3) protected the E2-E3BP subcomplex from HNE inactivation in the absence of the substrates. In the presence of E3 and NADH, when lipoyl groups were reduced, higher inactivation of the E2-E3BP subcomplex by HNE was observed. Purified PDC was protected from HNE-induced inactivation by several thiol compounds including lipoic acid plus [LA-plus; 2-(N,N-dimethylamine)ethylamidolipoate(.)HCl]. Treatment of cultured HepG2 cells with HNE resulted in a significant reduction of PDC and KGDC activities, whereas BCKDC activity decreased to a lesser extent. Lipoyl compounds afforded protection from HNE-induced inhibition of PDC. This protection was higher in the presence of cysteine and reduced glutathione. Cysteine was able to restore PDC activity to some extent after HNE treatment. These findings show that thiols, including lipoic acid, provide protection against HNE-induced inactivation of lipoyl-containing complexes in the mitochondria.  相似文献   

11.
In contrast to the pyruvate dehydrogenase complex (PDC) from animal mitochondria, our in situ and in vitro studies indicate that the ATP:ADP ratio has little or no effect in regulating the mitochondrial pyruvate dehydrogenase complex from green pea seedlings. Pyruvate was a competitive inhibitor of ATP-dependent inactivation (Ki = 59 microM), while the PDC had a Km for pyruvate of microM. Thiamine pyrophosphate, the coenzyme for the pyruvate dehydrogenase (PDH) component of the complex, did not inhibit ATP-dependent inactivation when used alone but it enhanced inhibition by pyruvate. As such, thiamine pyrophosphate was a competitive inhibitor (Ki = 130 nM) of ATP-dependent inactivation. A model is proposed for the pyruvate plus thiamine pyrophosphate inhibition of ATP-dependent inactivation of the pyruvate dehydrogenase complex in which pyruvate exerts its inhibition of inactivation by altering or protecting the protein substrate from phosphorylation and not by directly inhibiting PDH kinase.  相似文献   

12.
To examine the stereospecific effects of lipoic compounds on pyruvate metabolism, the effects of R-lipoic acid (R-LA), S-lipoic acid (S-LA) and 1,2-diselenolane-3-pentanoic acid (Se-LA) on the activities of the mammalian pyruvate dehydrogenase complex (PDC) and its catalytic components were investigated. Both S-LA and R-LA markedly inhibited PDC activity; whereas Se-LA displayed inhibition only at higher concentrations. Examination of the effects on the individual catalytic components indicated that Se-LA inhibited the pyruvate dehydrogenase component; whereas R-LA and S-LA inhibited the dihydrolipoamide acetyltransferase component. The three lipoic compounds lowered dihydrolipoamide dehydrogrenase (E3) activity in the forward reaction by about 30 to 45%. The kinetic data of E3 showed that both R-LA and Se-LA are used as substrates by E3 for the reverse reaction. Decarboxylation of [1-14C]pyruvate via PDC by cultured HepG2 cells was not affected by R-LA, but moderately decreased with S-LA and Se-LA. These findings indicate that (i) purified PDC and its catalytic components are affected by lipoic compounds based on their stereoselectivity; and (ii) the oxidation of pyruvate by intact HepG2 cells is not inhibited by R-LA. The later finding with the intact cells is in support of therapeutic role of R-LA as an antioxidant.  相似文献   

13.
In human (h) pyruvate dehydrogenase complex (PDC) the pyruvate dehydrogenase (E1) is bound to the E1-binding domain of dihydrolipoamide acetyltransferase (E2). The C-terminal surface of the E1beta subunit was scanned for the negatively charged residues involved in binding with E2. betaD289 of hE1 interacts with K276 of hE2 in a manner similar to the corresponding interaction in Bacillus stearothermophilus PDC. In contrast to bacterial E1beta, the C-terminal residue of the hE1beta does not participate in the binding with positively charged residues of hE2. This latter finding shows species specificity in the interaction between hE1beta and hE2 in PDC.  相似文献   

14.
Activity of the mammalian pyruvate dehydrogenase complex (PDC) is regulated by phosphorylation-dephosphorylation of three serine residues (designated site 1, Ser-264; site 2, Ser-271; site 3, Ser-203) in the alpha subunit of the pyruvate dehydrogenase (E1) component. Substitutions of the phosphorylation sites were generated by site-directed mutagenesis. Glutamate (S1E) and aspartate (S1D) substitutions at site 1 resulted in the complete loss of PDC activity; however, these mutants were variably active in the decarboxylation and 2,6-dichlorophenolindophenol assays. S1Q had only 3% of wild-type PDC activity. The apparent K(m) values for pyruvate increased for the mutants of site 1 when determined in the 2,6-dichlorophenolindophenol assay. The substitutions at sites 2 and 3 caused only moderate reductions in activity in the three assays. S3E had a 27-fold increase in the apparent K(m) for thiamine pyrophosphate and 8-fold increase in the K(i) for pyrophosphate. Site 3 was almost completely protected from phosphorylation by thiamine pyrophosphate. The results show that the size rather than negative charge of the substituted amino acid residue affects the active site of E1 and that modification of each of the three serine residues affect the active site in a site-specific manner for its ability to bind the cofactor and substrates.  相似文献   

15.
Recent experimental findings on the structural--functional features of pyruvate dehydrogenase phosphatase (PDP) isolated from various sources are compared. Two alternative mechanisms (a and b) of dephosphorylation of the E1 component in the pyruvate dehydrogenase complex (PDC) are discussed: a) the reaction occurs as a result of stochastic collisions of PDP and PDC, and the generation of an enzyme--substrate complex (PDP--E1--PDC) and dephosphorylation of the E1 component occur independently at different PDP binding sites on the PDC core; b) the dephosphorylation is performed simultaneously by a certain number of PDP molecules symmetrically bound on the PDC core. The second mechanism is suggested by the self-assembly theory of multicomponent enzyme systems and can be proved by kinetic experiments. Based on self-assembly principles and data on feasible binding sites of peripheral components of the PDC, the stoichiometry and mutual location of PDP, pyruvate dehydrogenase kinase, and the E1 component on the core of mammalian PDC are postulated to provide optimal functioning of the PDC. Structural mechanisms of stimulation of PDP activity by Ca2+ and polyamines are also discussed.  相似文献   

16.
The most common mutation in the alpha subunit of the pyruvate dehydrogenase (E1) component of the human pyruvate dehydrogenase complex (PDC) is arginine-234 to glycine and glutamine in 12 and 3 patients, respectively. Interestingly, these two mutations at the same amino acid position cause E1 (and hence PDC) deficiency by apparently different mechanisms. Recombinant human R234Q E1 had similar V(max) (25.7 +/- 4.4 units/mg E1) and apparent K(m) (101 +/- 4 nM) values for TPP as recombinant wild-type human E1, while R234G E1 had no significant change in V(max) (33.6 +/- 4.7 units/mg E1) but had a 7-fold increase in its apparent K(m) value for TPP (497 +/- 25 nM). Both of the R234 mutant proteins had similar apparent K(m) values for pyruvate. Both R234Q and R234G mutant proteins displayed similar phosphorylation rates of sites 1 and 2 by pyruvate dehydrogenase kinase 2 (PDK2) and site 3 by PDK1 compared to wild-type E1. Phosphorylated R234Q E1, R234G E1, and wild-type E1 also had similar dephosphorylation rates of sites 1 and 2 by phosphopyruvate dehydrogenase phosphatase 1. The rate of dephosphorylation of site 3 was about 50% for R234Q E1 and without a significant change for R234G E1 compared to the wild type. The data indicate that the patients with the R234G E1 mutation are symptomatic due to a decreased ability of this mutant protein to bind TPP, whereas the patients with the R234Q E1 mutation are symptomatic due to a decreased rate of dephosphorylation of site 3, hence keeping the enzyme in a phosphorylated/inactivated form.  相似文献   

17.
The four pyruvate dehydrogenase kinase (PDK) and two pyruvate dehydrogenase phosphatase (PDP) isoenzymes that are present in mammalian tissues regulate activity of the pyruvate dehydrogenase complex (PDC) by phosphorylation/dephosphorylation of its pyruvate dehydrogenase (E1) component. The effect of lipoic acids on the activity of PDKs and PDPs was investigated in purified proteins system. R-lipoic acid, S-lipoic acid and R-dihydrolipoic acid did not significantly affect activities of PDPs and at the same time inhibited PDKs to different extents (PDK1>PDK4 approximately PDK2>PDK3 for R-LA). Since lipoic acids inhibited PDKs activity both when reconstituted in PDC and in the presence of E1 alone, dissociation of PDK from the lipoyl domains of dihydrolipoamide acetyltransferase in the presence of lipoic acids is not a likely explanation for inhibition. The activity of PDK1 towards phosphorylation sites 1, 2 and 3 of E1 was decreased to the same extent in the presence of R-lipoic acid, thus excluding protection of the E1 active site by lipoic acid from phosphorylation. R-lipoic acid inhibited autophosphorylation of PDK2 indicating that it exerted its effect on PDKs directly. Inhibition of PDK1 by R-lipoic acid was not altered by ADP but was decreased in the presence of pyruvate which itself inhibits PDKs. An inhibitory effect of lipoic acid on PDKs would result in less phosphorylation of E1 and hence increased PDC activity. This finding provides a possible mechanism for a glucose (and lactate) lowering effect of R-lipoic acid in diabetic subjects.  相似文献   

18.
The four pyruvate dehydrogenase kinase (PDK) and two pyruvate dehydrogenase phosphatase (PDP) isoenzymes that are present in mammalian tissues regulate activity of the pyruvate dehydrogenase complex (PDC) by phosphorylation/dephosphorylation of its pyruvate dehydrogenase (E1) component. The effect of lipoic acids on the activity of PDKs and PDPs was investigated in purified proteins system. R-lipoic acid, S-lipoic acid and R-dihydrolipoic acid did not significantly affect activities of PDPs and at the same time inhibited PDKs to different extents (PDK1?>?PDK4?~?PDK2?>?PDK3 for R-LA). Since lipoic acids inhibited PDKs activity both when reconstituted in PDC and in the presence of E1 alone, dissociation of PDK from the lipoyl domains of dihydrolipoamide acetyltransferase in the presence of lipoic acids is not a likely explanation for inhibition. The activity of PDK1 towards phosphorylation sites 1, 2 and 3 of E1 was decreased to the same extent in the presence of R-lipoic acid, thus excluding protection of the E1 active site by lipoic acid from phosphorylation. R-lipoic acid inhibited autophosphorylation of PDK2 indicating that it exerted its effect on PDKs directly. Inhibition of PDK1 by R-lipoic acid was not altered by ADP but was decreased in the presence of pyruvate which itself inhibits PDKs. An inhibitory effect of lipoic acid on PDKs would result in less phosphorylation of E1 and hence increased PDC activity. This finding provides a possible mechanism for a glucose (and lactate) lowering effect of R-lipoic acid in diabetic subjects.  相似文献   

19.
Cryoelectron microscopy has been performed on frozen-hydrated pyruvate dehydrogenase complexes from bovine heart and kidney and on various subcomplexes consisting of the dihydrolipoyl transacetylase-based (E2) core and substoichiometric levels of the other two major components, pyruvate dehydrogenase (E1) and dihydrolipoyl dehydrogenase (E3). The diameter of frozen-hydrated pyruvate dehydrogenase complex (PDC) is 50 nm, which is significantly larger than previously reported values. On the basis of micrographs of the subcomplexes, it is concluded that the E1 and E3 are attached to the E2-core complex by extended (4-6 nm maximally) flexible tethers. PDC constructed in this manner would probably collapse and appear smaller than its native size when dehydrated, as was the case in previous electron microscopy studies. The tether linking E1 to the core involves the hinge sequence located between the E1-binding and catalytic domains in the primary sequence of E2, whereas the tether linking E3 is probably derived from a similar hinge-type sequence in component X. Tilting of the E2-based cores and comparison with model structures confirmed that their overall shape is that of a pentagonal dodecahedron. The approximately 6 copies of protein X present in PDC do not appear to be clustered in one or two regions of the complex and are not likely to be symmetrically distributed.  相似文献   

20.
Kato M  Chuang JL  Tso SC  Wynn RM  Chuang DT 《The EMBO journal》2005,24(10):1763-1774
The human pyruvate dehydrogenase complex (PDC) is regulated by reversible phosphorylation by four isoforms of pyruvate dehydrogenase kinase (PDK). PDKs phosphorylate serine residues in the dehydrogenase (E1p) component of PDC, but their amino-acid sequences are unrelated to eukaryotic Ser/Thr/Tyr protein kinases. PDK3 binds to the inner lipoyl domains (L2) from the 60-meric transacetylase (E2p) core of PDC, with concomitant stimulated kinase activity. Here, we present crystal structures of the PDK3-L2 complex with and without bound ADP or ATP. These structures disclose that the C-terminal tail from one subunit of PDK3 dimer constitutes an integral part of the lipoyl-binding pocket in the N-terminal domain of the opposing subunit. The two swapped C-terminal tails promote conformational changes in active-site clefts of both PDK3 subunits, resulting in largely disordered ATP lids in the ADP-bound form. Our structural and biochemical data suggest that L2 binding stimulates PDK3 activity by disrupting the ATP lid, which otherwise traps ADP, to remove product inhibition exerted by this nucleotide. We hypothesize that this allosteric mechanism accounts, in part, for E2p-augmented PDK3 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号