首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This study presents a dual-wavelength phosphorimeter developed to measure microvascular PO2 (microPO2) in different depths in tissue and demonstrates its use in rat kidney. The used phosphorescent dye is Oxyphor G2 with excitation bands at 440 and 632 nm. The broad spectral gap between the excitation bands combined with a relatively low light absorption of 632 nm light by tissue results in a marked difference in penetration depths of both excitation wavelengths. In rat kidney, we determine the catchments depth of the 440-nm excitation to be 700 microm, whereas the catchments depth of 632 nm is as much as 4 mm. Therefore, the measurements differentiate between cortex and outer medulla, respectively. In vitro, no difference in PO2 readings between both channels was found. On the rat kidney in vivo, the measured cortical microPO2 was on average 20 Torr higher than the medullary microPO2 over a wide PO2 range induced by variations in inspired oxygen fraction. Examples provided from endotoxemia and resuscitation show differences in responses of mean cortical and medullary PO2 readings as well as in the shape of the PO2 histograms. It can be concluded that oxygen-dependent quenching of phosphorescence of Oxyphor G2 allows quantitative measurement of microPO2 noninvasively in two different depths in vivo. Oxygen levels measured by this technique in the rat renal cortex and outer medulla are consistent with previously published values detected by Clark-type oxygen electrodes. Dual-wavelength phosphorimetry is excellently suited for monitoring microPO2 changes in two different anatomical layers under pathophysiological conditions with the characteristics of providing oxygen histograms from two depths and having a penetration depth of several millimeters.  相似文献   

2.
In the present work, a novel method for detecting hypoxia in tumors, phosphorescence quenching, was used to evaluate tissue and tumor oxygenation. This technique is based on the concept that phosphorescence lifetime and intensity are inversely proportional to the oxygen concentration in the tissue sample. We used the phosphor Oxyphor G2 to evaluate the oxygen profiles in three murine tumor models: K1735 malignant melanoma, RENCA renal cell carcinoma, and Lewis lung carcinoma. Oxygen measurements were obtained both as histograms of oxygen distribution within the sample and as an average oxygen pressure within the tissue sampled; the latter allowing real-time oxygen monitoring. Each of the tumor types examined had a characteristic and consistent oxygen profile. K1735 tumors were all well oxygenated, with a peak oxygen pressure of 37.8 +/- 5.1 Torr; RENCA tumors had intermediate oxygen pressures, with a peak oxygen pressure of 24.8 +/- 17.9 Torr; and LLC tumors were all severely hypoxic, with a peak oxygen pressure of 1.8 +/- 1.1 Torr. These results correlated well with measurements of tumor cell oxygenation measured by nitroimidazole (EF5) binding and were consistent with assessments of tumor blood flow by contrast enhanced ultrasound and tumor histology. The results show that phosphorescence quenching is a reliable, reproducible, and noninvasive method capable of providing real-time determination of oxygen concentrations within tumors.  相似文献   

3.
This study evaluates a therapy for infarct modulation and acute myocardial rescue and utilizes a novel technique to measure local myocardial oxygenation in vivo. Bone marrow-derived endothelial progenitor cells (EPCs) were targeted to the heart with peri-infarct intramyocardial injection of the potent EPC chemokine stromal cell-derived factor 1α (SDF). Myocardial oxygen pressure was assessed using a noninvasive, real-time optical technique for measuring oxygen pressures within microvasculature based on the oxygen-dependent quenching of the phosphorescence of Oxyphor G3. Myocardial infarction was induced in male Wistar rats (n = 15) through left anterior descending coronary artery ligation. At the time of infarction, animals were randomized into two groups: saline control (n = 8) and treatment with SDF (n = 7). After 48 h, the animals underwent repeat thoracotomy and 20 μl of the phosphor Oxyphor G3 was injected into three areas (peri-infarct myocardium, myocardial scar, and remote left hindlimb muscle). Measurements of the oxygen distribution within the tissue were then made in vivo by applying the end of a light guide to the beating heart. Compared with controls, animals in the SDF group exhibited a significantly decreased percentage of hypoxic (defined as oxygen pressure ≤ 15.0 Torr) peri-infarct myocardium (9.7 ± 6.7% vs. 21.8 ± 11.9%, P = 0.017). The peak oxygen pressures in the peri-infarct region of the animals in the SDF group were significantly higher than the saline controls (39.5 ± 36.7 vs. 9.2 ± 8.6 Torr, P = 0.02). This strategy for targeting EPCs to vulnerable peri-infarct myocardium via the potent chemokine SDF-1α significantly decreased the degree of hypoxia in peri-infarct myocardium as measured in vivo by phosphorescence quenching. This effect could potentially mitigate the vicious cycle of myocyte death, myocardial fibrosis, progressive ventricular dilatation, and eventual heart failure seen after acute myocardial infarction.  相似文献   

4.
Previous experiments using cross-linked tetrameric hemoglobins (XLHb) to perfuse isolated rat kidneys showed that high-O2-affinity XLHb improved proximal tubule function more effectively than low-O2-affinity XLHb. To determine how function was improved, proximal tubule fragments were incubated with albumin, Hb34 [half-saturation point (P50) 34 Torr], or Hb13 (P50 13 Torr) with Po2 values ranging from 22 to 147 Torr. ATP content reflected O2 delivery to mitochondria. Both XLHb increased ATP, Hb34 with Po2 >or= 47 Torr and Hb13 with Po2 相似文献   

5.
The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po(2) [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po(2) dependence of oxygen consumption, Vo(2), proportional to the rate of Po(2) decrease. Fitting equations obtained from a model of heterogeneous intracellular Po(2) were applied to recover the parameters describing respiration in muscle fibers, with a predicted sigmoidal shape for the dependence of Vo(2) on Po(2). This curve consists of two regions connected by the point for critical Po(2) of the cell (i.e., Po(2) at the sarcolemma when the center of the cell becomes anoxic). The critical Po(2) was below the Po(2) for half-maximal respiratory rate (P(50)) for the cells. In six muscles at rest, the rate of oxygen consumption was 139 ± 6 nl O(2)/cm(3)·s and mitochondrial P(50) was k = 10.5 ± 0.8 mmHg. The range of Po(2) values inside the muscle fibers was found to be 4-5 mmHg at the critical Po(2). The oxygen dependence of respiration can be studied in thin muscles under different experimental conditions. In resting muscle, the critical Po(2) was substantially lower than the interstitial Po(2) of 53 ± 2 mmHg, a finding that indicates that Vo(2) under this circumstance is independent of oxygen supply and is discordant with the conventional hypothesis of metabolic regulation of the oxygen supply to tissue.  相似文献   

6.
Carbon dioxide concentrations were increased during expiration in the upper one-half of the trachea, pharynx, and nasal sinuses to determine if elevation of upper airway CO2 would alter breathing or arterial blood gases in the awake pony. Carbon dioxide (100%) was injected into the midcervical trachea via a chronically implanted transcutaneous cannula during the first part of the animal's expiration. This maneuver elevated upper airway expiratory CO2 concentrations but prevented any exogenous CO2 from entering the lung and being absorbed into the arterial blood. Twelve experiments were performed on six ponies in which upper airway CO2 was elevated 2, 4, and 6% above the normal expired CO2 concentrations. Tidal volume increased in a dose dependent manner during upper airway CO2 exposure, but total ventilation was unchanged from base-line measurements made while the animal breathed room air. Arterial Po2 also increased during upper airway CO2 administration, reaching a mean value 6 Torr (1 Torr = 133.322 Pa) greater than the base-line values at the +6% CO2 exposure. We conclude that upper airway CO2 exposure alters breathing pattern slightly (increases tidal volume) and increases arterial PO2 in the awake pony.  相似文献   

7.
Hypothetically either decreased nitric oxide (NO) or increased O(2) could initiate 20-HETE-mediated vasoconstriction associated with hemoglobin-based blood substitutes (HBOC). To test this hypothesis, we infused Tm-Hb, an HBOC with low O(2) affinity, into isoflurane-anesthetized Wistar (W) and Sprague-Dawley (SD) rats after exchanging 20% of their blood with Ringer lactate. For comparison we infused an equal amount of BSA or BSA with N(G)-nitro-L-arginine methyl ester (BSA + NAME). Tm-Hb increased blood pressure (BP) and renal vascular resistance (RVR) equally in W and SD rats. Renal blood flow (RBF; Doppler ultrasound) decreased. BSA decreased RVR and raised glomerular filtration rate. BSA + NAME raised BP, RVR, and GFR. HET0016, an inhibitor of 20-HETE production, blunted BP and RVR responses to Tm-Hb and BSA+NAME in SD but not W rats. Arterial O(2) content with BSA was lower than with Tm-Hb but O(2) delivery was 60% higher with BSA because of higher RBF. BSA raised Po(2) (Oxylite) in cortex and medulla and reduced RVR. Tm-Hb decreased Po(2) and increased RVR. Switching rats from breathing air to 100% O(2) raised intrarenal Po(2) two- to threefold and increased BP and RVR. HET0016 did not alter hyperoxic responses. In conclusion, 20-HETE contributes to vasoconstriction by Tm-Hb in SD but not in W rats, and increased 20-HETE activity results primarily from decreased NO.  相似文献   

8.
The rate of oxygen release from arterioles ( approximately 55 microm diameter) was measured in the hamster window chamber model during flow and no-flow conditions. Flow was stopped by microvascular transcutaneous occlusion using a glass pipette held by a manipulator. The reduction of the intra-arteriolar oxygen tension (Po2) was measured by the phosphorescence quenching of preinfused Pd-porphyrin, 100 microm downstream from the occlusion. Oxygen release from arterioles was found to be 53% greater during flow than no-flow conditions (2.6 vs. 1.7 x 10(-5) ml O2.cm(-2).s(-1), P < 0.05). Acute hemodilution with dextran 70 was used to reduce vessel oxygen content, significantly increase wall shear stress (14%, P < 0.05), reduce Hct to 28.4% (SD 1.0) [vs. 48.8% (SD 1.8) at baseline], lower oxygen supply by the arterioles (10%, P < 0.05), and increase oxygen release from the arterioles (39%, P < 0.05). Hemodilution also increased microcirculation oxygen extraction (33% greater than nonhemodilution, P < 0.05) and oxygen consumption by the vessel wall, as shown by an increase in vessel wall oxygen gradient [difference in Po2 between the blood and the tissue side of the arteriolar wall, nonhemodiluted 16.2 Torr (SD 1.0) vs. hemodiluted 18.3 Torr (SD 1.4), P < 0.05]. Oxygen released by the arterioles during flow vs. nonflow was increased significantly after hemodilution (3.6 vs. 1.8 x 10(-5) ml O2.cm(-2).s(-1), P < 0.05). The oxygen cost induced by wall shear stress, suggested by our findings, may be >15% of the total oxygen delivery to tissues by arterioles during flow in this preparation.  相似文献   

9.
Extant abalone retain an ancestral system of gas exchange consisting of paired bipectinate gills. This paper examines the hypothesis that fundamental inefficiencies of this arrangement led to the extensive radiation observed in prosobranch gas exchange organs. Oxygen uptake at 15 degrees C was examined in the right gill of resting adult blackfoot abalone, Haliotis iris Martyn 1784. Pre- and post-branchial haemolymph and water were sampled and oxygen content, partial pressure (Po2), pH, and haemocyanin content measured; in vivo haemolymph flow rate was determined by an acoustic pulsed-Doppler flowmeter. During a single pass across the gills, mean seawater Po2 fell from 138.7 Torr to 83.4 Torr, while haemolymph Po2 rose from 37.2 Torr to 77.0 Torr raising total O2 content from 0.226 to 0.346 mmol L(-1). Haemolymph flowed through the right gill at a mean rate of 9.6 mL min(-1) and carried 0.151 to 0.355 mmol L(-1) of haemocyanin (mean body mass 421 g). Only 34.7% of the oxygen carried in the arterial haemolymph was taken up by the tissues and less than half of this was contributed by haemocyanin. A diffusion limitation index (Ldiff) of 0.47-0.52, a well-matched ventilation-perfusion ratio (1.2-1.4) and a diffusing capacity (D) of 0.174 micromol O2 kg(-1) Torr(-1) indicate that the gills operate efficiently and are able to meet the oxygen requirements of the resting abalone.  相似文献   

10.
We have developed an optical method for the evaluation of the oxygen consumption (Vo(2)) in microscopic volumes of spinotrapezius muscle. Using phosphorescence quenching microscopy (PQM) for the measurement of interstitial Po(2), together with rapid pneumatic compression of the organ, we recorded the oxygen disappearance curve (ODC) in the muscle of the anesthetized rats. A 0.6-mm diameter area in the tissue, preloaded with the phosphorescent oxygen probe, was excited once a second by a 532-nm Q-switched laser with pulse duration of 15 ns. Each of the evoked phosphorescence decays was analyzed to obtain a sequence of Po(2) values that constituted the ODC. Following flow arrest and tissue compression, the interstitial Po(2) decreased rapidly and the initial slope of the ODC was used to calculate the Vo(2). Special analysis of instrumental factors affecting the ODC was performed, and the resulting model was used for evaluation of Vo(2). The calculation was based on the observation of only a small amount of residual blood in the tissue after compression. The contribution of oxygen photoconsumption by PQM and oxygen inflow from external sources was evaluated in specially designed tests. The average oxygen consumption of the rat spinotrapezius muscle was Vo(2) = 123.4 ± 13.4 (SE) nl O(2)/cm(3) · s (N = 38, within 6 muscles) at a baseline interstitial Po(2) of 50.8 ± 2.9 mmHg. This technique has opened the opportunity for monitoring respiration rates in microscopic volumes of functioning skeletal muscle.  相似文献   

11.
The value of the diffusion coefficient for oxygen in muscle is uncertain. The diffusion coefficient is important because it is a determinant of the extracellular oxygen tension at which the core of muscle fibers becomes anoxic (Po(2crit)). Anoxic cores in muscle fibers impair muscular function and may limit adaptation of muscle cells to increased load and/or activity. We used Hill's diffusion equations to determine Krogh's diffusion coefficient (Dalpha) for oxygen in single skeletal muscle fibers from Xenopus laevis at 20 degrees C (n = 6) and in myocardial trabeculae from the rat at 37 degrees C (n = 9). The trabeculae were dissected from the right ventricular myocardium of control (n = 4) and monocrotaline-treated, pulmonary hypertensive rats (n = 5). The cross-sectional area of the preparations, the maximum rate of oxygen consumption (Vo(2 max)), and Po(2crit) were determined. Dalpha increased in the following order: Xenopus muscle fibers Dalpha = 1.23 nM.mm(2).mmHg(-1).s(-1) (SD 0.12), control rat trabeculae Dalpha = 2.29 nM.mm(2).mmHg(-1).s(-1) (SD 0.24) (P = 0.0012 vs. Xenopus), and hypertrophied rat trabeculae Dalpha = 6.0 nM.mm(2).mmHg(-1).s(-1) (SD 2.8) (P = 0.039 vs. control rat trabeculae). Dalpha increased with extracellular space in the preparation (Spearman's rank correlation coefficient = 0.92, P < 0.001). The values for Dalpha indicate that Xenopus muscle fibers cannot reach Vo(2 max) in vivo because Po(2crit) can be higher than arterial Po(2) and that hypertrophied rat cardiomyocytes can become hypoxic at the maximum heart rate.  相似文献   

12.
Oxygen phosphorescence quenching was used to measure tissue Po(2) of lymphatic vessels of 43.6 +/- 23.1 microm (mean +/- SD) diameter in tissue locations of the rat mesentery classified according to anatomic location. Lymph and adipose tissue Po(2) were 20.6 +/- 9.1 and 34.1 +/- 7.8 mmHg, respectively, with the difference being statistically significant. Rare microlymphatic vessels in connective tissue not surrounded by microvessels had a Po(2) of 0.8 +/- 0.2 mmHg, whereas the surrounding tissue Po(2) was 3.0 +/- 3.2 mmHg, with both values being significantly lower than those of adipose tissue. Lower of lymph fluid Po(2) relative to the surrounding tissue was also evident in paired measurements of Po(2) in the lymphatic vessels and perilymphatic adipose tissue, which was significantly lower than the Po(2) in paired adipose tissue. The Po(2) of the lymphatic fluid of the mesenteric microlymphatics is consistently lower than that of the surrounding adipose tissue by approximately 11 mmHg; therefore, lymph fluid has the lowest Po(2) of this tissue. The disparity between lymph and tissue Po(2) is attributed to the microlymphatic vessel wall and lymphocyte oxygen consumption.  相似文献   

13.
Systemic hypoxia produces microvascular inflammation in several tissues, including skeletal muscle. Exercise training (ET) has been shown to reduce the inflammatory component of several diseases. Alternatively, ET could influence hypoxia-induced inflammation by improving tissue oxygenation or increasing mechanical antiadhesive forces at the leukocyte-endothelial interface. The effect of 5 wk of treadmill ET on hypoxia-induced microvascular inflammation was studied in the cremaster microcirculation of rats using intravital microscopy. In untrained rats, hypoxia (arterial Po(2) = 32.3 +/- 2.1 Torr) increased leukocyte-endothelial adherence from 2.3 +/- 0.4 to 10.2 +/- 0.3 leukocytes per 100 microm of venule (P < 0.05) and was accompanied by extravasation of FITC-labeled albumin after 4 h of hypoxia (extra-/intravascular fluorescence intensity ratio = 0.50 +/- 0.07). These responses were attenuated in ET (leukocyte adherence was 1.5 +/- 0.4 during normoxia and 1.8 +/- 0.7 leukocytes per 100 mum venule after 10 min of hypoxia; extra-/intravascular fluorescence intensity ratio = 0.11 +/- 0.02; P < 0.05 vs. untrained) despite similar reductions of arterial (32.4 +/- 1.8 Torr) and microvascular Po(2) (measured with an oxyphor-quenching method) in both groups. Shear rate decreased during hypoxia to similar extents in ET and untrained rats. In addition, circulating blood leukocyte count was similar in ET and untrained rats. The effects of ET on hypoxia-induced leukocyte-endothelial adherence remained up to 4 wk after discontinuing training. Thus ET attenuated hypoxia-induced inflammation despite similar effects of hypoxia on tissue Po(2), venular shear rate, and circulating leukocyte count.  相似文献   

14.
A scanning phosphorescence quenching microscopy technique, designed to prevent accumulated O(2) consumption by the method, was applied to Po(2) measurements in mesenteric tissue. In an attempt to further increase the accuracy of the measurements, albumin-bound probe was topically applied to the tissue and an objective-mounted pressurized bag was used to reduce the oxygen transport bypass through the thin layer of fluid over the mesentery. Po(2) was measured at multiple sites perpendicular to the blood/wall interface in the vicinity of 84 mesenteric arterioles (7-39 microm in diameter) at distances of 5, 15, 30, 60, 120, and 180 microm in seven anesthetized Sprague-Dawley rats, thereby creating Po(2) profiles. Interstitial Po(2) above and immediately beside arterioles was found to agree with known intravascular values. No significant difference in Po(2) profiles was found between small and large arterioles, indicating a small longitudinal Po(2) gradient in the precapillary mesenteric microvasculature. In addition, the Po(2) profiles were used to calculate oxygen consumption in the mesenteric tissue (56-65 nl O(2) x cm(-3) x s(-1)). Correction of these values for contamination with ambient oxygen yielded an oxygen consumption rate of 60-68 nl O(2) x cm(-3) x s(-1), the maximal limit for consumption in the mesentery. The results were compared with measurements made by other workers in regard to the employed techniques.  相似文献   

15.
To investigate the dynamics of tissue oxygen demand and supply during brain functions, we simultaneously recorded Po(2) and local cerebral blood flow (LCBF) with an oxygen microelectrode and laser Doppler flowmetry, respectively, in rat somatosensory cortex. Electrical hindlimb stimuli were applied for 1, 2, and 5 s to vary the duration of evoked cerebral metabolic rate of oxygen (CMR(O(2))). The electrical stimulation induced a robust increase in Po(2) (4-9 Torr at peak) after an increase in LCBF (14-26% at peak). A consistent lag of approximately 1.2 s (0.6-2.3 s for individual animals) in the Po(2) relative to LCBF was found, irrespective of stimulus length. It is argued that the lag in Po(2) was predominantly caused by the time required for oxygen to diffuse through tissue. During brain functions, the supply of fresh oxygen further lagged because of the latency of LCBF onset ( approximately 0.4 s). The results indicate that the tissue oxygen supports excess demand until the arrival of fresh oxygen. However, a large drop in Po(2) was not observed, indicating that the evoked neural activity demands little extra oxygen or that the time course of excess demand is as slow as the increase in supply. Thus the dynamics of Po(2) during brain functions predominantly depend on the time course of LCBF. Possible factors influencing the lag between demand and supply are discussed, including vascular spacing, reactivity of the vessels, and diffusivity of oxygen.  相似文献   

16.
Hypoxia-induced dopamine (DA) release from carotid body (CB) glomus cells and activation of postsynaptic D(2) receptors have been proposed to play an important role in the neurotransmission process between the glomus cells and afferent nerve endings. To better resolve the role of D(2) receptors, we examined afferent nerve activity, catecholamine content and release, and ventilation of genetically engineered mice lacking D(2) receptors (D(2)(-/-) mice). Single-unit afferent nerve activities of D(2)(-/-) mice in vitro were significantly reduced by 45% and 25% compared with wild-type (WT) mice during superfusion with saline equilibrated with mild hypoxia (Po(2) approximately 50 Torr) or severe hypoxia (Po(2) approximately 20 Torr), respectively. Catecholamine release in D(2)(-/-) mice was enhanced by 125% in mild hypoxia and 75% in severe hypoxia compared with WT mice, and the rate of rise was increased in D(2)(-/-) mice. We conclude that CB transduction of hypoxia is still present in D(2)(-/-) mice, but the response magnitude is reduced. However, the ventilatory response to acute hypoxia is maintained, perhaps because of an enhanced processing of chemoreceptor input by brain stem respiratory nuclei.  相似文献   

17.
Adult male rats were anesthetized and catheters were implanted in the caudal artery. Soon after recovery from short-lasting anesthesia, a total of 20 groups of six each were individually exposed to five different oxygen levels varying from 21.0 to 9.0% combined with four CO2 levels ranging from 0 to 12.9% at a mean barometric pressure of 744 Torr. Arterial blood samples were collected and analyzed for pH, Po2, and Pco2 before and near the end of 20-min exposures. During an air-breathing control period, pH averaged 7.466 plus or minus 0.020 SD, Paco2 41.2 plus or minus 1.9 Torr and Pao2 91.8 plus or minus 3.5 Torr. During hypoxia, Pao2 levels were similar to that of acutely hypoxic humans. Rats apparently differ from man in that blood buffering is greater, resulting in a higher pH during air breathing and a smaller [H-+] increase with increasing Paco2. Differences between arterial and inspired CO2 were about 10 Torr at 60 and 90 Torr Plco2 and were not influenced by Plo2.  相似文献   

18.
Elevated arterial Pco(2) (hypercapnia) has a major effect on central nervous system oxygen toxicity in diving with a closed-circuit breathing apparatus. The purpose of the present study was to follow up the ability of divers to detect CO(2) and to determine the CO(2) retention trait after 1 year of active oxygen diving with closed-circuit apparatus. Ventilatory and perceptual responses to variations in inspired CO(2) (range: 0-5.6 kPa, 0-42 Torr) during moderate exercise were assessed in Israeli Navy combat divers on active duty. Tests were carried out on 40 divers during the novice oxygen diving phase (ND) and the experienced oxygen diving phase. No significant changes were found between the two phases for the minimal mean inspired Pco(2) that could be detected. The mean (with SD in parentheses) end-tidal Pco(2) during exposure to an inspired Pco(2) of 5.6 kPa (42 Torr) was significantly higher in the novice diving phase than in the experienced diving phase [8.1 kPa (SD 0.7), 62 Torr (SD 5) and 7.8 kPa (SD 0.6), 59 Torr (SD 4), respectively; P < or = 0.001]. One year of shallow oxygen diving activity with a closed-circuit apparatus does not affect the ability to detect CO(2) nor does it lead to increased CO(2) retention; rather, it may even bring about a decrease in this trait. This finding suggests that acquiring experience in oxygen diving with a closed-circuit apparatus at shallow depths does not place the diver at a greater risk of central nervous system oxygen toxicity due to CO(2) retention.  相似文献   

19.
TNF-α is a proinflammatory cytokine that is involved in numerous pathological processes including chronic obstructive pulmonary disease (COPD). In the present study, we used a transgenic mouse model that overexpresses TNF-α in the lung (Tg(+)) to test the hypothesis that chronic exposure to TNF-α (as seen in COPD) reduces skeletal muscle force production and fatigue resistance, particularly under low Po(2) conditions. At 7-12 mo, body and muscle weight of both extensor digitorum longus (EDL) and soleus were significantly smaller in Tg(+) compared with littermate wild-type (WT) mice; however, the body-to-muscle weight ratio was not different between groups. EDL and soleus muscles were subjected to in vitro fatiguing contractile periods under high (~550 Torr) and low Po(2) (~40 Torr). Although all muscles were less fatigue-resistant during low Po(2) compared with high Po(2), only the soleus fatigued more rapidly in Tg(+) mice (~12%) compared with WT at high Po(2). The maximal tension of EDL was equally reduced in Tg(+) mice (28-34% decrease from WT under both Po(2) conditions); but for soleus this parameter was smaller only under low Po(2) in Tg(+) mice (~31% decrease from WT). The peak rate of relaxation and the peak rate of contraction were both significantly reduced in Tg(+) EDL muscles compared with WT EDL under low Po(2) conditions, but not in soleus. These results demonstrate that TNF-α upregulation in the lung impairs peripheral skeletal muscle function but affects fast- and slow-twitch muscles differentially at high and low Po(2).  相似文献   

20.
We hypothesized that the acute ventilatory response to hypoxia is enhanced after exposure to episodic hypoxia in awake humans. Eleven subjects completed a series of rebreathing trials before and after exposure to eight 4-min episodes of hypoxia. During the rebreathing trials, subjects initially hyperventilated to reduce the partial pressure of carbon dioxide (Pet(CO(2))) below 25 Torr. Subjects then breathed from a bag containing normocapnic (42 Torr), low (50 Torr), or high oxygen (140 Torr) gas mixtures. During the trials, Pet(CO(2)) increased while a constant oxygen level was maintained. The point at which ventilation began to rise in a linear fashion as Pet(CO(2)) increased was considered to be the ventilatory recruitment threshold. The ventilatory response below and above the recruitment threshold was determined. Ventilation did not persist above baseline values immediately after exposure to episodic hypoxia; however, Pet(CO(2)) levels were reduced compared with baseline. In contrast, compared with baseline, the ventilatory response to progressive increases in carbon dioxide during rebreathing trials in the presence of low but not high oxygen levels was increased after exposure to episodic hypoxia. This increase occurred when carbon dioxide levels were above but not below the ventilatory recruitment threshold. We conclude that long-term facilitation of ventilation (i.e., increases in ventilation that persist when normoxia is restored after episodic hypoxia) is not expressed in awake humans in the presence of hypocapnia. Nevertheless, despite this lack of expression, the acute ventilatory response to hypoxia in the presence of hypercapnia is increased after exposure to episodic hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号