首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When citrate export from mitochondria is blocked with 1,2,3-benzenetricarboxylate (BTC) during the G1/S phase of the cell cycle, both DNA synthesis and cell growth are dramatically inhibited in suspension-grown 70Z/3 murine lymphoma cell cultures sustained under otherwise optimal conditions. Synchronized (G0/G1 or G1/S) and unsynchronized cultures are susceptible to this phenomenon. BTC prevents two requirements from being met. (1) It deprives the cytosol of the acetyl CoA necessary for operation of the cholesterogenesis pathway, thereby depleting the supply of mevalonate (MVA) implicated as a requirement for triggering DNA synthesis. (2) It behaves as a nonmetabolizable divalent cation chelator, reducing the availability of Ca2+ and Mg2+, which, in whole cells are both required for DNA synthesis. Such inhibitions are reversible. In whole cells, removal of the inhibitor yields rapid and complete recovery of DNA synthesis. During the prolonged presence of BTC, the addition of MVA plus the Ca2+ ionophore A23187 allows partial recovery of DNA synthesis. In isolated, DNA synthesizing nuclei, on the other hand, the slight inhibition of DNA synthesis by BTC is reversed merely by addition of Mg2+. We conclude that the uninterrupted production of citrate-derived MVA via the mitochondria, at the G1/S boundary of the cell cycle (i.e., subsequent to peak cholesterol synthesis), is mandatory for initiating the duplication of the cell genome. Consequently, by its mitochondrial site of action, BTC can severely limit the otherwise continuous supply of MVA during late G1, which in turn, prevents entry into the S phase, and thereby cell proliferation.  相似文献   

2.
In resting Chinese hamster fibroblasts (CCL39) alpha-thrombin rapidly stimulates several biochemical events implicated in the mitogenic response, including the breakdown of inositol phospholipids, activation of a plasma membrane Na+/H+ antiporter, phosphorylation of ribosomal protein S6 and increased expression of the proto-oncogene c-myc. Complete removal of the growth factor during cellular G0/G1 transit precludes the re-initiation of DNA synthesis. The present study was designed to examine the fate of alpha-thrombin-activated early events following growth factor inactivation. In cells stimulated for 30 min with alpha-thrombin, neutralization of the growth factor results in: (i) immediate arrest of inositol phosphate formation, (ii) rapid inactivation of Na+/H+ exchange, (iii) deactivation of the S6 phosphorylating system and (iv) strong reduction of c-myc mRNA level. Our findings that commitment for DNA synthesis as well as persistent activation of 'early' cellular events requires continual growth factor stimulation suggest that: (i) growth factor-induced transmembrane signals have a short life and (ii) the generation of these signals during the 8 h of the pre-replicative phase is required for G0-arrested cells to enter the S phase.  相似文献   

3.
4.
5.
Cyclin E-associated CDK2 activity is required for the initiation of DNA synthesis in human cells. CDK2 activity is tightly regulated; CDK2 must be in the nucleus, bound to a cyclin, phosphorylated on T160, and dephosphorylated on T14/Y15 for complete kinase activation. Nuclear localization exposes CDK2 to activating enzymes (CAK, Cdc25A) in stimulated cells. Previous studies from our lab indicate CDK2 nuclear localization and cyclin E co-expression are insufficient to cause CDK2 activation or T160 phosphorylation in stimulated IIC9 cells; these activities still require serum stimulation and ERK kinase activity. Recent studies have implicated a role for origin of replication (ORC) licensing proteins in the activation of G1/S Cdks. In this study, we show that CDK2 associates with chromatin and Cdc6 in an ERK-dependent manner following stimulation of IIC9 CHEF cells. We show that nuclear-localized CDK2 (CDK2-NLS) ectopically expressed with cyclin E requires mitogenic stimulation and ERK activation for chromatin association, in addition to previously shown kinase activation and T160 phosphorylation in IIC9 cells. Additionally, we show that expression of Cdc6 in stimulated IIC9 cells treated with ERK inhibitor rescues CDK2-NLS chromatin association, kinase activation, and T160 phosphorylation. From the above data, we deduce ERK-dependent CDK2 activation is due in part to ERK-dependent Cdc6 expression. To examine the role of Cdc6 directly in stimulated primary human fibroblasts, we used RNA interference to attenuate the expression of Cdc6. We show that Cdc6 expression is required for CDK2 chromatin association and kinase activation in stimulated primary human fibroblasts. Additionally, we show that Cdc6 expression is required for the initiation of DNA synthesis and S phase entry in stimulated primary human fibroblasts. Ultimately, this data implicates Cdc6 expression as an important mitogen-induced mechanism in the activation of CDK2/cyclin E, the initiation of DNA synthesis, and the regulation of G1-S phase progression.  相似文献   

6.
Previous studies from our group have shown that the expression levels of Orc6 were highly elevated in colorectal cancer patient specimens and the induction of Orc6 was associated with 5-fluorouracil (5-FU) treatment. The goal of this study was to investigate the molecular and cellular impact of Orc6 in colon cancer. In this study, we use HCT116 (wt-p53) and HCT116 (null-p53) colon cancer cell lines as a model system to investigate the impact of Orc6 on cell proliferation, chemosensitivity and pathways involved with Orc6. We demonstrated that the down regulation of Orc6 sensitizes colon cancer cells to both 5-FU and cisplatin (cis-pt) treatment. Decreased Orc6 expression in HCT-116 (wt-p53) cells by RNA interference triggered cell cycle arrest at G1 phase. Prolonged inhibition of Orc6 expression resulted in multinucleated cells in HCT-116 (wt-p53) cell line. Western immunoblot analysis showed that down regulation of Orc6 induced p21 expression in HCT-116 (wt-p53) cells. The induction of p21 was mediated by increased level of phosphorylated p53 at ser-15. By contrast, there is no elevated expression of p21 in HCT-116 (null-p53) cells. Orc6 down regulation also increased the expression of DNA damaging repair protein GADD45β and reduced the expression level of JNK1. Orc6 may be a potential novel target for future anti cancer therapeutic development in colon cancer.  相似文献   

7.
Addition of serum to density-arrested BALB/c-3T3 cells causes a rapid increase in uptake of Na+ and K+, followed 12 h later by the onset of DNA synthesis. We explored the role of intracellular univalent cation concentrations in the regulation of BALB/c-3T3 cell growth by serum growth factors. As cells grew to confluence, intracellular Na+ and K+ concentrations ([Na+]i and [K+]i) fell from 40 and 180 to 15 and 90 mmol/liter, respectively. Stimulation of growth of density-inhibited cells by the addition of serum growth factors increased [Na]i by 30% and [K+]i by 13-25% in early G0/G1, resulting in an increase in total univalent cation concentration. Addition of ouabain to stimulated cells resulted in a concentration-dependent steady decrease in [K+]i and increase in [Na+]i. Ouabain (100 microM) decreased [K+]i to approximately 60 mmol/liter by 12 h, and also prevented the serum- stimulated increase in 86Rb+ uptake. However, 100 microM ouabain did not inhibit DNA synthesis. A time-course experiment was done to determine the effect of 100 microM ouabain on [K+]i throughout G0/G1 and S phase. The addition of serum growth factors to density-inhibited cells stimulated equal rates of entry into the S phase in the presence or absence of 100 microM ouabain. However, in the presence of ouabain, there was a decrease in [K+]i. Therefore, an increase in [K+]i is not required for entry into S phase; serum growth factors do not regulate cell growth by altering [K+]i. The significance of increased total univalent cation concentration is discussed.  相似文献   

8.
应用蛋白dotblot技术检测了低氧内皮细胞条件培养液(HECCM)和常氧内皮细胞条件培养液(NECCM)内PDGF相对含量,并利用[3H]-TdR掺入法和流式细胞术观察了HECCM和NECCM及加入特异PDGF抗体对肺动脉平滑肌细胞(PASMC)生长的影响。结果表明,HECCM中的PDGF含量明显高于NECCM;HECCM能明显增强PASMC内DNA合成,促进PASMC从Go/G1期进入S期;当预先加入PDGF-B链抗体时,则会明显地抑制HECCM对PASMC的DNA合成,阻止PASMC从Go/G1期进入S期。结果提示,低氧时PASMC增殖与肺动脉内皮细胞分泌释放PDGF增加有关  相似文献   

9.
Density-dependent growth control of adult rat hepatocytes in primary culture   总被引:11,自引:0,他引:11  
Adult rat hepatocytes in primary culture, which show various liver functions, did not show any mitosis at confluent cell density, although they entered the S phase and remained in the G2 phase, judging by cytofluorometry, when insulin and epidermal growth factor (EGF) were added to 2-day cultures (Tomita, Y., Nakamura, T., & Ichihara, A. (1981) Exp. Cell Res. 135, 363-371). However, when the cell density was decreased by half or one third, the number of nuclei and cell number increased to 1.5-2.0 times that after culture for 35 h with insulin and EGF. Moreover, at these lower densities, DNA synthesis started much earlier, although at the usual high density DNA synthesis with these two hormones did not start until the hepatocytes had been cultured for over 40 h. These results suggest that proliferation of mature rat hepatocytes is regulated by the cell density. First, cells in G0 enter the G1 phase density-dependently; then cells in the G1 phase seem to be stimulated to enter the S phase by insulin and EGF, and a low cell density may permit cells after DNA synthesis to enter the M phase. DNA synthesis of rat hepatocyte cultures at low cell density was strongly inhibited by co-culture with a dense culture. Therefore, the density-dependent mechanism of hepatocyte proliferation seems to involve regulation by a soluble inhibitor(s) secreted by the hepatocytes into the culture medium.  相似文献   

10.
Heterotrimeric guanine nucleotide binding proteins function in the coupling of a diverse span of cell surface receptors to a variety of intracellular signaling pathways, some of which stimulate cellular proliferation. With the recent discovery that mutated forms of G proteins are present in specific tumors, there has been an increased interest in the determination of the role of specific subtypes of G proteins in the regulation of cellular growth. We have attempted to determine which subtypes of G proteins are directly involved in serum-stimulated DNA synthesis through microinjection of inhibitory antibodies into living cells. Inhibitory rabbit polyclonal antibodies directed against specific Gi alpha subunits were introduced into living Balb/c 3T3 fibroblasts by microinjection, and the effect upon serum-stimulated DNA synthesis was examined. Results of these experiments indicate that Gi2 plays a direct role in serum-stimulated DNA synthesis in living cells and suggest that G proteins may function in a variety of mitogenic signaling pathways initiated by serum growth factors.  相似文献   

11.
Previous investigations have indicated that the suppression of proliferation by transforming growth factor (TGF) beta 1 is often lost upon cellular transformation, and that proliferation of some tumors is stimulated by TGF-beta. The present study provides the first observation of a link between TGF-beta 1 regulation of this process and alterations in the expression of ribonucleotide reductase, a highly controlled rate-limiting step in DNA synthesis. A series of radiation and T24-H-ras-transformed mouse 10T1/2 cell lines exhibiting increasing malignant potential was evaluated for TGF-beta 1 induced alterations in ribonucleotide reductase M1 and M2 gene expression. Early increases in M1 and/or M2 message and protein levels were observed only in malignant cell lines. The TGF-beta 1 induced changes in M1 and/or M2 gene expression occurred prior to any detectable changes in the rates of DNA synthesis, supporting the novel concept that ribonucleotide reductase gene expression can be elevated by TGF-beta 1 without altering the proportion of cells in S phase. T24-H-ras-transformed 10T1/2 cells were transfected with a plasmid containing the coding region of TGF-beta 1 under the control of a zinc-sensitive metallothionein promoter. When these cells were cultured in the presence of zinc, a large induction of TGF-beta 1 message was observed within 1 h. Both M1 and M2 genes were also induced, with increased mRNA levels appearing 2 h after zinc treatment, or 1 h after TGF-beta 1 message levels were clearly elevated. In total, the data suggests a mechanism of autocrine stimulation of malignant cells by TGF-beta 1, in which early alterations in the regulation of ribonucleotide reductase may play an important role.  相似文献   

12.
We have tested the effects of various mitogens and growth inhibitors on centrosomal separation (CS) in serum-deprived HeLa, gerbil fibroma (GF) and A431 cells. All of the agents which were mitogenic in a given cell type also stimulated CS. No agent was found which stimulated CS but failed to stimulate DNA synthesis. Inhibitors of DNA synthesis, including somatostatin, hydrocortisone, 8-bromo-cAMP, and epidermal growth factor (EGF) in A431 cells, also inhibited CS in response to mitogens. In GF cells (blocked at the G1/S interface with hydroxyurea) centrosomal re-association and the decay in commitment to DNA synthesis upon serum withdrawal occurred with a similar t1/2 (8.8 h). These results demonstrate that CS and DNA synthesis are co-ordinately regulated by a variety of stimulators and inhibitors of cell proliferation. Separation of the centrosomes, or an underlying event with which it is tightly coupled, may represent the point of cellular commitment to enter S phase.  相似文献   

13.
14.
We have previously described and characterized a nuclear protein at 40 kDa/pI 5 termed "numatrin" which is tightly bound to the nuclear matrix. We demonstrated that a rapid increase in the synthesis of numatrin at early G1 phase is closely correlated with receptor-mediated induction of cellular proliferation by various mitogens and that elevated amounts of numatrin are found in tumor cells, suggesting that numatrin may have an important role in regulation of cellular growth in normal and malignant cells. Further experiments were undertaken to compare the biochemical characteristics of numatrin to those of other known proteins that are associated with cellular mitogenesis. Comparison of the electrophoretic mobility of numatrin with the proliferation cell nuclear antigen/cyclin showed that these proteins are not identical. However, numatrin had an identical electrophoretic migration on two-dimensional gel electrophoresis to that of a previously described nucleolar protein B23. The tryptic digest peptide map of 125I-labeled B23 was identical to that of numatrin on two-dimensional thin layer electrophoresis/chromatography. Labeling of cells with 32P further showed that numatrin is a major phosphoprotein as previously reported for protein B23. Using the protocol for purification of B23, we purified numatrin from nucleoli of HL-60 cells and produced two polyclonal antibodies (303 and 339) to this protein. We further show that numatrin is recognized by anti-B23 monoclonal antibody as well as by polyclonal antibodies 303 and 339 in enzyme-linked immunosorbent assay. Conversely, these anti-numatrin polyclonal antibodies cross-react with protein B23 as shown in immunoblot analysis. These results, taken collectively, prove that numatrin is identical to the nucleolar protein B23 and thus suggest that protein B23 and events which occur at the nucleolus might have an important role in early transduction of mitogenic signals at the G1 phase of the cell cycle.  相似文献   

15.
Cervical cancer is one of the most common malignancies of the female reproductive system. Therefore, it is critical to investigate the molecular mechanisms involved in the development and progression of cervical cancer. In this study, we stimulated cervical cancer cells with 5‐aza‐2′‐deoxycytidine (5‐Aza‐dC) and found that this treatment inhibited cell proliferation and induced apoptosis; additionally, methylation of p16 and O‐6‐methylguanine‐DNA methyltransferase (MGMT) was reversed, although their expression was suppressed. 5‐Aza‐dC inhibited E6 and E7 expression and up‐regulated p53, p21, and Rb expression. Cells transfected with siRNAs targeting p16 and MGMT as well as cells stimulated with 5‐Aza‐dC were arrested in S phase, and the expression of p53, p21, and Rb was up‐regulated more significantly. However, when cells were stimulated with 5‐Aza‐dC after transfection with siRNAs targeting p16 and MGMT, proliferation decreased significantly, and the percentage of cells in the sub‐G1 peak and in S phase was significantly increased, suggesting a marked increase in apoptosis. But E6 and E7 overexpression could rescue the observed effects in proliferation. Furthermore, X‐ray radiation caused cells to arrest in G2/M phase, but cells transfected with p16‐ and MGMT‐targeted siRNAs followed by X‐ray radiation exhibited a significant decrease in proliferation and were shifted toward the sub‐G1 peak, also indicating enhanced apoptosis. In addition, the effects of 5‐Aza‐dC and X‐ray radiation were most pronounced when MGMT expression was down‐regulated. Therefore, down‐regulation of p16 and MGMT expression enhances the anti‐proliferative effects of 5‐Aza‐dC and X‐ray radiation. This discovery may provide novel ideas for the treatment of cervical cancer.  相似文献   

16.
The receptor-generated signals that are responsible for driving the cell cycle are incompletely characterised in mammalian cells. It is clear, however, that the cellular messenger systems that stimulate DNA synthesis and mitosis are separable. These are interwoven with biochemical checkpoints that ensure that processes, such as chromosomal replication and microtubule attachment to duplicated chromosomes, are complete before the following phase of the cell cycle is initiated. In some cells, activation of DNA synthesis by factors such as LPA and serum has been shown to require the GTP-binding protein G(i). We have found that G(i) plays an additional role in mitosis activated by both 7-transmembrane receptors and tyrosine kinase receptors, and that this involves the translocation of the alpha-subunit of G(i) (G(ialpha)) to the nucleus. Here we show by confocal microscopy that G(ialpha)migrates to the nucleus near the onset of mitosis in serum-activated Swiss 3T3 cells and binds to the kinetochore region of replicated chromosomes. Inhibition of G(i) function with pertussis toxin had no effect on the induction of DNA synthesis by serum, but cell proliferation was inhibited. Flow cytometric analysis showed that this resulted from retardation of the transition through mitosis and into G(1). Additionally, pertussis toxin impaired the activity of p34(cdc2), a cyclin-dependent kinase involved in the transition from M-phase to G(1), but not the S-phase cyclin, cyclin E. These data show that the G-protein G(i) has a key role in the regulation of mitosis in fibroblasts.  相似文献   

17.
Control of cell proliferation depends on intracellular mediators that determine the cellular response to external cues. In neuroendocrine cells, the dopamine D2 receptor short form (D2S receptor) inhibits cell proliferation, whereas in mesenchymal cells the same receptor enhances cell proliferation. Nontransformed BALB/c 3T3 fibroblast cells were stably transfected with the D2S receptor cDNA to study the G proteins that direct D2S signaling to stimulate cell proliferation. Pertussis toxin inactivates G(i) and G(o) proteins and blocks signaling of the D2S receptor in these cells. D2S receptor signaling was reconstituted by individually transfecting pertussis toxin-resistant Galpha(i/o) subunit mutants and measuring D2-induced responses in pertussis toxin-treated cells. This approach identified Galpha(i)2 and Galpha(i)3 as mediators of the D2S receptor-mediated inhibition of forskolin-stimulated adenylyl cyclase activity; Galpha(i)2-mediated D2S-induced stimulation of p42 and p44 mitogen-activated kinase (MAPK) and DNA synthesis, whereas Galpha(i)3 was required for formation of transformed foci. Transfection of toxin-resistant Galpha(i)1 cDNA induced abnormal cell growth independent of D2S receptor activation, while Galpha(o) inhibited dopamine-induced transformation. The role of Gbetagamma subunits was assessed by ectopic expression of the carboxyl-terminal domain of G protein receptor kinase to selectively antagonize Gbetagamma activity. Mobilization of Gbetagamma subunits was required for D2S-induced calcium mobilization, MAPK activation, and DNA synthesis. These findings reveal a remarkable and distinct G protein specificity for D2S receptor-mediated signaling to initiate DNA synthesis (Galpha(i)2 and Gbetagamma) and oncogenic transformation (Galpha(i)3), and they indicate that acute activation of MAPK correlates with enhanced DNA synthesis but not with transformation.  相似文献   

18.
19.
Effect of vitamin A on epithelial morphogenesis in vitro   总被引:1,自引:0,他引:1  
Quiescent confluent monolayers of WI-38 human diploid fibroblasts and of 3T6 mouse fibroblasts were stimulated to proliferate by nutritional changes. WI-38 cells had a stringent requirement for serum factor(s) but 3T6 did not require serum in order to proliferate again. In both cell lines there was an early increase in the synthesis of non-histone chromosomal proteins shortly after stimulation of cellular proliferation and this increase was linearly correlated to the number of cells entering the S phase several hours later. Only WI-38 diploid fibroblasts, however, showed an early increase in chromatin template activity 1 h after stimulation of cellular proliferation, while chromatin template activity in 3T6 cells remained unchanged. It is suggested that the activation of gene function represents a critical step for the passage of WI-38 cells in the G0 resting phase to the G1 phase of the cell cycle. It is also suggested that 3T6 cells are unable to enter or stay in a G0 phase but can be arrested predominantly in the G1 phase by nutritional deficit, probably amino acid starvation.  相似文献   

20.
岩藻糖基转移酶(fucosyltransferases,FUTs)是一类催化糖蛋白和糖脂发生岩藻糖基化(修饰)酶,主要包括FUT1~FUT9。已有研究证明,很多癌组织中都有不同FUT基因表达升高的现象。本研究证明,表皮鳞癌细胞的增殖能力与几种FUT基因表达水平有关。本文比较研究了人表皮鳞癌A431和SCC12细胞的增殖速度和几种FUT的表达状况,以揭示鳞癌细胞增殖能力与几种FUT基因表达水平的关系。细胞倍增时间结合MTT法揭示,鳞癌A431细胞的倍增时间约为26 h,而鳞癌SCC12细胞的倍增时间约为33 h(P < 0.05),提示A431细胞增殖速度比SCC12细胞明显加快。与增殖速度一致的是,Western 印迹显示,A431细胞中与DNA合成相关的增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)蛋白表达水平比SCC12细胞高。实时定量PCR(qPCR)检测FUT1-9基因 mRNA转录本,揭示A431细胞中几种FUT基因的mRNA水平均显著高于SCC12细胞。凝集素免疫印迹法和Western 印迹法进一步证明,A431细胞中总蛋白的岩藻糖基化水平比SCC12细胞中的明显升高。敲低FUT4基因表达后,A431细胞中LeY寡糖的表达水平下调,细胞增殖被明显抑制。这些结果证明,较强的表皮鳞癌细胞增殖能力可能与几种FUT基因的高表达,以及糖蛋白的岩藻糖基化(修饰)相关。岩藻糖基转移酶表达水平与临床表皮鳞癌的恶性增生的相关性有待进一步证明。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号