首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The Wilson disease (WD) protein (ATP7B) is a copper-transporting P-type ATPase that is responsible for the efflux of hepatic copper into the bile, a process that is essential for copper homeostasis in mammals. Compared with other mammals, sheep have a variant copper phenotype and do not efficiently excrete copper via the bile, often resulting in excessive copper accumulation in the liver. To investigate the function of sheep ATP7B and its potential role in the copper-accumulation phenotype, cDNAs encoding the two forms of ovine ATP7B were transfected into immortalised fibroblast cell lines derived from a Menkes disease patient and a normal control. Both forms of ATP7B were able to correct the copper-retention phenotype of the Menkes cell line, demonstrating each to be functional copper-transporting molecules and suggesting that the accumulation of copper in the sheep liver is not due to a defect in the copper transport function of either form of sATP7B.  相似文献   

2.
ATP7B is a copper transporting P-type ATPase, also known as Wilson disease protein, which plays a key role in copper distribution inside cells. Recent experimental data in cell culture have shown that ATP7B putatively serves a dual function in hepatocytes: when localized to the Golgi apparatus, it has a biosynthetic role, delivering copper atoms to apoceruloplasmin; when the hepatocytes are under copper stress, ATP7B translocates to the biliary pole to transport excess copper out of the cell and into the bile canaliculus for subsequent excretion from the body via the bile. The above data on ATP7B localization have been mainly obtained in tumor cell systems in vitro. The aim of the present work was to assess the presence and localization of the Wilson disease protein in the human liver. We tested immunoreactivity for ATP7B in 10 human liver biopsies, in which no significant pathological lesion was found using a polyclonal antiserum specific for ATP7B. In the normal liver, immunoreactivity for ATP7B was observed in hepatocytes and in biliary cells. In the hepatocytes, immunoreactivity for ATP7B was observed close to the plasma membrane, both at the sinusoidal and at the biliary pole. In the biliary cells, ATP7B was localized close to the cell membrane, mainly concentrated at the basal pole of the cells. The data suggest that, in human liver, ATP7B is localized to the plasma membrane of both hepatocytes and biliary epithelial cells.  相似文献   

3.
A clone encoding the putative copper chaperone protein Sheep Atx1 Homologue (SAH) was isolated from a sheep liver cDNA library. The 466-bp cDNA encoded a predicted protein of 68 amino acids, with 44 and 81% amino acid identity to the yeast Atx1 and human Atox1 copper chaperone proteins, respectively. The characteristic MTCxxC and KTGK motifs were conserved in SAH. Northern blot analysis revealed an abundant 0.5-kb mRNA in all tissues examined. Elevated hepatic copper content did not affect the level of SAH mRNA in the liver. Analysis of SAH mRNA in the developing liver revealed low levels of expression in the foetal period, with a steady increase to adult levels occurring during development. In vitro two-hybrid analysis demonstrated SAH interacted with the amino terminal portion of the sheep Wilson's disease protein (ATP7B). The extent of this interaction was significantly reduced by the addition of the copper chelator bathocuproine disulfonic acid to the media. These results suggest SAH is a functional copper chaperone that is able to interact with ATP7B in a copper-dependent manner to facilitate copper transport into the secretory pathway.  相似文献   

4.
Copper transporting P-type ATPases and human disease   总被引:8,自引:0,他引:8  
Copper transporting P-type ATPases, designated ATP7A and ATP7B, play an essential role in mammalian copper balance. Impaired intestinal transport of copper, resulting from mutations in the ATP7A gene, lead to Menkes disease in humans. Defects in a similar gene, the copper transporting ATPase ATP7B, result in Wilson disease. This ATP7B transporter has two functions: transport of copper into the plasma protein ceruloplasmin, and elimination of copper through the bile. Variants of ATP7B can be functionally assayed to identify defects in each of these functions. Tissue expression studies of the copper ATPases and their copper chaperone ATOX1 indicate that there is not complete overlap in expression. Other chaperones may be important for the transport of copper into ATP7A and ATP7B.  相似文献   

5.
P J Lockhart  J F Mercer 《Gene》1999,236(2):251-257
The cDNA encoding sheep ceruloplasmin (sCP) was isolated from a sheep liver cDNA library. The cDNA contig was 3530 nucleotides in length and encoded a protein of 1048 amino acids. The deduced amino acid sequence showed a high degree of conservation (87%) when compared to the human ceruloplasmin (hCP) sequence. Northern blot analysis of sheep tissue revealed that the sheep ceruloplasmin gene (sCP) was expressed primarily in the liver, but low levels of mRNA were detected in the hypothalamus, spleen and uterus. No sCP mRNA was detected in the cortex, heart, intestine or kidney. Expression was not significantly affected by hepatic copper content. Northern blot analysis of sheep liver during development demonstrated little sCP expression during fetal life, but significant levels of mRNA were observed after birth. Significantly, the developmental expression pattern of sCP was closely correlated with that of the sheep Wilson disease gene (sATP7B), suggesting that the expression of the two genes may be coordinated to ensure that copper is supplied to apoceruloplasmin. Overall, the structure and expression of sCP appeared similar to other mammals, suggesting that abnormalities in CP were not responsible for the unusual sheep copper phenotype.  相似文献   

6.
The P-type ATPase affected in Wilson disease, ATP7B, is a key liver protein required to regulate and maintain copper homeostasis. When hepatocytes are exposed to elevated copper levels, ATP7B traffics from the trans-Golgi network toward the biliary canalicular membrane to excrete excess copper into bile. The N-terminal region of ATP7B contains six metal-binding sites (MBS), each with the copper-binding motif MXCXXC. These sites are required for the activity and copper-regulated intracellular redistribution of ATP7B. Two proteins are known to interact with the ATP7B N-terminal region: the copper chaperone ATOX1 that delivers copper to ATP7B, and COMMD1 (MURR1) that is potentially involved in vesicular copper sequestration. To identify additional proteins that interact with ATP7B and hence are involved in copper homeostasis, a yeast two-hybrid approach was employed to screen a human liver cDNA library. The dynactin subunit p62 (dynactin 4; DCTN4) was identified as an interacting partner, and this interaction was confirmed by co-immunoprecipitation from mammalian cells. The dynactin complex binds cargo, such as vesicles and organelles, to cytoplasmic dynein for retrograde microtubule-mediated trafficking and could feasibly be involved in the copper-regulated trafficking of ATP7B. The ATP7B/p62 interaction required copper, the metal-binding CXXC motifs, and the region between MBS 4 and MBS 6 of ATP7B. The p62 subunit did not interact with the related copper ATPase, ATP7A. We propose that the ATP7B interaction with p62 is a key component of the copper-induced trafficking pathway that delivers ATP7B to subapical vesicles of hepatocytes for the removal of excess copper into bile.  相似文献   

7.
Copper-transporting ATPase ATP7B (Wilson disease protein) is a member of the P-type ATPase family with characteristic domain structure and distinct ATP-binding site. ATP7B plays a central role in the regulation of copper homeostasis in the liver by delivering copper to the secretory pathway and mediating export of excess copper into the bile. The dual function of ATP7B in hepatocytes is coupled with copper-dependent intracellular relocalization of the transporter. The final destination of ATP7B in hepatocytes during the copper-induced trafficking process is still under debate. We show the results of immunocytochemistry experiments in polarized HepG2 cells that support the model in which elevated copper induces trafficking of ATP7B to sub-apical vesicles, and transiently to the canalicular membrane. In Atp7b -/- mice, an animal model of Wilson disease, both copper delivery to the trans-Golgi network and copper export into the bile are disrupted despite large accumulation of copper in the cytosol. We review the biochemical and physiological changes associated with Atp7b inactivation in mouse liver and discuss the pleiotropic consequences of the common Wilson disease mutation, His1069Gln.  相似文献   

8.
Wilson disease is an autosomal recessive disorder of copper transport that causes hepatic and/or neurological disease resulting from copper accumulation in the liver and brain. The protein defective in this disorder is a putative copper-transporting P-type ATPase, ATP7B. More than 100 mutations have been identified in the ATP7B gene of patients with Wilson disease. To determine the effect of Wilson disease missense mutations on ATP7B function, we have developed a yeast complementation assay based on the ability of ATP7B to complement the high-affinity iron-uptake deficiency of the yeast mutant ccc2. We characterized missense mutations found in the predicted membrane-spanning segments of ATP7B. Ten mutations have been made in the ATP7B cDNA by site-directed mutagenesis: five Wilson disease missense mutations, two mutations originally classified as possible disease-causing mutations, two putative ATP7B normal variants, and mutation of the cysteine-proline-cysteine (CPC) motif conserved in heavy-metal-transporting P-type ATPases. All seven putative Wilson disease mutants tested were able to at least partially complement ccc2 mutant yeast, indicating that they retain some ability to transport copper. One mutation was a temperature-sensitive mutation that was able to complement ccc2 mutant yeast at 30 degreesC but was unable to complement at 37 degreesC. Mutation of the CPC motif resulted in a nonfunctional protein, which demonstrates that this motif is essential for copper transport by ATP7B. Of the two putative ATP7B normal variants tested, one resulted in a nonfunctional protein, which suggests that it is a disease-causing mutation.  相似文献   

9.
Wilson disease (WND), an autosomal recessive disorder of copper transport with a broad range of genotypic and phenotypic characteristics, results from mutations in the ATP7B gene. ATP7B encodes a copper transporting P-type ATPase involved in the transport of copper into the plasma protein ceruloplasmin, and for excretion of copper from the liver. Defects in ATP7B lead to copper storage in liver, brain and kidney. Mutation analysis was carried out on 300 WND patients of various origins, and new mutations not previously reported were identified: European white (p.L217X, c.918_931, c.1073delG, c.3082_3085delAAGAinsCG, p.V536A, p.S657R, p.A971V, p.T974M, p.Q1004P, p.D1164N, p.E1173G, p.I1230V, p.M1359I, c.2355+4A>G), Sephardic Jewish (p.Q286X), Filipino (p.G1149A), Lebanese (p.R1228T), Japanese (p.D1267V) and Taiwanese (p.A1328T). All but one missense variant have strong evidence for classification as disease-causing mutations. In the patients reported here, we also identified 20 nucleotide substitutions, six not previously reported, which cause silent amino acid changes or intronic changes. Documentation and characterization of all variants is essential for accurate DNA diagnosis in WND because of the wide range of clinical and biochemical variability.  相似文献   

10.
Liu Y  Pilankatta R  Hatori Y  Lewis D  Inesi G 《Biochemistry》2010,49(46):10006-10012
ATP7A and ATP7B are P-type ATPases required for copper homeostasis and involved in the etiology of Menkes and Wilson diseases. We used heterologous expression of ATP7A or ATP7B in COS-1 cells infected with adenovirus vectors to characterize differential features pertinent to each protein expressed in the same mammalian cell type, rather than to extrinsic factors related to different cells sustaining expression. Electrophoretic analysis of the expressed protein, before and after purification, prior or subsequent to treatment with endoglycosidase, and evidenced by protein or glycoprotein staining as well as Western blotting, indicates that the ATP7A protein is glycosylated while ATP7B is not. This is consistent with the prevalence of glycosylation motifs in the ATP7A sequence, and not in ATP7B. ATP7A and ATP7B undergo copper-dependent phosphorylation by utilization of ATP, forming equal levels of an "alkali labile" phosphoenzyme intermediate that undergoes similar catalytic (P-type ATPase) turnover in both enzymes. In addition, incubation with ATP yields an "alkali stable" phosphoprotein fraction, attributed to phosphorylation of serines. Alkali stable phosphorylation occurs at lower levels in ATP7A, consistent with a different distribution of serines in the amino acid sequence. Immunostaining of COS-1 cells sustaining heterologous expression shows initial association of both ATP7A and ATP7B with Golgi and the trans-Golgi network. However, in the presence of added copper, ATP7A undergoes prevalent association with the plasma membrane while ATP7B exhibits intense trafficking with cytosolic vesicles. Glycosylation of ATP7A and phosphorylation of ATP7B apparently contribute to their different trafficking and membrane association when expressed in the same cell type.  相似文献   

11.
The Wilson protein (ATP7B) is a copper-translocating P-type ATPase that mediates the excretion of excess copper from hepatocytes into bile. Excess copper causes the protein to traffic from the TGN (trans-Golgi network) to subapical vesicles. Using site-directed mutagenesis, mutations known or predicted to abrogate catalytic activity (copper translocation) were introduced into ATP7B and the effect of these mutations on the intracellular trafficking of the protein was investigated. Mutation of the critical aspartic acid residue in the phosphorylation domain (DKTGTIT) blocked copper-induced redistribution of ATP7B from the TGN, whereas mutation of the phosphatase domain [TGE (Thr-Gly-Glu)] trapped ATP7B at cytosolic vesicular compartments. Our findings demonstrate that ATP7B trafficking is regulated with its copper-translocation cycle, with cytosolic vesicular localization associated with the acyl-phosphate intermediate. In addition, mutation of the six N-terminal metal-binding sites and/or the trans-membrane CPC (Cys-Pro-Cys) motif did not suppress the constitutive vesicular localization of the ATP7B phosphatase domain mutant. These results suggested that copper co-ordination by these sites is not essential for trafficking. Importantly, copper-chelation studies with these mutants clearly demonstrated a requirement for copper in ATP7B trafficking, suggesting the presence of an additional copper-binding site(s) within the protein. The results presented in this report significantly advance our understanding of the regulatory mechanism that links copper-translocation activity with copper-induced intracellular trafficking of ATP7B, which is central to hepatic and hence systemic copper homoeostasis.  相似文献   

12.
In Wilson’s disease (WND), biallelic ATP7B gene mutation is responsible for pathological copper accumulation in the liver, brain and other organs. It has been proposed that copper transporter 1 (CTR1) and the divalent metal transporter 1 (DMT1) translocate copper across the human intestinal epithelium, while Cu-ATPases: ATP7A and ATP7B serve as copper efflux pumps. In this study, we investigated the expression of CTR1, DMT1 and ATP7A in the intestines of both WND patients and healthy controls to examine whether any adaptive mechanisms to systemic copper overload function in the enterocytes. Duodenal biopsy samples were taken from 108 patients with Wilson’s disease and from 90 controls. CTR1, DMT1, ATP7A and ATP7B expression was assessed by polymerase chain reaction and Western blot. Duodenal CTR1 mRNA and protein expression was decreased in WND patients in comparison to control subjects, while ATP7A mRNA and protein production was increased. The variable expression of copper transporters may serve as a defense mechanism against systemic copper overload resulting from functional impairment of ATP7B.  相似文献   

13.
14.
Copper is an essential trace element. However, excess copper can lead to oxidation of biomolecules and cell damage and copper levels must be carefully controlled. While copper homeostasis has been studied extensively at the cellular level, short-term body copper fluxes are poorly understood. Here, we assessed for the first time the feasibility of measuring whole body copper flux by positron emission tomography, using 64Cu. A comparative approach comparing the Long – Evans cinnamon (LEC) rat to the wild type was chosen. LEC rats are an accepted model for Wilson disease, an inherited disorder of copper excretion in humans. In LEC rats as well as in Wilson patients, the copper transporting ATPase, ATP7B, is defective. This ATPase is primarily expressed in the liver and serves in copper secretion via the bile. Dysfunction of ATP7B leads to accumulation of copper in the liver. A control and an LEC rat were transgastrically injected with 10 μg of 64Cu and the copper flux followed for three hours by whole animal PET and concomitant collection of bile, as well as the analysis of tissue following tomography. As seen by PET, the administered copper was largely trapped in the stomach and the proximal intestine, and without a significant difference between control and LEC rat. Due to an insufficient dynamic range of the PET technology, copper which was systemically absorbed and primarily transported to the liver could only be followed by sampling and by β-counting. Biliary copper excretion ensued after 15 min in the control rat, but was absent in the LEC rat. Biliary excretion reached saturation one hour after copper administration. The trapping of orally administered copper in the gastrointestinal tract may be an important mechanism to prevent copper toxicity under conditions of a sudden, excessive copper load, which cannot be alleviated by increased biliary secretion. This trapping does however limit the utility of PET to measure whole animal copper flux. Published online December 2004  相似文献   

15.
We have analyzed the functional effect of site-directed mutations and deletions in the copper-binding domain of ATP7B (the copper transporting P-type ATPase defective in Wilson disease) using a yeast complementation assay. We have shown that the sixth copper-binding motif alone is sufficient, but not essential, for normal ATP7B function. The N-terminal two or three copper-binding motifs alone are not sufficient for ATP7B function. The first two or three N-terminal motifs of the copper-binding domain are not equivalent to, and cannot replace, the C-terminal motifs when placed in the same sequence position with respect to the transmembrane channel. From our data, we propose that the copper-binding motifs closest to the channel are required for the copper-transport function of ATP7B. We propose that cooperative copper binding to the copper-binding domain of ATP7B is not critical for copper transport function, but that cooperative copper binding involving the N-terminal two or three copper-binding motifs may be involved in initiating copper-dependent intracellular trafficking. Our data also suggest a functional difference between the copper-binding domains of ATP7A and ATP7B.  相似文献   

16.
Human Cu-ATPases ATP7A and ATP7B maintain copper homeostasis through regulated trafficking between intracellular compartments. Inactivation of these transporters causes Menkes disease and Wilson disease, respectively. In Menkes disease, copper accumulates in kidneys and causes tubular damage, indicating that the renal ATP7B does not compensate for the loss of ATP7A function. We show that this is likely due to a kidney-specific regulation of ATP7B. Unlike ATP7A (or hepatic ATP7B) which traffics from the TGN to export copper, renal ATP7B does not traffic and therefore is unlikely to mediate copper export. The lack of ATP7B trafficking is not on account of the loss of a kinase-mediated phosphorylation or simultaneous presence of ATP7A in renal cells. Rather, the renal ATP7B appears 2–3 kDa smaller than hepatic ATP7B. Recombinant ATP7B expressed in renal cells is similar to hepatic protein in size and trafficking. The analysis of ATP7B mRNA revealed a complex behavior of exon 1 upon amplification, suggesting that it could be inefficiently translated. Recombinant ATP7B lacking exon 1 traffics differently in renal and hepatic cells, but does not fully recapitulate the endogenous phenotype. We discuss factors that may contribute to cell-specific behavior of ATP7B and propose a role for renal ATP7B in intracellular copper storage.  相似文献   

17.
The copper-transporting ATPases Atp7A and Atp7B play a major role in controlling intracellular copper levels. In addition, they are believed to deliver copper to the copper-requiring proteins destined for the secretory vesicles. One cuproprotein, dopamine -hydroxylase (DBH) functions in the biosynthesis of norepinephrine and epinephrine, neurohormones in endocrine and nervous tissue. To evaluate the consequences of loss of Atp7B on the function of DBH, the level of proteins in adrenal gland were compared between normal mice and mice containing a null mutation in the ATP7B gene. The levels of DBH, as well as another vesicular protein, chromogranin A, are reduced in the ATP7B–/– mice. In addition to the lower level of enzyme, the products of DBH catalytic activity, norepinephrine and epinephrine, are also decreased. Although these changes are a consequence of ATP7B gene function, Atp7B mRNA is not normally expressed in the adrenal gland. Instead, Atp7A mRNA is present. The levels of copper and DBH RNA within adrenals of the ATP7B–/– mice are not different from the wild type. The results of these experiments suggest that copper-requiring enzymes are affected by a loss of ATP7B even in tissue not normally expressing this protein. Therefore the multisystemic effects observed in Wilson disease, the human disorder characterized by mutation in ATP7B, may be a secondary consequence of the major accumulation of copper in liver.  相似文献   

18.
Copper-transporting ATPase ATP7B is essential for normal distribution of copper in human cells. Mutations in the ATP7B gene lead to copper accumulation in a number of tissues and to a severe multisystem disorder, known as Wilson's disease. Primary sequence analysis suggests that the copper-transporting ATPase ATP7B or the Wilson's disease protein (WNDP) belongs to the large family of cation-transporting P-type ATPases, however, the detailed characterization of its enzymatic properties has been lacking. Here, we developed a baculovirus-mediated expression system for WNDP, which permits direct and quantitative analysis of catalytic properties of this protein. Using this system, we provide experimental evidence that WNDP has functional properties characteristic of a P-type ATPase. It forms a phosphorylated intermediate, which is sensitive to hydroxylamine, basic pH, and treatments with ATP or ADP. ATP stimulates phosphorylation with an apparent K(m) of 0.95 +/- 0.25 microm; ADP promotes dephosphorylation with an apparent K(m) of 3.2 +/- 0.7 microm. Replacement of Asp(1027) with Ala in a conserved sequence motif DKTG abolishes phosphorylation in agreement with the proposed role of this residue as an acceptor of phosphate during the catalytic cycle. Catalytic phosphorylation of WNDP is inhibited by the copper chelator bathocuproine; copper reactivates the bathocuproine-treated WNDP in a specific and cooperative fashion confirming that copper is required for formation of the acylphosphate intermediate. These studies establish the key catalytic properties of the ATP7B copper-transporting ATPase and provide a foundation for quantitative analysis of its function in normal and diseased cells.  相似文献   

19.
Lysyl oxidase activity is critical for the assembly and cross-linking of extracellular matrix proteins, such as collagen and elastin. Moreover, lysyl oxidase activity is sensitive to changes in copper status and genetic perturbations in copper transport, e.g., mutations in the P-type ATPase gene, ATP7A, associated with cellular copper transport. Lysyl oxidase may also serve as a vehicle for copper transport from extracellular matrix cells. Herein, we demonstrate that sufficient lysyl oxidase functional activity is present in the rat embryo at gestation day (GD) 9 to be detected in conventional enzyme assays. Estimation of embryonic lysyl oxidase functional activity, however, required partial purification in order to remove inhibitors. From GD 9 to GD 15, lysyl oxidase activity was relatively constant when expressed per unit of protein or DNA. In contrast, the steady-state levels of lysyl oxidase and ATP7A mRNA, measured by RT-PCR and expressed relative to total RNA and cyclophilin mRNA, increased approximately fourfold from GD 9 to 15. The pattern of temporal expression for ATP7A was consistent with its possible role in copper delivery to lysyl oxidase.  相似文献   

20.
ATP7B is a P-type ATPase involved in copper transport and homeostasis. In experiments with microsomes isolated from COS-1 cells or HepG2 hepatocytes sustaining ATP7B heterologous expression, we found that ATP7B utilization of ATP includes autophosphorylation of an aspartyl residue serving as ATPase catalytic intermediate as well as phosphorylation of serine residues by protein kinase D (PKD). The latter was abolished by specific PKD inhibition with CID755673. The presence of PKD protein in the microsomal fraction was demonstrated by Western blotting. PKD is a serine/threonine kinase that associates with the trans-Golgi network, regulating fission of transport carriers destined to the cell surface. Parallel studies on cultured cells showed that nascent WT ATP7B transits to the Golgi complex where it undergoes serine phosphorylation by PKD. Misfolded ATP7B protein (especially if subjected to deletions) underwent proteasome-mediated degradation, which provides effective quality control. Inhibition of proteasome-mediated degradation with MG132 yielded additional, but nonfunctional protein. On the other hand, serine phosphorylation protected WT ATP7B from degradation. Protection was enhanced by PKD activation with phorbol esters and limited by PKD inhibition with CID75673. As a final step, phosphorylated ATP7B was transferred from the Golgi complex to cytosolic trafficking vesicles. Phosphorylation and trafficking were completely prevented by mutations of critical copper binding sites, demonstrating copper dependence of both PKD-assisted phosphorylation and trafficking. ATP7B trafficking was markedly reduced by the Ser-478/481/1121/1453 to Ala mutation. We conclude that PKD plays a key role in copper-dependent serine phosphorylation, permitting high levels of ATP7B protein expression and trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号