首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Developmental neurobiology》2017,77(10):1133-1143
Thousands of people each year suffer from peripheral nerve injury. Treatment options are limited, and recovery is often incomplete. Treadmill exercise can enhance nerve regeneration; however, this appears to occur in a sex‐dependent manner. Females respond best to short duration, high speed interval training; whereas, males respond best to slower, continuous training. Previous studies have shown a role for testosterone in this process, but the role of estrogen is unknown. To evaluate the role of estrogen signaling in treadmill exercise, we blocked estrogen receptor (ER) signaling during treadmill exercise in males and female wild type mice. The right common fibular (CF) branch of the sciatic nerve was cut and repaired with fibrin glue that contained the ER antagonist ICI 182,780. Estradiol‐filled or blank Silastic capsules were implanted subcutaneously at the time of nerve transection. Starting three days post‐transection, exercised mice received treadmill training using the paradigm appropriate to their sex 5 days a week for 2 weeks. Fourteen days after the initial nerve transection, motoneurons whose axons had regenerated at least 1.5 mm distal to the original cut sites were labeled with a retrograde tracer. Regeneration was quantified by counting the number of fluorescent labeled motoneurons in the lumbar region of the spinal cord. Both treadmill training and estradiol administration increased the number of motoneurons participating in axon regeneration, but these effects were blocked by ER antagonist treatment. Estrogen signaling is important for the enhancing effects of treadmill exercise on motoneuron participation after peripheral nerve cut. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1133–1143, 2017  相似文献   

2.
Mutations in transthyretin (TTR) are associated with familial amyloid polyneuropathy, a neurodegenerative disorder characterized by TTR deposition in the PNS. The aim of this study was to unravel whether TTR has a role in nerve physiology that could account for its preferential accumulation in the PNS, when mutated. The sensorimotor performance of wild-type and TTR knockout (KO) littermate mice was compared and showed impairment in mice lacking TTR. Given the possibility that, upon regeneration, the consequences arising from TTR absence might be exacerbated, nerve crush was performed in both strains. TTR KO mice presented delayed functional recovery resulting from decreased number of myelinated and unmyelinated fibers. Moreover, in transgenic mice in a TTR KO background, expressing human TTR in neurons, this phenotype was rescued, reinforcing that TTR enhances nerve regeneration. In vitro assays showed that neurite outgrowth and extension were decreased in the absence of TTR, probably underlying the decreased number of regenerating axons in TTR KO mice. Our findings demonstrate that TTR participates in nerve physiology and that it enhances nerve regeneration. Moreover, the assignment of a TTR function in nerve biology and repair, may explain its preferential deposition, when mutated, in the PNS of familial amyloid polyneuropathy patients.  相似文献   

3.
Nerous system diseases, both central and peripheral, bring an incredible burden onto patients and enormously reduce their quality of life. Currently, there are still no effective treatments to repair nerve lesions that do not have side effects. Stem cell–based therapies, especially those using dental stem cells, bring new hope to neural diseases. Dental stem cells, derived from the neural crest, have many characteristics that are similar to neural cells, indicating that they can be an ideal source of cells for neural regeneration and repair. This review summarizes the neural traits of all the dental cell types, including DPSCs, PDLCs, DFCs, APSCs and their potential applications in nervous system diseases. We have summed up the advantages of dental stem cells in neural repair, such as their neurotrophic and neuroprotective traits, easy harvest and low rejective reaction rate, among others. Taken together, dental stem cells are an ideal cell source for neural tissue regeneration and repair.  相似文献   

4.
Myelin-derived proteins, such as tenascin-R (TN-R), myelin associate glycoprotein (MAG), and Nogo-A, inhibit the CNS regeneration. By targeting specifically the inhibitory epitopes, we have investigated whether vaccination with a recombinant DNA molecule encoding multiple domains of myelin inhibitors may be useful in CNS repair. We show here that the recombinant DNA vaccine is able to activate the immune system but does not induce experimental autoimmune encephalomyelitis (EAE) in Lewis rats. Importantly, it promotes axonal regeneration in a spinal cord injury model. Thus, the application of DNA vaccine, encoding multiple specific domains of major inhibitory proteins and/or their receptors, provides another promising approach to overcome the inhibitory barriers during CNS regeneration.  相似文献   

5.
低温保存许旺细胞对周围神经再生的作用   总被引:1,自引:0,他引:1  
目的:比较原代培养许旺细胞(Schwann cells,SCs)和冷冻保存的SCs移植对损伤后坐骨神经再生的作用。方法:原代培养和液氮保存的SCs分别移植到桥接缺损坐骨神经的硅胶管内。在移植后不同时间(第6和8周末),硅胶管远端神经干内注射HRP,逆行追踪背根神经节和脊髓前角的标记神经元数量;测量再生神经纤维的复合动作电位传导速度;电镜观察再生神经纤维的髓鞘形成。结果:原代培养和冷冻保存SCs在移植后不同时间其背根神经节和脊髓前角神经元HRP标记细胞数量、再生神经纤维的复合动作电位传导速度基本一致,再生神经纤维髓鞘的形成未见明显差别。结论:冷冻保存的SCs仍具有促进损伤后周围神经再生的能力。  相似文献   

6.
Over a half a century of research has confirmed that neurotrophic factors promote the survival and process outgrowth of isolated neurons in vitro. The mechanisms by which neurotrophic factors mediate these survival-promoting effects have also been well characterized. In vivo, peripheral neurons are critically dependent on limited amounts of neurotrophic factors during development. After peripheral nerve injury, the adult mammalian peripheral nervous system responds by making neurotrophic factors once again available, either by autocrine or paracrine sources. Three families of neurotrophic factors were compared, the neurotrophins, the GDNF family of neurotrophic factors, and the neuropoetic cytokines. Following a general overview of the mechanisms by which these neurotrophic factors mediate their effects, we reviewed the temporal pattern of expression of the neurotrophic factors and their receptors by axotomized motoneurons as well as in the distal nerve stump after peripheral nerve injury. We discussed recent experiments from our lab and others which have examined the role of neurotrophic factors in peripheral nerve injury. Although our understanding of the mechanisms by which neurotrophic factors mediate their effects in vivo are poorly understood, evidence is beginning to emerge that similar phenomena observed in vitro also apply to nerve regeneration in vivo.  相似文献   

7.
Integrins are cell surface receptors that form the link between extracellular matrix molecules of the cell environment and internal cell signalling and the cytoskeleton. They are involved in several processes, e.g. adhesion and migration during development and repair. This review focuses on the role of integrins in axonal regeneration. Integrins participate in spontaneous axonal regeneration in the peripheral nervous system through binding to various ligands that either inhibit or enhance their activation and signalling. Integrin biology is more complex in the central nervous system. Integrins receptors are transported into growing axons during development, but selective polarised transport of integrins limits the regenerative response in adult neurons. Manipulation of integrins and related molecules to control their activation state and localisation within axons is a promising route towards stimulating effective regeneration in the central nervous system.  相似文献   

8.
Adult axons in the mammalian central nervous system do not elicit spontaneous regeneration after injury, although many affected neurons have survived the neurotrauma. However, axonal regeneration does occur under certain conditions. These conditions include: (a) modification of regrowth environment, such as supply of peripheral nerve bridges and transplantation of Schwann cells or olfactory ensheathing glia to the injury site; (b) application of neurotrophic factors at the cell soma and axon tips; (c) blockade of growth-inhibitory molecules such as Nogo-A, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein; (d) prevention of chondroitin-sulfate-proteoglycans-related scar tissue formation at the injury site using chondroitinase ABC; and (e) elevation of intrinsic growth potential of injured neurons via increasing intra-cellular cyclic adenosine monophosphate level. A large body of evidence suggests that these conditions achieve enhanced neuronal survival and axonal regeneration through sometimes over-lapping and sometimes distinct signal transduction mechanisms, depending on the targeted neuronal populations and intervention circumstances. This article reviews the available information on signal transduction pathways underlying neurotrophic-factor-mediated neuronal survival and neurite outgrowth/axonal regeneration. Better understanding of signaling transduction is important in helping us develop practical therapeutic approaches for encouraging neuronal survival and axonal regeneration after traumatic injury in clinical context.  相似文献   

9.
Olfactory bulb ensheathing glia (OEG) have attracted special attention during the last few years because of their unique properties in promoting regeneration of adult mammalian central nervous system (CNS) components. However the molecular and cellular characteristics responsible for this capacity remain to be revealed. Such studies are presently hindered by the lack of a plentiful source of homogenous OEG. Thus the availability of immortalized OEG lines maintaining the regenerative characteristics of the primary cultures would represent an unlimited source of OEG for use not only in biochemical analyses of neuroregenerative mechanisms but also to characterize their regenerative properties in models in culture and in vivo. We have immortalized primary rat OEG using the SV40 large T antigen expressed from a constitutive cellular promotor, and report here the isolation and characterization of clonal lines. These OEG clonal lines were comparable to primary OEG and Schwann cells in the promotion of axonal regeneration of mature rat retinal ganglion neurons (RGN) but, significantly, this culture assay system more closely reflects the in vivo reparative properties of OEG on transected nerves than other assays of neuritogenesis in that it revealed OEG cells to promote the growth of a larger number of long axons than Schwann cells. Using this assay we were able to grade our OEG lines for their neuroregenerative capacity, opening the possibility of identifying molecules with correlative expression levels in these cells. Our preliminary characterization revealed that the expression level of a classical OEG marker, the p75-NGF receptor, does not correlate with neuroregenerative capacity.  相似文献   

10.
11.
Human adipose-derived stem cells (ASCs) have a potential for the treatment of peripheral nerve injury. Recent studies demonstrated that stem cells can mediate therapeutic effect by secreting exosomes. We aimed to investigate the effect of human ASCs derived exosomes (ASC-Exos) on peripheral nerve regeneration in vitro and in vivo. Our results showed after being internalized by Schwann cells (SCs), ASC-Exos significantly promoted SC proliferation, migration, myelination, and secretion of neurotrophic factors by upregulating corresponding genes in vitro. We next evaluated the efficacy of ASC-Exo therapy in a rat sciatic nerve transection model with a 10-mm gap. Axon regeneration, myelination, and restoration of denervation muscle atrophy in ASC-Exos treated group was significantly improved compared to vehicle control. This study demonstrates that ASC-Exos effectively promote peripheral nerve regeneration via optimizing SC function and thereby represent a novel therapeutic strategy for regenerative medicine and nerve tissue engineering.  相似文献   

12.
The delivery of cytoskeletal proteins to the axon occurs by slow axonal transport. We examined how the rate of slow transport was altered after axonal injury. When retinal ganglion cell (RGC) axons regenerated through peripheral nerve grafts, an increase in the rate of slow transport occurred during regrowth of the injured axons. We compared these results to axonal injury in the optic nerve where no substantial regrowth occurs and found a completely different response. Slow transport was decreased approximately tenfold in rate in the proximal segment of crushed optic nerves. This decreased rate of slow transport was not induced immediately, but occurred about 1 week after injury. To explore whether a decrease in the rate of slow transport was induced when the regeneration of peripheral nerves was physically blocked, we examined slow transport in motor neurons after the sciatic nerve was transected and ligated. In this case, no change in the rate of the comigrating tubulin and neurofilament (NF) radioactive peaks were observed. We discuss how the changes in the rate of slow transport may reflect different neuronal responses to injury and speculate about the possible molecular changes in the expression of tubulin which may contribute to the observed changes. © 1992 John Wiley & Sons, Inc.  相似文献   

13.
The cellular prion protein, PrPc, is a glycosylphosphatidylinositol-anchored cell surface glycoprotein and a protease-resistant conformer of the protein may be the infectious agent in transmissible spongiform encephalopathies. PrPc is localized on growing axons in vitro and along fibre bundles that contain elongating axons in developing and adult brain. To determine whether the growth state of axons influenced the expression and axonal transport of PrPc, we examined changes in the protein following post-traumatic regeneration in the hamster sciatic nerve. Our results show (1) that PrPc in nerve is significantly increased during nerve regeneration; (2) that this increase involves an increase in axonally transported PrPc; and (3) that the PrPc preferentially targeted for the newly formed portions of the regenerating axons consists of higher molecular weight glycoforms. These results raise the possibility that PrPc may play a role in the growth of axons in vivo, perhaps as an adhesion molecule interacting with the extracellular environment through specialized glycosylation.  相似文献   

14.
An experimental study was carried out in rats with the purpose of demonstrating the capacity of pulsed electromagnetic fields (PEMFs) to stimulate regeneration of the peripheral nervous system (PNS). Wistar and Brown Norway (BN) rats were used. Direct sciatic nerve anastomoses were performed after section or allograft interposition. Treatment groups then received 4 weeks of PEMFs. Control groups received no stimulation. The evaluation of the results was carried out by quantitative morphometric analysis, demonstrating a statistically significant increase in regeneration indices (P < 0.05) in the stimulated groups (9000 +/- 5000 and 4000 +/- 6000) compared to the non-stimulated groups (2000 +/- 4000 and 700 +/- 200). An increase of NAD specific isocitrate dehydrogenase (IDH) activity was found along with an increase in the activity of acetyl cholinesterase at the motor plate. The present study might lead to the search for new alternatives in the stimulation of axonal regenerative processes in the PNS and other possible clinical applications.  相似文献   

15.
Although insulin‐like growth factor‐I (IGF‐I) can act as a neurotrophic factor for peripheral neurons in vitro and in vivo following injury, the role IGF‐I plays during normal development and functioning of the peripheral nervous system is unclear. Here, we report that transgenic mice with reduced levels (two genotypes: heterozygous Igf1+/− or homozygous insertional mutant Igf1m/m) or totally lacking IGF‐I (homozygous Igf1−/−) show a decrease in motor and sensory nerve conduction velocities in vivo. In addition, A‐fiber responses in isolated peroneal nerves from Igf1+/− and Igf1−/− mice are impaired. The nerve function impairment is most profound in Igf1−/− mice. Histopathology of the peroneal nerves in Igf1−/− mice demonstrates a shift to smaller axonal diameters but maintains the same total number of myelinated fibers as Igf1+/+ mice. Comparisons of myelin thickness with axonal diameter indicate that there is no significant reduction in peripheral nerve myelination in IGF‐I–deficient mice. In addition, in Igf1m/m mice with very low serum levels of IGF‐I, replacement therapy with exogenous recombinant hIGF‐I restores both motor and sensory nerve conduction velocities. These findings demonstrate not only that IGF‐I serves an important role in the growth and development of the peripheral nervous system, but also that systemic IGF‐I treatment can enhance nerve function in IGF‐I–deficient adult mice. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 142–152, 1999  相似文献   

16.
Neurotrophins are a family of growth factors that have been found to be central for the development and functional maintenance of the nervous system, participating in neurogenesis, neuronal survival, axonal growth, synaptogenesis and activity-dependent forms of synaptic plasticity. Trauma in the adult nervous system can disrupt the functional circuitry of neurons and result in severe functional deficits. The limitation of intrinsic growth capacity of adult nervous system and the presence of an inhospitable environment are the major hurdles for axonal regeneration of lesioned adult neurons. Neurotrophic factors have been shown to be excellent candidates in mediating neuronal repair and establishing functional circuitry via activating several growth signaling mechanisms including neuron-intrinsic regenerative programs. Here, we will review the effects of various neurotrophins in mediating recovery after injury to the adult spinal cord.  相似文献   

17.
In contrast to the situation in mammals and birds, neurons in the central nervous system (CNS) of fish—such as the retinal ganglion cells—are capable of regenerating their axons and restoring vision. Special properties of the glial cells and the neurons of the fish visual pathway appear to contribute to the success of axonal regeneration. The fish oligodendrocytes lack the axon growth inhibiting molecules that interfere with axonal extension in mammals. Instead, fish optic nerve oligodendrocytes support—at least in vitro—axonal elongation of fish as well as that of rat retinal axons. Moreover, the fish retinal ganglion cells re-express upon injury a set of growth associated cell surface molecules and equip the regenerating axons throughout their path and up into their target, the tectum opticum with these molecules. This may indicate that the injured fish ganglion cells reactivate the cellular machinery necessary for axonal regrowth and pathfinding. Furthermore, the target itself provides positional marker molecules even in adult fish. These marker molecules are required to guide the regenerating axons back to their retinotopic home territory within the tectum. © 1992 John Wiley & Sons, Inc.  相似文献   

18.
Nogo-A, an axonal growth inhibitory protein known to be mostly present in CNS myelin, was upregulated in retinal ganglion cells (RGCs) after optic nerve injury in adult mice. Nogo-A increased concomitantly with the endoplasmic reticulum stress (ER stress) marker C/EBP homologous protein (CHOP), but CHOP immunostaining and the apoptosis marker annexin V did not co-localize with Nogo-A in individual RGC cell bodies, suggesting that injury-induced Nogo-A upregulation is not involved in axotomy-induced cell death. Silencing Nogo-A with an adeno-associated virus serotype 2 containing a short hairpin RNA (AAV2.shRNA-Nogo-A) or Nogo-A gene ablation in knock-out (KO) animals had little effect on the lesion-induced cell stress or death. On the other hand, Nogo-A overexpression mediated by AAV2.Nogo-A exacerbated RGC cell death after injury. Strikingly, however, injury-induced sprouting of the cut axons and the expression of growth-associated molecules were markedly reduced by AAV2.shRNA-Nogo-A. The axonal growth in the optic nerve activated by the intraocular injection of the inflammatory molecule Pam3Cys tended to be lower in Nogo-A KO mice than in WT mice. Nogo-A overexpression in RGCs in vivo or in the neuronal cell line F11 in vitro promoted regeneration, demonstrating a positive, cell-autonomous role for neuronal Nogo-A in the modulation of axonal regeneration.  相似文献   

19.
The polysialic acid (PSA) moiety of the neural cell adhesion molecule (NCAM) has been shown to support dynamic changes underlying peripheral nerve regeneration. Using transgenic mice expressing polysialyltransferase ST8SiaIV under control of a glial-specific (proteolipid protein, PLP) promoter (PLP-ST8SiaIV-transgenic mice), we tested the hypothesis that permanent synthesis of PSA in Schwann cells impairs functional recovery of lesioned peripheral nerves. After sciatic nerve crush, histomorphometric analyses demonstrated impaired remyelination of regenerated axons at the lesion site and in target tissue of PLP-ST8SiaIV-transgenic mice, though the number and size of regenerating unmyelinated axons were not changed. This was accompanied by slower mechanosensory recovery in PLP-ST8SiaIV-transgenic mice. However, the proportion of successfully mono-(re)innervated motor endplates in the foot pad muscle was significantly increased in PLP-ST8SiaIV-transgenic mice when compared with wild-type littermates, suggesting that long-term increase in PSA levels in regenerating nerves may favor selective motor target reinnervation. The combined negative and positive effects of a continuous polysialyltransferase overexpression observed during peripheral nerve regeneration suggest that an optimized time- and differentiation-dependent control of polysialyltransferase expression in Schwann cells may further improve recovery after peripheral nerves injury.  相似文献   

20.
Although neural c-Jun is essential for successful peripheral nerve regeneration, the cellular basis of this effect and the impact of c-Jun activation are incompletely understood. In the current study, we explored the effects of neuron-selective c-Jun deletion, substitution of serine 63 and 73 phosphoacceptor sites with non-phosphorylatable alanine, and deletion of Jun N-terminal kinases 1, 2 and 3 in mouse facial nerve regeneration. Removal of the floxed c-jun gene in facial motoneurons using cre recombinase under control of a neuron-specific synapsin promoter (junΔS) abolished basal and injury-induced neuronal c-Jun immunoreactivity, as well as most of the molecular responses following facial axotomy. Absence of neuronal Jun reduced the speed of axonal regeneration following crush, and prevented most cut axons from reconnecting to their target, significantly reducing functional recovery. Despite blocking cell death, this was associated with a large number of shrunken neurons. Finally, junΔS mutants also had diminished astrocyte and microglial activation and T-cell influx, suggesting that these non-neuronal responses depend on the release of Jun-dependent signals from neighboring injured motoneurons. The effects of substituting serine 63 and 73 phosphoacceptor sites (junAA), or of global deletion of individual kinases responsible for N-terminal c-Jun phosphorylation were mild. junAA mutants showed decrease in neuronal cell size, a moderate reduction in post-axotomy CD44 levels and slightly increased astrogliosis. Deletion of Jun N-terminal kinase (JNK)1 or JNK3 showed delayed functional recovery; deletion of JNK3 also interfered with T-cell influx, and reduced CD44 levels. Deletion of JNK2 had no effect. Thus, neuronal c-Jun is needed in regeneration, but JNK phosphorylation of the N-terminus mostly appears to not be required for its function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号