首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物螯合肽合酶(pcs)受重金属离子激活,并以还原型谷胱甘肽为底物合成植物螯合肽(PCs),在植物和真菌的重金属解毒机制中起重要作用.拟南芥基因组中有两个编码PCS的基因AtPCS1和AtPCS2,但AtPCS1单基因功能缺失即可导致相应的突变体cad1—3对镉高度敏感,其体内也检测不到PCs;而体外表达分析表明,AtPCS2具有完全的PCs合酶活性,预示植物体内可能存在AtPCS2的负向调控机制.基于该推测,构建了CaMV35S启动子驱动的AtPCS2基因编码区与c—Myc抗原标签融合的过表达载体.结果表叽在cadl-3的MV35S/AtPCS2:cMyc的异位表达株系中,AtPCS2的mRNA和蛋白都保持较高的表达量.不仅如此,AtPCS2具有植物螯合肽合成能力,并完全互补了cad1-3突变体的镉敏感性状.AtPCS2和EYFP的融合蛋白在细胞质有明显表达,在细胞核也检测到一定信号.以上结果表明,AtPCS2在植物体内可能主要受转录水平调控,而且可能具有调节PCs合成以外的其他生化功能.  相似文献   

2.
Detoxification of xenobiotic compounds and heavy metals is a pivotal capacity of organisms, in which glutathione (GSH) plays an important role. In plants, electrophilic herbicides are conjugated to the thiol group of GSH, and heavy metal ions form complexes as thiolates with GSH-derived phytochelatins (PCs). In both detoxification processes of plants, phytochelatin synthase (PCS) emerges as a key player. The enzyme is activated by heavy metal ions and catalyzes PC formation from GSH by transferring glutamylcysteinyl residues (gamma-EC) onto GSH. In this study with Arabidopsis, we show that PCS plays a role in the plant-specific catabolism of glutathione conjugates (GS-conjugates). In contrast to animals, breakdown of GS-conjugates in plants can be initiated by cleavage of the carboxyterminal glycine residue that leads to the generation of the corresponding gamma-EC-conjugate. We used the xenobiotic bimane in order to follow GS-conjugate turnover. Functional knockout of the two PCS of Arabidopsis, AtPCS1 and AtPCS2, revealed that AtPCS1 provides a major activity responsible for conversion of the fluorescent bimane-GS-conjugate (GS-bimane) into gamma-EC-bimane. AtPCS1 deficiency resulted in a gamma-EC-bimane deficiency. Transfection of PCS-deficient cells with AtPCS1 recovered gamma-EC-bimane levels. The level of the gamma-EC-bimane conjugate was enhanced several-fold in the presence of Cd2+ ions in the wild type, but not in the PCS-deficient double mutant, consistent with a PCS-catalyzed GS-conjugate turnover. Thus AtPCS1 has two cellular functions: mediating both heavy metal tolerance and GS-conjugate degradation.  相似文献   

3.
Phytochelatin (PC) synthases are gamma-glutamylcysteine (gamma-Glu-Cys) dipeptidyl transpeptidases that catalyze the synthesis of heavy metal-binding PCs, (gamma-Glu-Cys)nGly polymers, from glutathione (GSH) and/or shorter chain PCs. Here it is shown through investigations of the enzyme from Arabidopsis (Arabidopsis thaliana; AtPCS1) that, although the N-terminal half of the protein, alone, is sufficient for core catalysis through the formation of a single-site enzyme acyl intermediate, it is not sufficient for acylation at a second site and augmentative stimulation by free Cd2+. A purified N-terminally hexahistidinyl-tagged AtPCS1 truncate containing only the first 221 N-terminal amino acid residues of the enzyme (HIS-AtPCS1_221tr) is competent in the synthesis of PCs from GSH in media containing Cd2+ or the synthesis of S-methyl-PCs from S-methylglutathione in media devoid of heavy metal ions. However, whereas its full-length hexahistidinyl-tagged equivalent, HIS-AtPCS1, undergoes gamma-Glu-Cys acylation at two sites during the Cd2+-dependent synthesis of PCs from GSH and is stimulated by free Cd2+ when synthesizing S-methyl-PCs from S-methylglutathione, HIS-AtPCS1_221tr undergoes gamma-Glu-Cys acylation at only one site when GSH is the substrate and is not directly stimulated, but instead inhibited, by free Cd2+ when S-methylglutathione is the substrate. Through the application of sequence search algorithms capable of detecting distant homologies, work we reported briefly before but not in its entirety, it has been determined that the N-terminal half of AtPCS1 and its equivalents from other sources have the hallmarks of a papain-like, Clan CA Cys protease. Whereas the fold assignment deduced from these analyses, which substantiates and is substantiated by the recent determination of the crystal structure of a distant prokaryotic PC synthase homolog from the cyanobacterium Nostoc, is capable of explaining the strict requirement for a conserved Cys residue, Cys-56 in the case of AtPCS1, for formation of the biosynthetically competent gamma-Glu-Cys enzyme acyl intermediate, the primary data from experiments directed at determining whether the other two residues, His-162 and Asp-180 of the putative papain-like catalytic triad of AtPCS1, are essential for catalysis have yet to be presented. This shortfall in our basic understanding of AtPCS1 is addressed here by the results of systematic site-directed mutagenesis studies that demonstrate that not only Cys-56 but also His-162 and Asp-180 are indeed required for net PC synthesis. It is therefore established experimentally that AtPCS1 and, by implication, other eukaryotic PC synthases are papain Cys protease superfamily members but ones, unlike their prokaryotic counterparts, which, in addition to having a papain-like N-terminal catalytic domain that undergoes primary gamma-Glu-Cys acylation, contain an auxiliary metal-sensing C-terminal domain that undergoes secondary gamma-Glu-Cys acylation.  相似文献   

4.
Phytochelatin synthase (PCS) catalyzes the final step in the biosynthesis of phytochelatins, which are a family of cysteine-rich thiol-reactive peptides believed to play important roles in processing many thiol-reactive toxicants. A modified Arabidopsis thaliana PCS sequence (AtPCS1) was active in Escherichia coli. When AtPCS1 was overexpressed in Arabidopsis from a strong constitutive Arabidopsis actin regulatory sequence (A2), the A2::AtPCS1 plants were highly resistant to arsenic, accumulating 20-100 times more biomass on 250 and 300 microM arsenate than wild type (WT); however, they were hypersensitive to Cd(II). After exposure to cadmium and arsenic, the overall accumulation of thiol-peptides increased to 10-fold higher levels in the A2::AtPCS1 plants compared with WT, as determined by fluorescent HPLC. Whereas cadmium induced greater increases in traditional PCs (PC2, PC3, PC4), arsenic exposure resulted in the expression of many unknown thiol products. Unexpectedly, after arsenate or cadmium exposure, levels of the dipeptide substrate for PC synthesis, gamma-glutamyl cysteine (gamma-EC), were also dramatically increased. Despite these high thiol-peptide concentrations, there were no significant increases in concentrations of arsenic and cadmium in above-ground tissues in the AtPCS1 plants relative to WT plants. The potential for AtPCS1 overexpression to be useful in strategies for phytoremediating arsenic and to compound the negative effects of cadmium are discussed.  相似文献   

5.
Phytochelatin (PC) plays an important role in heavy metal detoxification in plants and other living organisms. Therefore, we overexpressed an Arabidopsis PC synthase (AtPCS1) in transgenic Arabidopsis with the goal of increasing PC synthesis, metal accumulation, and metal tolerance in these plants. Transgenic Arabidopsis plants were selected, designated pcs lines, and analyzed for tolerance to cadmium (Cd). Transgenic pcs lines showed 12- to 25-fold higher accumulation of AtPCS1 mRNA, and production of PCs increased by 1.3- to 2.1-fold under 85 microM CdCl(2) stress for 3 d when compared with wild-type plants. Cd tolerance was assessed by measuring root length of plants grown on agar medium containing 50 or 85 microM CdCl(2). Pcs lines paradoxically showed hypersensitivity to Cd stress. This hypersensitivity was also observed for zinc (Zn) but not for copper (Cu). The overexpressed AtPCS1 protein itself was not responsible for Cd hypersensitivity as transgenic cad1-3 mutants overexpressing AtPCS1 to similar levels as those of pcs lines were not hypersensitive to Cd. Pcs lines were more sensitive to Cd than a PC-deficient Arabidopsis mutant, cad1-3, grown under low glutathione (GSH) levels. Cd hypersensitivity of pcs lines disappeared under increased GSH levels supplemented in the medium. Therefore, Cd hypersensitivity in pcs lines seems due to the toxicity of PCs as they existed at supraoptimal levels when compared with GSH levels.  相似文献   

6.
The phytochelatin homologs homo-phytochelatins are heavy metal-binding peptides present in many legumes. To study the biosynthesis of these compounds, we have isolated and functionally expressed a cDNA GmhPCS1 encoding homo-phytochelatin synthase from Glycine max, a plant known to accumulate homo-phytochelatins rather than phytochelatins upon the exposure to heavy metals. The catalytic properties of GmhPCS1 were compared with the phytochelatin synthase AtPCS1 from Arabidopsis thaliana. When assayed only in the presence of glutathione, both enzymes catalyzed phytochelatin formation. GmhPCS1 accepted homoglutathione as the sole substrate for the synthesis of homo-phytochelatins whereas AtPCS1 did not. Homo-phytochelatin synthesis activity of both recombinant enzymes was significantly higher when glutathione was included in the reaction mixture. The incorporation of both glutathione and homoglutathione into homo-phytochelatin, n = 2, was demonstrated using GmhPCS1 and AtPCS1. In addition to bis(glutathionato)-metal complexes, various other metal-thiolates were shown to contribute to the activation of phytochelatin synthase. These complexes were not accepted as substrates by the enzyme, thereby suggesting that a recently proposed model of activation cannot fully explain the catalytic mechanism of phytochelatin synthase (Vatamaniuk, O. K., Mari, S., Lu, Y. P., and Rea, P. A. (2000) J. Biol. Chem. 275, 31451-31459).  相似文献   

7.
Phytochelatins (PCs) are metal binding peptides involved in heavy metal detoxification. To assess whether enhanced phytochelatin synthesis would increase heavy metal tolerance and accumulation in plants, we overexpressed the Arabidopsis phytochelatin synthase gene (AtPCS1) in the non-accumulator plant Nicotiana tabacum. Wild-type plants and plants harbouring the Agrobacterium rhizogenes rolB oncogene were transformed with a 35S AtPCS1 construct. Root cultures from rolB plants could be easily established and we demonstrated here that they represent a reliable system to study heavy metal tolerance. Cd2+ tolerance in cultured rolB roots was increased as a result of overexpression of AtPCS1, and further enhanced when reduced glutathione (GSH, the substrate of PCS1) was added to the culture medium. Accordingly, HPLC analysis showed that total PC production in PCS1-overexpressing rolB roots was higher than in rolB roots in the presence of GSH. Overexpression of AtPCS1 in whole seedlings led to a twofold increase in Cd2+ accumulation in the roots and shoots of both rolB and wild-type seedlings. Similarly, a significant increase in Cd2+ accumulation linked to a higher production of PCs in both roots and shoots was observed in adult plants. However, the percentage of Cd2+ translocated to the shoots of seedlings and adult overexpressing plants was unaffected. We conclude that the increase in Cd2+ tolerance and accumulation of PCS1 overexpressing plants is directly related to the availability of GSH, while overexpression of phytochelatin synthase does not enhance long distance root-to-shoot Cd2+ transport.  相似文献   

8.
Previous studies demonstrated that expression of the Arabidopsis phytochelatin (PC) biosynthetic gene AtPCS1 in Nicotiana tabacum plants increases the Cd tolerance in the presence of exogenous glutathione (GSH). In this paper, the Cd tolerance of Arabidopsis plants over-expressing AtPCS1 (AtPCSox lines) has been analysed and the differences between Arabidopsis and tobacco are shown. Based on the analysis of seedling fresh weight, primary root length, and alterations in root anatomy, evidence is provided that, at relatively low Cd concentrations, the Cd tolerance of AtPCSox lines is lower than the wild type, while AtPCS1 over-expressing tobacco is more tolerant to Cd than the wild type. At higher Cd concentrations, Arabidopsis AtPCSox seedlings are more tolerant to Cd than the wild type, while tobacco AtPCS1 seedlings are as sensitive as the wild type. Exogenous GSH, in contrast to what was observed in tobacco, did not increase the Cd tolerance of AtPCSox lines. The PC content in wild-type Arabidopsis at low Cd concentrations is more than three times higher than in tobacco and substantial differences were also found in the PC chain lengths. These data indicate that the differences in Cd tolerance and in its dependence on exogenous GSH between Arabidopsis and tobacco are due to species-specific differences in the endogenous content of PCs and GSH and may be in the relative abundance of PCs of different length.  相似文献   

9.
The enzymatically synthesized thiol peptide phytochelatin (PC) plays a central role in heavy metal tolerance and detoxification in plants. In response to heavy metal exposure, the constitutively expressed phytochelatin synthase enzyme (PCS) is activated leading to synthesis of PCs in the cytosol. Recent attempts to increase plant metal accumulation and tolerance reported that PCS over-expression in transgenic plants paradoxically induced cadmium hypersensitivity. In the present paper, we investigate the possibility of synthesizing PCs in plastids by over-expressing a plastid targeted phytochelatin synthase (PCS). Plastids represent a relatively important cellular volume and offer the advantage of containing glutathione, the precursor of PC synthesis. Using a constitutive CaMV 35S promoter and a RbcS transit peptide, we successfully addressed AtPCS1 to chloroplasts, significant PCS activity being measured in this compartment in two independent transgenic lines. A substantial increase in the PC content and a decrease in the glutathione pool were observed in response to cadmium exposure, when compared to wild-type plants. While over-expressing AtPCS1 in the cytosol importantly decreased cadmium tolerance, both cadmium tolerance and accumulation of plants expressing plastidial AtPCS1 were not significantly affected compared to wild-type. Interestingly, targeting AtPCS1 to chloroplasts induced a marked sensitivity to arsenic while plants over-expressing AtPCS1 in the cytoplasm were more tolerant to this metalloid. These results are discussed in relation to heavy metal trafficking pathways in higher plants and to the interest of using plastid expression of PCS for biotechnological applications.  相似文献   

10.
Rea PA 《Physiologia plantarum》2012,145(1):154-164
Of the mechanisms known to protect vascular plants and some algae, fungi and invertebrates from the toxic effects of non-essential heavy metals such as As, Cd or Hg, one of the most sophisticated is the enzyme-catalyzed synthesis of phytochelatins (PCs). PCs, (γ-Glu-Cys)(n) Gly polymers, which serve as high-affinity, thiol-rich cellular chelators and contribute to the detoxification of heavy metal ions, are derived from glutathione (GSH; γ-Glu-Cys-Gly) and related thiols in a reaction catalyzed by phytochelatin synthases (PC synthases, EC 2.3.2.15). Using the enzyme from Arabidopsis thaliana (AtPCS1) as a model, the reasoning and experiments behind the conclusion that PC synthases are novel papain-like Cys protease superfamily members are presented. The status of S-substituted GSH derivatives as generic PC synthase substrates and the sufficiency of the N-terminal domain of the enzyme from eukaryotic and its half-size equivalents from prokaryotic sources, for net PC synthesis and deglycylation of GSH and its derivatives, respectively, are emphasized. The question of the common need or needs met by PC synthases and their homologs is discussed. Of the schemes proposed to account for the combined protease and peptide polymerase capabilities of the eukaryotic enzymes vs the limited protease capabilities of the prokaryotic enzymes, two that will be considered are the storage and homeostasis of essential heavy metals in eukaryotes and the metabolism of S-substituted GSH derivatives in both eukaryotes and prokaryotes.  相似文献   

11.
12.
Phytochelatin synthase (PC synthase) catalyzes a biosynthesis of phytochelatins (PCs), which are small molecules and glutathione (GSH)-derived metal-binding peptides that are essential for the detoxification of heavy metal ions in plants, fungi and worms. In order to enhance tolerance to heavy metal cytotoxicity, mRNA coding for PC synthase from Arabidopsis thaliana (AtPCS1) was introduced into the early embryos of zebrafish. As a result, the heterogeneous expression of PC synthase and the synthesis of PCs from GSH in embryos could be detected. The developing embryos expressing PC synthase (PC-embryos) became more tolerant to Cd toxicity (500 microM exposure). PC-embryos had significantly longer apparent lethal times for 50% of the population (LT50) of 8.17+/-1.08 days, although control embryos had apparent LT50 of 5.43+/-0.66 days. These data suggest that PC synthase can function in developmental zebrafish, and that PCs are highly effective in detoxifying Cd toxicity even in the whole body of a vertebrate species.  相似文献   

13.
Phytochelatins (PCs) are naturally occurring peptides with high-binding capabilities for a wide range of heavy metals including arsenic (As). PCs are enzymatically synthesized by phytochelatin synthases and contain a (gamma-Glu-Cys)(n) moiety terminated by a Gly residue that makes them relatively proteolysis resistant. In this study, PCs were introduced by expressing Arabidopsis thaliana Phytochelatin Synthase (AtPCS) in the yeast Saccharomyces cerevisiae for enhanced As accumulation and removal. PCs production in yeast resulted in six times higher As accumulation as compared to the control strain under a wide range of As concentrations. For the high-arsenic concentration, PCs production led to a substantial decrease in levels of PC precursors such as glutathione (GSH) and gamma-glutamyl cysteine (gamma-EC). The levels of As(III) accumulation were found to be similar between AtPCS-expressing wild type strain and AtPCS-expressing acr3Delta strain lacking the arsenic efflux system, suggesting that the arsenic uptake may become limiting. This is further supported by the roughly 1:3 stoichiometric ratio between arsenic and PC2 (n = 2) level (comparing with a theoretical value of 1:2), indicating an excess availability of PCs inside the cells. However, at lower As(III) concentration, PC production became limiting and an additive effect on arsenic accumulation was observed for strain lacking the efflux system. More importantly, even resting cells expressing AtPCS pre-cultured in Zn(2+) enriched media showed PCs production and two times higher arsenic removal than the control strain. These results open up the possibility of using cells expressing AtPCS as an inexpensive sorbent for the removal of toxic arsenic.  相似文献   

14.
Ramos J  Naya L  Gay M  Abián J  Becana M 《Plant physiology》2008,148(1):536-545
In plants and many other organisms, phytochelatin synthase (PCS) catalyzes the synthesis of phytochelatins from glutathione in the presence of certain metals and metalloids. We have used budding yeast (Saccharomyces cerevisiae) as a heterologous system to characterize two PCS proteins, LjPCS1 and LjPCS3, of the model legume Lotus japonicus. Initial experiments revealed that the metal tolerance of yeast cells in vivo depends on the concentrations of divalent cations in the growth medium. Detailed in vivo (intact cells) and in vitro (broken cells) assays of PCS activity were performed with yeast expressing the plant enzymes, and values of phytochelatin production for each metal tested were normalized with respect to those of cadmium to correct for the lower expression level of LjPCS3. Our results showed that lead was the best activator of LjPCS1 in the in vitro assay, whereas, for both assays, arsenic, iron, and aluminum were better activators of LjPCS3 and mercury was similarly active with the two enzymes. Most interestingly, zinc was a powerful activator, especially of LjPCS3, when assayed in vivo, whereas copper and silver were the strongest activators in the in vitro assay. We conclude that the in vivo and in vitro assays are useful and complementary to assess the response of LjPCS1 and LjPCS3 to a wide range of metals and that the differences in the C-terminal domains of the two proteins are responsible for their distinct expression levels or stabilities in heterologous systems and patterns of metal activation.  相似文献   

15.
The evaluation of thiol metabolism in plant adaptation to relevant levels of cadmium stress is important for understanding the real importance of phytochelatins and related thiols in stress coping. The present work was designed to study the process of stress adaptation in roots of Pisum sativum L. plants during an exposure to different cadmium concentrations, ranging from more realistic exposures to those usually employed in PC studies. The balance between individual PCs and their homologous hPCs in constitutive thiol pools and root growth was also accessed. Roots of intact plants were submitted to 1, 3, 30, 60 or 120 μM Cd and harvested after 1, 3, 6 and 9 days after exposure. Growth parameters and root tissue cadmium accumulation were analysed. High-performance liquid chromatography (HPLC) with fluorescence detection was used due to its high sensitivity. Root growth was only affected in concentrations higher than 30 μM Cd, but the presence of low cadmium concentrations induced significant alterations in constitutive thiols and triggered the synthesis of PCs and hPCs, bearing two to four olygomeric repeats. Increasing Cd stress levels were generally associated with higher polythiol production; however, with the time-course of the experiments, higher degrees of toxicity were associated with a reduction in thiol production. This behaviour was attributed to the Cys and GSH depletion, which limited polythiol synthesis, as well as root growth. In tolerable concentrations, the rate of root length recovery matched the increase in PC and hPC synthesis. In higher concentrations (60 and 120 μM), the reduction in non-protein polythiol synthesis was associated with higher Cd toxicity, leading to a severe growth reduction. The synthesis of hPCs seemed to have a reduced importance in tolerance; however, their production was stimulated when the GSH deficit was higher. Our results suggest that the reductions in PC levels, observed in higher degrees of stress, were not related to the activation of other tolerance mechanisms but were instead associated with the high metabolic cost of this thiol-based tolerance mechanism.  相似文献   

16.
Leaf-targeted phytochelatin synthase in Arabidopsis thaliana   总被引:3,自引:0,他引:3  
One of the key steps in developing transgenic plants for the phytoremediation of metal containing soils is to develop plants that accumulate metals in the aerial tissues. With the goal of changing the distribution of phytochelatin (PC)-dependent cadmium accumulation from roots to the leaves, the phytochelatin synthase (PCS) deficient cad1-3 mutant and wild type (Col-0) Arabidopsis plants were transformed with an Arabidopsis phytochelatin synthase (AtPCS1) under the control of a leaf-specific promoter. Three independent transformant lines from each genetic background were chosen for further analysis and designated cad-PCS and WT-PCS. PCS activity in the cadPCS lines was restored in the leaves, but not in the roots. Additionally, when whole plants were treated with cadmium, PCs were found only in the leaves of cad-PCS plants. Although the inserted AtPCS1 gene was leaf-specific, cad-PCS lines showed an overall decrease in cadmium toxicity evidenced by a partial amelioration of the "brown-root" phenotype and root growth was restored to wild type levels when treated with cadmium and arsenate. WT-PCS lines showed an increase in leaf PCS activity but had only wild type PC levels. In addition, cadmium uptake studies indicated that there was no difference in cadmium accumulation among all types tested. So, while we were able to protect the plants against cadmium by expressing PC synthase only in the leaves, we were not able to limit cadmium accumulation to aerial tissues.  相似文献   

17.
The dependence of phytochelatin synthase (gamma-glutamylcysteine dipeptidyltranspeptidase (PCS), EC ) on heavy metals for activity has invariably been interpreted in terms of direct metal binding to the enzyme. Here we show, through analyses of immunopurified, recombinant PCS1 from Arabidopsis thaliana (AtPCS1), that free metal ions are not essential for catalysis. Although AtPCS1 appears to be primarily activated posttranslationally in the intact plant and purified AtPCS1 is able to bind heavy metals directly, metal binding per se is not responsible for catalytic activation. As exemplified by Cd(2+)- and Zn(2+)-dependent AtPCS1-mediated catalysis, the kinetics of PC synthesis approximate a substituted enzyme mechanism in which micromolar heavy metal glutathione thiolate (e.g. Cd.GS(2) or Zn.GS(2)) and free glutathione act as gamma-Glu-Cys acceptor and donor. Further, as demonstrated by the facility of AtPCS1 for the net synthesis of S-alkyl-PCs from S-alkylglutathiones with biphasic kinetics, consistent with the sufficiency of S-alkylglutathiones as both gamma-Glu-Cys donors and acceptors in media devoid of metals, even heavy metal thiolates are dispensable. It is concluded that the dependence of AtPCS1 on the provision of heavy metal ions for activity in media containing glutathione and other thiol peptides is a reflection of this enzyme's requirement for glutathione-like peptides containing blocked thiol groups for activity.  相似文献   

18.
Genes encoding phytochelatin (PC) synthase have been found in higher plants, fission yeast and worm. Recently, kinetic and mutagenic analyses of recombinant PC synthase have been revealing the molecular mechanisms underlying PC synthesis, however, a conclusive model has not been established. To clarify the mechanism of PC synthase found in eukaryotes, we have compared the two-step reactions catalyzed by the prokaryotic Nostoc PC synthase (NsPCS) and the eukaryotic Arabidopsis PC synthase (AtPCS1). Comparative analysis shows that in the first step of PC synthesis corresponding to the cleavage of -glutamylcysteine (-EC) from glutathione (GSH), free GSH or PCs acts as a donor molecule to supply a -EC unit for elongation of the PC chain, and heavy metal ions are required to carry out the cleavage. Furthermore, functional analyses of various mutants of NsPCS and AtPCS1, selected by comparing the sequences of NsPCS and AtPCS1, indicate that the N-terminal region (residues 1–221) in AtPCS1 is the catalytic domain, and in this region, the Cys56 residue is associated with the PC synthesis reaction. These results enable us to propose an advanced model of PC synthesis, describing substrate specificity, heavy metal requirement, and the active site in the enzyme.  相似文献   

19.
In Arabidopsis thaliana, two genes encoding phytochelatin synthase (PCS; EC 2.3.2.15), AtPCS1 and AtPCS2, have been identified. Until now, only AtPCS1 was shown to play a role in response to Cd. To gain insight into the putative role of AtPCS2, three Cd concentrations (50, 100 and 200 μM) and long-term exposure (7 days) were tested on 1-week-old A. thaliana ecotype Wassilewskija (Ws) seedlings. Since 100 μM Cd did not alter seedling metabolism, as shown by unchanged total soluble protein and free proline contents, we investigated plantlet response to this concentration in addition to Cd accumulation. Seedlings accumulated Cd in roots and shoots. As phytochelatins and glutathione (GSH) contents increased in treated seedlings, we suggested that Cd might be translocated via the phytochelatin pathway. Specific enzymatic activities of γ-glutamylcysteine synthetase (GCS; EC 6.3.2.2), glutathione synthetase (GS; EC 6.3.2.3) and PCS were twice much more stimulated in shoots and roots after Cd exposure except GS that remained constant in shoots. As expression of genes encoding GCS and GS was unchanged in response to Cd, we suggested a regulation at translational or post-translational level. Surprisingly, AtPCS1 and AtPCS2 were differentially up-regulated after Cd treatment: AtPCS1 in shoots and AtPCS2 in whole plantlets. This last result suggests that PCS2 could be involved in plant response to high concentration of Cd in Ws ecotype and supports a putative role of PCS2, not redundant with PCS1, in a long-term response to Cd.  相似文献   

20.
Huang J  Zhang Y  Peng JS  Zhong C  Yi HY  Ow DW  Gong JM 《Plant physiology》2012,158(4):1779-1788
Much of our dietary uptake of heavy metals is through the consumption of plants. A long-sought strategy to reduce chronic exposure to heavy metals is to develop plant varieties with reduced accumulation in edible tissues. Here, we describe that the fission yeast (Schizosaccharomyces pombe) phytochelatin (PC)-cadmium (Cd) transporter SpHMT1 produced in Arabidopsis (Arabidopsis thaliana) was localized to tonoplast, and enhanced tolerance to and accumulation of Cd2+, copper, arsenic, and zinc. The action of SpHMT1 requires PC substrates, and failed to confer Cd2+ tolerance and accumulation when glutathione and PC synthesis was blocked by L-buthionine sulfoximine, or only PC synthesis is blocked in the cad1-3 mutant, which is deficient in PC synthase. SpHMT1 expression enhanced vacuolar Cd2+ accumulation in wild-type Columbia-0, but not in cad1-3, where only approximately 35% of the Cd2+ in protoplasts was localized in vacuoles, in contrast to the near 100% found in wild-type vacuoles and approximately 25% in those of cad2-1 that synthesizes very low amounts of glutathione and PCs. Interestingly, constitutive SpHMT1 expression delayed root-to-shoot metal transport, and root-targeted expression confirmed that roots can serve as a sink to reduce metal contents in shoots and seeds. These findings suggest that SpHMT1 function requires PCs in Arabidopsis, and it is feasible to promote food safety by engineering plants using SpHMT1 to decrease metal accumulation in edible tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号