首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The spinning apparatus of the uloborid spider Polenecia producta was studied to complete previous studies on the same family of spiders. The structure of spinnerets and spigots, under scanning electron microscopy, and the main anatomical and histochemical characteristics of the spinning glands of adult females and males are described. In addition some observations on the spinning apparatus at three successive stages of development are made. There are nine kinds of silk glands in Polenecia, i.e. one more (aciniform — B glands) than found in other uloborids. The spinning apparatus of Polenecia is, therefore, the most complex so far known. It is also more complex than that presently known of Araneoidea. The characteristics of the spinning glands of Polenecia are compared with those of other uloborids. Present knowledge of the spinning apparatus of uloborids leads to a renewed discussion of the origin of the orb web in this family and in araneids. It is concluded that these two types of orb webs emerged from independent evolutionary processes.  相似文献   

2.
Hans M. Peters 《Zoomorphology》1993,113(3):153-163
Summary The spinning apparatus of Cyrtophora citricola closely corresponds to that of orb-weaving Araneidae, two peculiarities excepted. Firstly the spigots of the piriform glands differ extremely in size, the smallest of them being numerous and having a unique location on the anterior spinnerets. Secondly, the triad complex (on the posterior spinnerets) used by other Araneidae for producing gluey capture threads is lacking. Both these characteristics are correlated with the construction of a fine meshed sheet of dry silk by Cyrtophora instead of orbwebs with capture spirals. The sheet can be understood as being a very much enlarged central area of orb-webs. Since vestiges of triads could be found in early developmental stages of C. citricola, the origin of the meshed sheet from orb-webs with gluey capture threads is clearly demonstrated. The paper includes a study on how the spider produces thread attachments by means of the secretions of the piriform glands.  相似文献   

3.
The genus Oxytate L. Koch, 1878 comprises a homogeneous group of nocturnal crab spiders that have silk apparatuses even though they do not spin webs to trap prey. We examined the microstructure of the silk spinning apparatus of the green crab spider Oxytate striatipes, using field emission scanning electron microscopy. The silk glands of the spider were classified into three types: ampullate, pyriform and aciniform. The spigots of these three types of silk gland occur in both sexes. Two pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another two pairs of minor ampullate glands supply the median spinnerets. In addition, the pyriform glands send ductules to the anterior spinnerets (45 pairs in females and 40 pairs in males), and the aciniform glands feed silk into the median (9–12 pairs in females and 7–10 pairs in males) and the posterior (30 pairs in both sexes) spinnerets. The spigot system of O. striatipes is simpler and more primitive than other wandering spiders: even the female spiders possess neither tubuliform glands for cocoon production nor triad spigots for web‐building.  相似文献   

4.
The silk spinning apparatus in the crab spider, Misumenops tricuspidatus was studied with the field emission scanning electron microscope (FESEM) and the main microstructural characteristics of the silk glands are presented. In spite of the fact that the crab spiders do not spin webs to trap a prey, they also have silk apparatus even though the functions are not fully defined. The crab spider, Misumenops tricuspidatus possesses only three types of silk glands which connected through the typical spinning tubes on the spinnerets. The spinning apparatus of Misumenops closely corresponds to that of wandering spiders such as jumping spiders or wolf spiders except some local variations. Anterior spinnerets comprise 2 pairs of the ampullates and 48 (±5) pairs of pyriform glands. Another 2 pairs of ampullate glands and nearly 20 (±3) pairs of aciniform glands were connected on the middle spinnerets. Additional 50 (±5) pairs of the aciniform glands were connected on the posterior spinnerets. The aggregate glands and the flagelliform glands which have the function of sticky capture thread production in orb‐web spiders as well as the tubuliform glands for cocoon production in females were not developed at both sexes of this spider, characteristically.  相似文献   

5.
Spiders are characterized by their spinning activity. Much of the current knowledge of the spinning apparatus comes from studies on orb web spiders and their relatives, whereas wolf spiders have been more or less neglected in this respect. Therefore, we studied developmental changes in the spinning apparatus of four wolf spiders (Tricca lutetiana, Arctosa alpigena lamperti, Pardosa amentata, and Xerolycosa nemoralis) throughout their life cycles. Each of these lycosids has a stenochronous life cycle, but of varied length (from 1 to 3 years) and number of instars (from seven to ten). Use of the spinning apparatus begins in the first instar, after leaving the egg sac. Secondary ampullate, all piriform, and all but four aciniform glands are tartipore‐accommodated. The tartipores, collared openings through which silk gland ducts pass during proecdysis, appear on the spinning field starting with the second instar. Tartipore‐accommodated glands can function during proecdysis and their evolution corresponds with the way spiders secure themselves when molting. We suggest that the function of aciniform silk in juvenile wolf spiders is to serve as an ancillary “scaffold” supporting the spider's body during ecdysis.  相似文献   

6.
The microstructural organization of the silk‐spinning apparatus of the comb‐footed spider, Achaearanea tepidariorum, was observed by using a field emission scanning electron microscope. The silk glands of the spider were classified into six groups: ampullate, tubuliform, flagelliform, aggregate, aciniform and pyriform glands. Among these, three types of silk glands, the ampullate, pyriform and aciniform glands, occur only in female spiders. One (adult) or two (subadult) pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another pair of minor ampullate glands supply the median spinnerets. Three pairs of tubuliform glands in female spiders send secretory ductules to the median (one pair) and posterior (two pairs) spinnerets. Furthermore, one pair of flagelliform glands and two pairs of aggregate glands together supply the posterior spinnerets, and form a characteristic spinning structure known as a “triad” spigot. In male spiders, this combined apparatus of the flagelliform and the aggregate spigots for capture thread production is not apparent, instead only a non‐functional remnant of this triad spigot is present. In addition, the aciniform glands send ductules to the median (two pairs) and the posterior spinnerets (12–16 pairs), and the pyriform glands feed silk into the anterior spinnerets (90–100 pairs in females and 45–50 pairs in males).  相似文献   

7.
We examined the webs of Linyphia triangularis (Clerck) and Microlinyphia pusilla (Sundevall) using light and scanning electronic microscopic techniques and compared them with the better known orb‐webs. The linyphiid sheet‐web consists of an unordered meshwork of fibres of different thicknesses. The sheet is connected to the scaffolding by means of attachment discs. Thin threads with globules, which appear similar to the viscid silk droplets of orb‐webs, are present in most webs examined. Webs of M. pusilla had a higher density of these globules than did webs of L. triangularis. Webs of both species possess five types of thread connections and contain no aqueous glue for prey capture. Instead, unlike orb‐webs, the sticky substances produced by the linyphiid aggregate glands cement the different layers and threads of the sheet by drying up after being produced. Due to their function, sheet webs may not require viscid silk, thereby leading to a more economic web. The assumption made in most previous studies, that the globules in linyphiid webs have the same properties and function as viscid silk in orb‐webs, is unfounded.  相似文献   

8.
Although the basic taxonomic characteristics usually remain unchanged, some spinning apparatuses undergo consistent adaptive variations. As the presence of additional protuberances known as nubbins and tartipores have caused disagreements regarding some Araneidae spiders, more detailed definitions on the cuticular structures have recently been proposed. Reflecting this definition, microstructural organization of silk spinning apparatuses in the orb web spider Argiope bruennichi were reconsidered using field emission scanning electron microscopy. Among the seven kinds of functional spigots in females, it was revealed that two types (major ampullates and pyrifoms) are located on anterior spinnerets and another five types are distributed on median (minor ampullates, tubuliforms and aciniforms) or posterior (tubuliforms, flagelliforms, aggregates and aciniforms) spinnerets, respectively. In addition to functional spigots, cuticular remnants of the nubbins and the tartipores were found on the spinning fields, but the number of tartipores on each spinneret varied among individuals based on maturity. Nevertheless, three kinds of cuticular protuberances of ampullate silk glands were clearly visible at both the anterior and median spinnerets.  相似文献   

9.
Modern spiders spin high-performance silk fibers with a broad range of biological functions, including locomotion, prey capture and protection of developing offspring 1,2. Spiders accomplish these tasks by spinning several distinct fiber types that have diverse mechanical properties. Such specialization of fiber types has occurred through the evolution of different silk-producing glands, which function as small biofactories. These biofactories manufacture and store large quantities of silk proteins for fiber production. Through a complex series of biochemical events, these silk proteins are converted from a liquid into a solid material upon extrusion.Mechanical studies have demonstrated that spider silks are stronger than high-tensile steel 3. Analyses to understand the relationship between the structure and function of spider silk threads have revealed that spider silk consists largely of proteins, or fibroins, that have block repeats within their protein sequences 4. Common molecular signatures that contribute to the incredible tensile strength and extensibility of spider silks are being unraveled through the analyses of translated silk cDNAs. Given the extraordinary material properties of spider silks, research labs across the globe are racing to understand and mimic the spinning process to produce synthetic silk fibers for commercial, military and industrial applications. One of the main challenges to spinning artificial spider silk in the research lab involves a complete understanding of the biochemical processes that occur during extrusion of the fibers from the silk-producing glands.Here we present a method for the isolation of the seven different silk-producing glands from the cobweaving black widow spider, which includes the major and minor ampullate glands [manufactures dragline and scaffolding silk] 5,6, tubuliform [synthesizes egg case silk] 7,8, flagelliform [unknown function in cob-weavers], aggregate [makes glue silk], aciniform [synthesizes prey wrapping and egg case threads] 9 and pyriform [produces attachment disc silk] 10. This approach is based upon anesthetizing the spider with carbon dioxide gas, subsequent separation of the cephalothorax from the abdomen, and microdissection of the abdomen to obtain the silk-producing glands. Following the separation of the different silk-producing glands, these tissues can be used to retrieve different macromolecules for distinct biochemical analyses, including quantitative real-time PCR, northern- and western blotting, mass spectrometry (MS or MS/MS) analyses to identify new silk protein sequences, search for proteins that participate in the silk assembly pathway, or use the intact tissue for cell culture or histological experiments.  相似文献   

10.
Behavioural and biomaterial coevolution in spider orb webs   总被引:1,自引:0,他引:1  
Mechanical performance of biological structures, such as tendons, byssal threads, muscles, and spider webs, is determined by a complex interplay between material quality (intrinsic material properties, larger scale morphology) and proximate behaviour. Spider orb webs are a system in which fibrous biomaterials—silks—are arranged in a complex design resulting from stereotypical behavioural patterns, to produce effective energy absorbing traps for flying prey. Orb webs show an impressive range of designs, some effective at capturing tiny insects such as midges, others that can occasionally stop even small birds. Here, we test whether material quality and behaviour (web design) co‐evolve to fine‐tune web function. We quantify the intrinsic material properties of the sticky capture silk and radial support threads, as well as their architectural arrangement in webs, across diverse species of orb‐weaving spiders to estimate the maximum potential performance of orb webs as energy absorbing traps. We find a dominant pattern of material and behavioural coevolution where evolutionary shifts to larger body sizes, a common result of fecundity selection in spiders, is repeatedly accompanied by improved web performance because of changes in both silk material and web spinning behaviours. Large spiders produce silk with improved material properties, and also use more silk, to make webs with superior stopping potential. After controlling for spider size, spiders spinning higher quality silk used it more sparsely in webs. This implies that improvements in silk quality enable ‘sparser’ architectural designs, or alternatively that spiders spinning lower quality silk compensate architecturally for the inferior material quality of their silk. In summary, spider silk material properties are fine‐tuned to the architectures of webs across millions of years of diversification, a coevolutionary pattern not yet clearly demonstrated for other important biomaterials such as tendon, mollusc byssal threads, and keratin.  相似文献   

11.
Abstract The potential costs and benefits of foraging in aggregations are examined for the orb-spinning spider Gasteracantha minax. Web-site tenacity is low in this species; individuals frequently move among sites, thereby joining aggregations of different sizes. Female spiders in aggregations suffered lower predation rates and attracted more males than their solitary counterparts. However, aggregated eggsacs, probably produced by females in aggregations, experienced higher rates of parasitism than solitary eggsacs. We found no evidence of higher prey capture success rates among spiders in aggregations. However, we demonstrate a novel way in which spiders can increase their foraging efficiency by decreasing silk investment. A spider spinning a web within an existing aggregation can attach the support threads of its web to those of other webs, thereby exploiting the silk produced by other spiders.  相似文献   

12.
Males of the orb‐weaving spider species Argiope bruennichi (Araneidae) are frequently victims of sexual cannibalism. Therefore, a male spider approaching a female should have strategies to avoid being killed before copulation. Our present field study detected six types of A. bruennichi male positions vis‐à‐vis the female web. In 78% of situations (39/50), only one male attached to a female. Two males attached to the same female in 11 cases. We observed no cases of three or more males on the same female web. We most commonly observed the situation of a male staying in its own web and connecting to a female's web with its silk thread (46% of cases). Of the female webs chosen by males, 68% were decorated with both an upper and lower portion of stabilimentum – a conspicuous white silk structure that reflects much more ultraviolet light than other spider silks in the web. Only 14% (7/50) of the selected webs lacked stabilimentum. Therefore, we conducted an experiment to investigate the males' choice between females' webs with and without stabilimentum. Of the 24 males used in the experiment, 10 chose webs with stabilimentum. This result did not show a strong preference of the male for stabilimentum between equally sized webs, and thus did not support an earlier suggestion that stabilimentum in A. bruennichi might function to guide males to females for mating.  相似文献   

13.
Embioptera (webspinners) are unique among insects in that juvenile and adults of both sexes spin silk. They possess spinning apparatuses in the basitarsomeres of their prothoracic legs, which they use to build galleries as habitat and protection. Embioptera are primitively social and cooperate in building the galleries. They also show sexual dimorphism that comprises modifications of the mandibles in males, the winglessness of the females and differences in the morphology of the forelegs. In the present investigation we address the correlation of spinning behaviour and sexual dimorphism in the spinning apparatus of Aposthonia ceylonica (Enderlein, 1912). To analyse spinning behaviour we conducted video observations of Ap. ceylonica in artificial habitats. We observed females and males alone as well as female-male pairs to cover possible effects of interactions between sexes. The morphology of the spinning apparatus was analysed and reconstructed using high resolution X-ray computed tomography (SRμCT). The observations show that during trials of 24 h adult males and females produce similar amounts of silk per body weight, despite the fact that adult males do not feed, perhaps due to modifications of their mandibles related to courtship that interfere with feeding. Spinning glands in males are distinctly smaller than in females in absolute values, which reflect the general size difference in females and males. Despite their smaller body size, the volumes of reservoirs of spinning glands are larger in males in relative as well as in absolute values. Together with spinning behaviour and the amount of silk production, this indicates that males produce and store gland secretions in the large reservoirs prior to their final moult for later use.  相似文献   

14.
15.
Spider silk is renowned for its high tensile strength, extensibility and toughness. However, the variability of these material properties has largely been ignored, especially at the intra-specific level. Yet, this variation could help us understand the function of spider webs. It may also point to the mechanisms used by spiders to control their silk production, which could be exploited to expand the potential range of applications for silk. In this study, we focus on variation of silk properties within different regions of cobwebs spun by the common house spider, Achaearanea tepidariorum. The cobweb is composed of supporting threads that function to maintain the web shape and hold spiders and prey, and of sticky gumfooted threads that adhere to insects during prey capture. Overall, structural properties, especially thread diameter, are more variable than intrinsic material properties, which may reflect past directional selection on certain silk performance. Supporting threads are thicker and able to bear higher loads, both before deforming permanently and before breaking, compared with sticky gumfooted threads. This may facilitate the function of supporting threads through sustained periods of time. In contrast, sticky gumfooted threads are more elastic, which may reduce the forces that prey apply to webs and allow them to contact multiple sticky capture threads. Therefore, our study suggests that spiders actively modify silk material properties during spinning in ways that enhance web function.  相似文献   

16.
Recent studies demonstrated that orb‐weaving spiders may alter web architectures, the amount of silk in webs, or the protein composition of silks in response to variation in amount or type of prey. In this study, we conducted food manipulations to examine three mechanisms by which orb‐weaving spiders may adjust the performance of webs to variation in prey by altering the architectures of webs, making structural changes to the diameters of silk threads, and manipulating the material properties or amino acid composition of silk fibers. We fed Nephila pilipes two different types of prey, crickets or flies, and then compared orb structure and the chemical and physical properties of major ampullate (MA) silk between groups. Prey type did not affect orb structures in N. pilipes, except for mesh size. However, MA silk diameter and the stiffness of orbs constructed by spiders fed crickets were significantly greater than for the fly group. MA fibers forcibly silked from N. pilipes fed crickets was significantly thicker, but less stiff, than silk from spiders fed flies. Spiders in the cricket treatment also produced MA silk with slightly, but statistically significantly, more serine than silk from spiders in the fly treatment. Percentages of other major amino acids (proline, glycine, and glutamine) did not differ between treatments. This study demonstrated that orb‐weaving spiders can simultaneously alter some structural and material properties of MA silk, as well as the physical characteristics of webs, in response to different types of prey.  相似文献   

17.
Summary The prosomal glands of Tetranychus urticae (Acari, Tetranychidae) were examined light and electron microscopically. Five paired and one unpaired gland are found both in females and males. The silk spinning apparatus consists of paired silk glands which extend laterally on both sides of the esophagus into the pedipalps. There, they enter the terminal silk gland bag which opens into a silk bristle at the apex of the pedipalps. The salivary secretions are formed in three paired glands which have an interconnecting duct, the podocephalic canal. The dorsal podocephalic glands may produce a serous secretion, the anterior podocephalic glands a mucous secretion, and the coxal organ may add a liquid, ion-rich secretion. These secretions pass the podocephalic canal and reach the mouth at the apex of the gnathosome. The function of the paired tracheal organs and the unpaired tracheal gland is still unclear. The tracheal gland may produce a secretion which facilitates the movement of the fused chelicerae and the stylets.This study was financed by a grant from the Deutsche Forschungsgemeinschaft (DFG Se 162/12)  相似文献   

18.
The microstructural characteristics of the silk‐spinning apparatus and its ecological significance in the coelotine spider Paracoelotes spinivulva were examined by field emission scanning electron microscopy, with the goal of understanding the properties and the evolutionary origins of these silk constructs. The silk apparatuses of this spider were composed of four basic types of silk‐spinning spigot (ampullate, pyriform, aciniform and tubuliform), which connected with typical silk glands in the abdominal cavity. Of the three pairs of spinnerets, the posterior pairs were highly elongated along the body axis. Anterior spinnerets comprised two pairs of ampullate glands and approximately 70–80 pairs of pyriform glands in both sexes. Middle spinnerets had one to two pairs of ampullate spigots, three pairs of tubuliform spigots in females, and 50–60 (female) or 80–90 (male) pairs of aciniform spigots. An additional two pairs of tubuliform spigots in females and 70–80 (female) or 100–120 (male) pairs of aciniform spigots were counted on the spinning surfaces of the posterior spinnerets in both sexes. Although the coelotine spiders use their silk to catch prey, P. spinivulva characteristically do not have a typical “triad” spigot, including a flagelliform and two aggregate spigots, for capture thread production.  相似文献   

19.
Summary The secretion present at the lumen of the salivary glands of spinning larvae ofRhynchosciara americana was studied cytochemically and with microspectrophotometry and fluorescence and quantitative polarization microscopy. It was found that structural proteins, including glycoproteins and lipoproteins, occur in this secretion. Findings involving spectral absorption profiles after xylidine ponceau staining, patterns of birefringence and dispersion of birefringence, and lack of dichroism after xylidine ponceau staining and of blue fluorescence after ANS staining are highly suggestive that the secretion ofR. americana differs from classical silks not only in terms of composition but also of macromolecular array. The silk secretion ofR. americana also appears to differ from that of another sciarid,Bradysia spatitergum. Part of the glycoproteins present at the glandular lumen is assumed to be extruded from cells of the posterior zone of the glands, whereas other glycoproteins (or their glycidic radicals) are probably removed from fat body cells via cells of the anterior zone of the glands. The salivary secretion of the spinning larvae ofR. americana contains calcium and is devoid of acid glycosaminoglycans.  相似文献   

20.
Most spider threads are on the micrometre and sub-micrometre scale. Yet, there are some spiders that spin true nano-scale fibres such as the cribellate orb spider, Uloborus plumipes. Here, we analyse the highly specialized capture silk-spinning system of this spider and compare it with the silk extrusion systems of the more standard spider dragline threads. The cribellar silk extrusion system consists of tiny, morphologically basic glands each terminating through exceptionally long and narrow ducts in uniquely shaped silk outlets. Depending on spider size, hundreds to thousands of these outlet spigots cover the cribellum, a phylogenetically ancient spinning plate. We present details on the unique functional design of the cribellate gland–duct–spigot system and discuss design requirements for its specialist fibrils. The spinning of fibres on the nano-scale seems to have been facilitated by the evolution of a highly specialist way of direct spinning, which differs from the aqua-melt silk extrusion set-up more typical for other spiders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号