首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct evidence is presented for a proline cycle using a cell-free experimental system which sequentially transfers 3H from [1-3H]glucose to NADP+ to Δ1-pyrroline-5-carboxylate and yields [3H]proline. The formation of [3H]proline depends on the presence of NADP, Δ1-pyrroline-5-carboxylate, and the enzymes glucose-6-phosphate dehydrogenase and Δ1-pyrroline-5-carboxylate reductase. The production of [3H]proline from unlabeled proline in the presence of mitochondria provides direct evidence for one complete turn of a proline cycle which transfers reducing equivalents produced by glucose oxidation in the pentose pathway into mitochondria. In this cycle, proline is oxidized to Δ1-pyrroline-5-carboxylate by mitochondrial proline oxidase. Δ1-pyrroline-5-carboxylate is released from mitochondria and is recycled back to proline by Δ1-pyrroline-5-carboxylate reductase with concomitant oxidation of NADPH. At the maximal rate observed, 60% of Δ1-pyrroline-5-carboxylate produced is recycled back to proline. This cycle provides a mechanism for transferring reducing equivalents from NADPH into mitochondria and is linked to glucose oxidation in the pentose pathway by NADPH turnover.  相似文献   

2.
Proline metabolism in mammals involves two other amino acids, glutamate and ornithine, and five enzymatic activities, Δ1-pyrroline-5-carboxylate (P5C) reductase (P5CR), proline oxidase, P5C dehydrogenase, P5C synthase and ornithine-δ-aminotransferase (OAT). With the exception of OAT, which catalyzes a reversible reaction, the other four enzymes are unidirectional, suggesting that proline metabolism is purpose-driven, tightly regulated, and compartmentalized. In addition, this tri-amino-acid system also links with three other pivotal metabolic systems, namely the TCA cycle, urea cycle, and pentose phosphate pathway. Abnormalities in proline metabolism are relevant in several diseases: six monogenic inborn errors involving metabolism and/or transport of proline and its immediate metabolites have been described. Recent advances in the Human Genome Project, in silico database mining techniques, and research in dissecting the molecular basis of proline metabolism prompted us to utilize functional genomic approaches to analyze human genes which encode proline metabolic enzymes in the context of gene structure, regulation of gene expression, mRNA variants, protein isoforms, and single nucleotide polymorphisms.  相似文献   

3.
Enzymes of proline biosynthesis and proline degradation which act on the same compound, delta 1-pyrroline-5-carboxylate, are physically separated in yeast cells. The enzyme responsible for the final step in proline biosynthesis, pyrroline-5-carboxylate reductase, converts pyrroline-5-carboxylate to proline and is located in the cytoplasm. The last enzyme in the proline degradative pathway, pyrroline-5-carboxylate dehydrogenase, converts pyrroline-5-carboxylate to glutamate and is found in the particulate fraction of the cell, presumably in the mitochondrion. By subcellular compartmentation, yeast cells avoid futile cycling between proline and pyrroline-5-carboxylate.  相似文献   

4.
Enzymes metabolizing delta1-pyrroline-5-carboxylate in rat tissues.   总被引:5,自引:4,他引:1       下载免费PDF全文
The direction and capacity for the metabolism of delta1-pyrroline-5-carboxylate in a number of rat tissues ere investigated by measuring the activities of delta1-pyrroline-5-carboxylate reductase, delta1-pyrroline-5-carboxylate dehydrogenase and proline oxidase. Each of these enzymes catalyzed unidirectional reactions in which delta1-pyrroline-5-carboxylate was either the substrate or product. Delta1-Pyrroline-5-carboxylate reductase activities that were much higher than any previously reported were obtained by avoiding its inactivation in the cold. delta1-Pyrroline-5-carboxylate dehydrogenase, previously said to act on both D- and L-isomers of delta1-pyrroline-5-carboxylate, acted only on the L-isomer. Proline oxidase could not be measured in two adult tissues, in which an inhibitor appeared after birth. The activity of delta1-pyrroline-5-carboxylate reductase significantly paralleled that of ornithine aminotransferase in 23 tissues, showing a widespread potential for proline synthesis from ornithine. An independently distributed potential in fewer tissues for proline degradation to alpha-oxoglutarate was shown by the significantly similar tissue distributions of proline oxidase. Delta1-pyrroline-5-carboxylate dehydrogenase and glutamate dehydrogenase. Reverse metabolism of glutamate or proline to ornithine would be atypical in rat tissues with these distributions of unidirectional enzyme reactions.  相似文献   

5.
Δ1-pyrroline-5-carboxylate has been shown to exert a strong stimulatory effect on the hexose monophosphate pentose pathway of glucose oxidation in fibroblasts. In gyrate atrophy, activity of an enzyme which can form Δ1-pyrroline-5-carboxylate is absent. The effect of this deficiency on the operation of the hexose monophosphate pentose pathway in fibroblasts from gyrate atrophy patients has not been examined. This communication describes such a study and shows that glucose metabolism through this pathway is the same for gyrate atrophy and normal fibroblasts either in the presence or absence of added Δ1-pyrroline-5-carboxylate.  相似文献   

6.
Proline-requiring mutants of Saccharomyces cerevisiae were isolated. Each mutation is recessive and is inherited as expected for a single nuclear gene. Three complementation groups cold be defined which are believed to correspond to mutations in the three genes (pro1, pro2, and pro3) coding for the three enzymes of the pathway. Mutants defective in the pro1 and pro2 genes can be satisfied by arginine or ornithine as well as proline. This suggests that the blocks are in steps leading to glutamate semialdehyde, either in glutamyl kinase or glutamyl phosphate reductase. A pro3 mutant has been shown by enzyme assay to be deficient in delta 1-pyrroline-5-carboxylate reductase which converts pyrroline-5-carboxylate to proline. A unique feature of yeast proline auxotrophs is their failure to grown on the rich medium, yeast extract-peptone-glucose. This failure is not understood at present, although it accounts for the absence of proline auxotrophs in previous screening for amino acid auxotrophy.  相似文献   

7.
Recent studies have shown that pyrroline 5-carboxylate, the intermediate in the interconversions of proline, ornithine, and glutamate, can regulate the metabolism of erythrocytes. We now report that the formation of 5-phosphoribosyl 1-pyrophosphate (PP-Rib-P) was markedly stimulated by pyrroline 5-carboxylate in intact red cells. The production of PP-Rib-P is an important point of regulation in nucleotide metabolism. We found that pyrroline 5-carboxylate increased glucose metabolism through the oxidative arm of the pentose shunt, ribose 5-phosphate formation, and PP-Rib-P production and subsequently augmented purine nucleotide production through the salvage pathway in erythrocytes. We now report that pyrroline 5-carboxylate markedly stimulated the net synthesis of inosine monophosphate from hypoxanthine in intact human red cells so that the pool of inosine monophosphate became 20-30% of the total pool of purine nucleotides. Inosine monophosphate has been considered to be a "mobile pool" of purines, i.e. a reservoir from which peripheral tissues can be supplied; the effect of pyrroline 5-carboxylate on the inosine monophosphate pool may be a mechanism for regulating the function of erythrocytes in purine delivery.  相似文献   

8.
1. Investigations of the mechanism of the non-oxidative segment of the pentose phosphate cycle in isolatd hepatocytes by prediction-labelling studies following the metabolism of [2-14C]-, [5-14C]- and [4,5,6-14C]glucose are reported. The 14C distribution patterns in glucose 6-phosphate show that the reactions of the L-type pentose pathway in hepatocytes. 2. Estimates of the quantitative contribution of the L-type pentose cycle are the exclusive form of the pentose cycle to glucose metabolism have been made. The contribution of the L-type pentose cycle to the metabolism of glucose lies between 22 and 30% in isolated hepatocytes. 3. The distribution of 14C in the carbon atoms of glucose 6-phosphate following the metabolism of [4,5,6-14C]- and [2-14C]glucose indicate that gluconeogenesis from triose phosphate and non-oxidative formation of pentose 5-phosphate do not contribute significantly to randomization of 14C in isolated hepatocytes. The transaldolase exchange reaction between fructose 6-phosphate and glyceraldehyde 3-phosphate is very active in these cells.  相似文献   

9.
A mutation resulting in inducer-independent expression of the proline-degradative enzymes was isolated in the yeast Saccharomyces cerevisiae. Strains carrying the mutation, put3, are partially constitutive for proline oxidase and delta 1-pyrroline-5-carboxylate dehydrogenase when grown on a medium lacking proline and are hyperinducible for both enzyme activities when grown on a proline-containing medium. put3 segregates as a single nuclear gene, is not linked to either of the presumed structural genes for proline oxidase and delta 1-pyrroline-5-carboxylate dehydrogenase, and does not affect proline transport. When heterozygous in diploid strains, put3 behaves neither fully dominant nor fully recessive. Endogenous induction by proline has been eliminated as a cause of the inducer-independent enzyme expression in the put3 mutant and the mutation is believed to be in a regulatory component of the proline-degradative pathway.  相似文献   

10.
The reactions catalyzed by proline oxidase and pyrroline-5-carboxylate reductase form a catalytic cycle linking the hexose-monophosphate pentose (HMP) pathway to mitochondrial ATP generation. The cycling of proline and pyrroline-5-carboxylate couples glucose oxidation to ATP generation by a mechanism independent of the Embden-Meyerhof pathway and the tricarboxylic acid cycle.  相似文献   

11.
Fungal metabolism of biphenyl.   总被引:9,自引:0,他引:9       下载免费PDF全文
gamma-Glutamyl phosphate reductase, the second enzyme of proline biosynthesis, catalyses the formation of l-glutamic acid 5-semialdehyde from gamma-glutamyl phosphate with NAD(P)H as cofactor. It was purified 150-fold from crude extracts of Pseudomonas aeruginosa PAO 1 by DEAE-cellulose chromatography and hydroxyapatite adsorption chromatography. The partially purified preparation, when assayed in the reverse of the biosynthetic direction, utilized l-1-pyrroline-5-carboxylic acid as substrate and reduced NAD(P)(+). The apparent K(m) values were: NAD(+), 0.36mm; NADP(+), 0.31mm; l-1-pyrroline-5-carboxylic acid, 4mm with NADP(+) and 8mm with NAD(+); P(i), 28mm. 3-(Phosphonoacetylamido)-l-alanine, a structural analogue of gamma-glutamyl phosphate, inhibited this enzyme competitively (K(i)=7mm). 1-Pyrroline-5-carboxylate reductase (EC 1.5.1.2), the third enzyme of proline biosynthesis, was purified 56-fold by (NH(4))(2)SO(4) fractionation, Sephadex G-150 gel filtration and DEAE-cellulose chromatography. It reduced l-1-pyrroline-5-carboxylate with NAD(P)H as a cofactor to l-proline. NADH (K(m)=0.05mm) was a better substrate than NADPH (K(m)=0.02mm). The apparent K(m) values for l-1-pyrroline-5-carboxylate were 0.12mm with NADPH and 0.09mm with NADH. The 3-acetylpyridine analogue of NAD(+) at 2mm caused 95% inhibition of the enzyme, which was also inhibited by thio-NAD(P)(+), heavy-metal ions and thiol-blocking reagents. In cells of strain PAO 1 grown on a proline-medium the activity of gamma-glutamyl kinase and gamma-glutamyl phosphate reductase was about 40% lower than in cells grown on a glutamate medium. No repressive effect of proline on 1-pyrroline-5-carboxylate reductase was observed.  相似文献   

12.
Genes with a role in proline metabolism are strongly expressed when mycobacterial cells are exposed to nutrient starvation and hypoxia. Here we show that proline metabolism in mycobacteria is mediated by the monofunctional enzymes Δ(1) -pyrroline-5-carboxylate dehydrogenase (PruA) and proline dehydrogenase (PruB). Proline metabolism was controlled by a unique membrane-associated DNA-binding protein PruC. Under hypoxia, addition of proline led to higher biomass production than in the absence of proline despite excess carbon and nitrogen. To identify the mechanism responsible for this enhanced growth, microarray analysis of wild-type Mycobacterium smegmatis versus pruC mutant was performed. Expression of the DNA repair machinery and glyoxalases was increased in the pruC mutant. Glyoxalases are proposed to degrade methylglyoxal, a toxic metabolite produced by various bacteria due to an imbalance in intermediary metabolism, suggesting the pruC mutant was under methylglyoxal stress. Consistent with this notion, pruB and pruC mutants were hypersensitive to methylglyoxal. Δ(1) -pyrroline-5-carboxylate is reported to react with methylglyoxal to form non-toxic 2-acetyl-1-pyrroline, thus providing a link between proline metabolism and methylglyoxal detoxification. In support of this mechanism, we show that proline metabolism protects mycobacterial cells from methylglyoxal toxicity and that functional proline dehydrogenase, but not Δ(1) -pyrroline-5-carboxylate dehydrogenase, is essential for this protective effect.  相似文献   

13.
Based on localization and high activities of pyrroline-5-carboxylate reductase and proline dehydrogenase activities in soybean nodules, we previously suggested two major roles for pyrroline-5-carboxylate reductase in addition to the production of the considerable quantity of proline needed for biosynthesis; namely, transfer of energy to the location of biological N2 fixation, and production of NADP+ to drive the pentose phosphate pathway. The latter produces ribose-5-phosphate which can be used in de novo purine synthesis required for synthesis of ureides, the major form in which biologically fixed N2 is transported from soybean root nodules to the plant shoot. In this paper, we report rapid induction (in soybean nodules) and exceptionally high activities (in nodules of eight species of N2-fixing plants) of pentose phosphate pathway and pyrroline-5-carboxylate reductase. There was a marked increase in proline dehydrogenase activity during soybean (Glycine max) ontogeny. The magnitude of proline dehydrogenase activity in bacteroids of soybean nodules was sufficiently high during most of the time course to supply a significant fraction of the energy requirement for N2 fixation. Proline dehydrogenase activity in bacteroids from nodules of other species was also high. These observations support the above hypothesis. However, comparison of pentose phosphate pathway and pyrroline-5-carboxylate reductase activities of ureide versus amide-exporting nodules offers no support. The hypothesis predicts that pyrroline-5-carboxylate and pentose phosphate pathway activities should be higher in ureide-exporting nodules than in amide-exporting nodules. This predicted distinction was not observed in the results of in vitro assays of these activities.  相似文献   

14.
These studies indicate that the interconversions of delta 1-pyrroline-5-carboxylate and proline can function as a shuttle that generates extra-mitochondrial NADP+ and transfers hydride ions into mitochondria in a cell-free rat liver system. A phosphate-free buffer with high concentrations of triethanolamine and 2-mercaptoethanol prevented the cold inactivation of pyrroline-5-carboxylate reductase (EC 1.5.1.2) in liver extracts. This enzyme had an apparent KmNADPH that was 2% of the apparent KmNADH X VmaxNADPH was approx. 50% of VmaxNADH. Unlabeled proline was converted to [5-3H]proline in incubations containing liver soluble fraction, mitochondria and a [4S-3H]NADPH generating system. This demonstrated one turn of the proposed shuttle in a homologous liver system. [5-3H]Proline production increased linearly over 60 min and decreased by 87% or more when specific components were eliminated. Rotenone was required for maximal activity, suggesting that inhibition of delta 1-pyrroline-5-carboxylate efflux would be required for significant shuttle activity in vivo. Both the relative concentrations of NADPH and NADH in liver cytosol and the kinetic characteristics of liver pyrroline-5-carboxylate reductase predict that the described shuttle should be overwhelmingly linked to NADPH rather than NADH. A NADPH-linked delta 1-pyrroline-5-carboxylate-proline shuttle may occur in hepatocytes and function at specific times to regulate pathways limited by cytosolic [NADP+].  相似文献   

15.
The role of the δ-ornithine amino transferase (OAT) pathway in proline synthesis is still controversial and was assessed in leaves of cashew plants subjected to salinity. The activities of enzymes and the concentrations of metabolites involved in proline synthesis were examined in parallel with the capacity of exogenous ornithine and glutamate to induce proline accumulation. Proline accumulation was best correlated with OAT activity, which increased 4-fold and was paralleled by NADH oxidation coupled to the activities of OAT and Δ1-pyrroline-5-carboxylate reductase (P5CR), demonstrating the potential of proline synthesis via OAT/P5C. Overall, the activities of GS, GOGAT and aminating GDH remained practically unchanged under salinity. The activity of P5CR did not respond to NaCl whereas Δ1-pyrroline-5-carboxylate dehydrogenase was sharply repressed by salinity. We suggest that if the export of P5C from the mitochondria to the cytosol is possible, its subsequent conversion to proline by P5CR may be important. In a time-course experiment, proline accumulation was associated with disturbances in amino acid metabolism as indicated by large increases in the concentrations of ammonia, free amino acids, glutamine, arginine and ornithine. Conversely, glutamate concentrations increased moderately and only within the first 24 h. Exogenous feeding of ornithine as a precursor was very effective in inducing proline accumulation in intact plants and leaf discs, in which proline concentrations were several times higher than glutamate-fed or salt-treated plants. Our data suggest that proline accumulation might be a consequence of salt-induced increase in N recycling, resulting in increased levels of ornithine and other metabolites involved with proline synthesis and OAT activity. Under these metabolic circumstances the OAT pathway might contribute significantly to proline accumulation in salt-stressed cashew leaves.  相似文献   

16.
Tobacco (Nicotiana tabacum L. var Wisconsin 38) cells that are adapted to 428 millimolar NaCl accumulate proline mainly due to increased synthesis from glutamate. These cells were used to evaluate the possible role of Δ1-pyrroline-5-carboxylate reductase in the regulation of proline biosynthesis. No increase in the specific activity of Δ1-pyrroline-5-carboxylate reductase in crude extracts throughout the growth cycle was observed in NaCl-adapted cells compared to unadapted cells. The enzyme from both cell types was purified extensively. On the basis of affinity for the substrates NADPH, NADH, and Δ1-pyrroline-5-carboxylate, pH profiles, chromatographic behavior during purification, and electrophoretic mobility of the native enzyme, the activities of the enzyme from the two sources were similar. These data suggest that the NaCl-dependent regulation of proline synthesis in tobacco cells does not involve induction of pyrroline-5-carboxylate isozymes or changes in its kinetic properties.  相似文献   

17.
Crystal structure of human pyrroline-5-carboxylate reductase   总被引:2,自引:0,他引:2  
Pyrroline-5-carboxylate reductase (P5CR) is a universal housekeeping enzyme that catalyzes the reduction of Delta(1)-pyrroline-5-carboxylate (P5C) to proline using NAD(P)H as the cofactor. The enzymatic cycle between P5C and proline is very important for the regulation of amino acid metabolism, intracellular redox potential, and apoptosis. Here, we present the 2.8 Angstroms resolution structure of the P5CR apo enzyme, its 3.1 Angstroms resolution ternary complex with NAD(P)H and substrate-analog. The refined structures demonstrate a decameric architecture with five homodimer subunits and ten catalytic sites arranged around a peripheral circular groove. Mutagenesis and kinetic studies reveal the pivotal roles of the dinucleotide-binding Rossmann motif and residue Glu221 in the human enzyme. Human P5CR is thermostable and the crystals were grown at 37 degrees C. The enzyme is implicated in oxidation of the anti-tumor drug thioproline.  相似文献   

18.
We previously reported that pyrroline-5-carboxylate (PC), the intermediate in the interconversions of proline, ornithine and glutamate markedly stimulates hexosemonophosphate-pentose pathway activity in human erythrocytes. The stimulation is mediated by pyrroline-5-carboxylate reductase which generates NADP+ accompanying the conversion of pyrroline-5-carboxylate to proline. We now report that the previously demonstrated effect of pyrroline-5-carboxylate on glucose oxidation through the hexose-monophosphate-pentose pathway is accompanied by increased phosphoribosyl-pyrophosphate production and increased formation of nucleotides via the salvage pathway. The demonstrated effect of pyrroline-5-carboxylate on purine processing may provide a regulatory link between amino acid and nucleotide metabolism.  相似文献   

19.
The last step in proline biosynthesis in Escherichia coli K-12, Salmonella typhimurium LT7, and a number of other enterobacterial isolates is regulated so that no proline is excreted, even if excess Delta(1)-pyrroline-5-carboxylate, the immediate precursor of proline, is added to a culture. In proline auxotrophs blocked at an early step in proline biosynthesis (proA or proB), reversion to prototrophy is often due to a mutation in the arginine pathway which diverts N-acetyl glutamate gamma-semialdehyde to proline synthesis, thus bypassing the proA or proB block. In such double mutants (proAB, argD), the last step in proline synthesis appears to be unregulated, since proline is excreted. Feedback inhibition and repression of the arginine pathway overcomes indirect suppression (restoring the Pro(-) phenotype), but proline regulation is not restored; double mutants still excrete proline when fed Delta(1)-pyrroline-5-carboxylate exogeneously. A new class of proline analogue-resistant mutant, due to mutation at argD, is also described.  相似文献   

20.
L-pyrroline-5-carboxylic acid, an intermediate in the interconversions of glutamic acid, ornithine and proline, is a potent stimulator of the hexose-monophosphate pentose pathway in cultured human fibroblasts. These studies suggest that pyrroline-5-carboxylate reductase, which catalyzes the conversion of pyrroline-5-carboxylate to proline coupled with the oxidation of NADPH, provides the NADP for the observed activation of the hexose-monophosphate pentose pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号