首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T.J. Kula  M.I.H. Aleem  David F. Wilson 《BBA》1982,680(2):142-151
(1) Cells of ThiobacillusA2 grown chemoautotrophically on thiosulfate or heterotrophically on succinate with oxygen contained b-, c-, o-, a- and a3-type cytochromes. The amount of cytochrome per mg of cell protein was much greater in thiosulfate-grown cells and differences in the relative concentrations of cytochromes were observed for the different growth conditions. (2) The half-reduction potentials at pH 7.0 (Em,7.0) and spectral maxima of c-, b-, a- and a3-type cytochromes were similar in cells grown aerobically with thiosulfate or with succinate as the growth substrate. (3) The half-reduction potential of the ‘invisible’, or high-potential copper, as determined from the potentiometric behavior of the carbon monoxide-reduced cytochrome a3 complex at pH 8.0, was 365 mV. (4) Reducing equivalents from thiosulfate appear to enter the respiratory chain at the cytochrome c level; however, studies in cell-free extracts were limited due to a loss in respiratory activity with thiosulfate as a substrate upon cell disruption.  相似文献   

2.
The effect of antimycin on (i) the respiratory activity of the KCN-insensitive pathway of mitochondria of Neurospora grown on chloramphenicol (chloramphenicol-grown) with durohydroquinone and succinate or NADH as substrate, (ii) the electron transfer from the b-type cytochromes to ubiquinone with durohydroquinone as electron donor as well as (iii) the electron transfer from the b-type cytochromes to duroquinone with succinate as electron donor in chloramphenicol-grown Neurospora and beef heart submitochondrial particles was studied. All experiments were performed in the uncoupled state. 1. The respiratory chain of chloramphenicol-grown Neurospora mitochondria branches at ubiquinone into two pathways. Besides the cytochrome oxidase-dependent pathway, a KCN-insensitive branch equiped with a salicylhydroxamate-sensitive oxidase exists. Durohydroquinone, succinate or NADH are oxidized via both pathways. The durohydroquinone oxidation via the KCN-insensitive pathway is inhibited by antimycin, wheras the succinate or NADH oxidation is not. The titer for ful inhibition is one mol antimycin per mol cytochrome b-563 or cytochrome b-557. 2. The electron transfer from durohydroquinone to ubiquinone, which takes place in the KCN-inhibited state, does not occur in the antimycin-inhibited state. 3. The reduction of duroquinone by succinate in the presence of KCN is inhibited by antimycin. The titer for full inhibition is one mol antimycin per mol cytochrome b-566 or cytochrome b-562 for beef heart (or cytochrome b-563 or cytochrome b-557 for Neurospora). 4. When electron transfer from the b-type cytochromes to cytochrome C1, ubiquinone and duroquinone is inhibited by antimycin, the hemes of cytochrome b-566 and cytochrome b-562 (or cytochrome b-563 and cytochrome b-557) are in the reduced state. 5. The experimental results suggest that the two b-type cytochromes form a binary complex the electron transferring activity of which is inhibited by antimycin, the titer for full inhibition being one mol of antimycin per mol of complex. The electron transfer from the b-type cytochromes to ubiquinone is inhibited in a non-linear fashion.  相似文献   

3.
The mitochondria isolated from the ciliate protozoon Tetrahymena pyriformis carry an oxidative phosphorylation with P/O ratio of 2 for succinate oxidation and P/O ratio of 3 for the oxidation of the NAD-linked substrates. The respiration is more than 90% inhibited with 1 mM cyanide while antimycin A and rotenone inhibit at concentrations of 1000-fold higher than those effective in mammalian mitochondria. Using a combination of spectral studies and potentiometric titrations, the components of the respiratory chain were identified and characterized with respect to the values of their half-reduction potentials. In the cytochrome bc1 region of the chain a cytochrome c was present with an Em7.2 of 0.225 V and two components with absorption maxima at 560 nm and the half-reduction potential values of -0.065 and -0.15 V at pH 7.2. The cytochrome with the more positive half-reduction potential was identified as the analogue of the cytochrome(s) b present in mitochondria of higher organisms, while the cytochrome with the more negative half-reduction potential was tentatively identified as cytochrome o. In addition ubiquinone was present at a concentration of approx. 4 nmol per mg mitochondrial protein. In the spectral region where cytochromes a absorb at least three cytochromes were found. A cytochrome with an absorption maximum at 593 nm and a midpoint potential of -0.085 V at pH 7.2 was identified as cytochrome a1. The absorption change at 615-640 nm, attributed usually to cytochrome a2, was resolved into two components with Em7,2 values of 0,245 and 0.345 V. It is concluded that the terminal oxidase in Tetrahymena pyriformis mitochondria is cytochrome a2 which in its two component structure resembles cytochrome aa3.  相似文献   

4.
The membrane-bound respiratory chain components of alkalophilic Bacillus firmus RAB were studied by difference spectroscopy and oxidation-reduction potentiometric titrations. Cytochromes with the following midpoint potentials were identified at pH 9.0: a-type cytochromes, +110 and +210 mV; b-type cytochromes, +20, -120, -280, and -400 mV; and cytochrome c, +60 mV. Only the higher-potential cytochrome a showed an upward shift in midpoint potential when titrated at pH 7.0. Parallel studies of a non-alkalophilic mutant derivative of B. firmus RAB, strain RABN, revealed the presence of only one species each of a-, b-, and c-type cytochromes which exhibited midpoint potentials of +110, -150, and +160 mV, respectively, at pH 7.0. Membranes of both strains were found to contain menaquinone. At pH 9.0, NADH caused the reduction of essentially all of the cytochromes that were seen in fully reduced preparations of wild-type B. firmus RAB membranes. By contrast, at pH 7.0, NADH failed to appreciably reduce the b-type cytochromes. These findings may relate to our recent proposal that an inadequacy in energy transduction (production of a proton motive force) by the alkalophilic respiratory chain at pH 7.0 is what precludes the growth of B. firmus RAB at a neutral pH.  相似文献   

5.
An active respiratory chain system was demonstrated in sonically treated mycelium of Streptomyces antibioticus, the producer of antimycin A. The respiratory electron transfer from substrate to oxygen proceeded successively through flavoprotein(s), b-, c-, and a-type cytochromes, and terminated with the cyanide-sensitive cytochrome oxidase. The cytochrome composition of the culture was not affected by the age of the mycelium, the intensity of antimycin A production, or differences in the media. Slater factor, coenzyme Q, and vitamin K were not interposed as hydrogen carriers in the respiratory chain between flavoproteins and cytochromes. The oxidation of reduced nicotinamide adenine dinucleotide and succinate was unaffected by antimycin A. Evidence is presented in support of the absence of the antimycin A-sensitive site from the electron transport system of S. antibioticus.  相似文献   

6.
The electron transport systems of Fasciola hepatica mitochondria were investigated spectrophotometrically at room temperature and at −196°. The mitochondria were found to contain substrate reducible a-, b- and c-type cytochromes. All of the cytochrome components of the classical mammalian type of respiratory chain were present, although the concentration of cytochromes aa3 was low. In addition to the mammalian type of respiratory chain, the Fasciola mitochondria contained a substrate reducible b-type cytochrome component (557 nm) which included a CO reactive o-type cytochrome. The results suggest that F. hepatica mitochondria contain a branched electron transport system including a mammalian type of chain and involving two terminal oxidases and at least two b-type cytochromes.  相似文献   

7.
The protein composition, cytochrome content, and reductase activity in the dissimilatory selenate-reducing bacterium Geospirillum barnesii strain SeS3, grown with thiosulfate, nitrate, selenate, or fumarate as the terminal electron acceptor, was investigated. Comparison of seven high-molecular-mass membrane proteins (105.3, 90.3, 82.6, 70.2, 67.4, 61.1, and 57.3 kDa) by SDS-PAGE showed that their detection was dependent on the terminal electron acceptor used. Membrane fractions from cells grown on thiosulfate contained a 70.2-kDa c-type cytochrome with absorbance maxima at 552, 522, and 421 nm. A 61.1-kDa c-type cytochrome with absorption maxima at 552, 523, and 423 nm was seen in membrane fractions from cells grown on nitrate. No c-type cytochromes were detected in membrane fractions of either selenate- or fumarate-grown cells. Difference spectra, however, revealed the presence of a cytochrome b 554 (absorption maxima at 554, 523, and 422 nm) in membrane fractions from selenate-grown cells and a cytochrome b 556 (absorption maxima at 556, 520, and 416 nm) in membrane fractions from fumarate-grown cells. Analysis of reductase activity in the different membrane fractions showed variability in substrate specificity. However, enzyme activity was greatest for the substrate on which the cells had been grown (e.g., membranes from nitrate-grown cells exhibited the greatest activity with nitrate). These results show that protein composition, cytochrome content, and reductase activity are dependent on the terminal electron acceptor used for growth. Received: 21 August 1996 / Accepted: 24 October 1996  相似文献   

8.
Low-temperature electron spin resonance spectroscopy was used to investigate the redox centres of Micrococcus luteus membranes. Three different types of iron-sulphur centres were distinguished. Two of these, a [4Fe-4S]3+-type cluster giving rise to a signal at g = 2.01 in the oxidized state and a [2Fe-2S] cluster with a spectrum at g = 2.03 and 1.93 in the reduced state, were attributable to succinate dehydrogenase. Another, generating signals in the reduced state at g = 2.027, 1.90 and 1.78 was identified as a 'Rieske' iron-sulphur centre. This latter cluster had a mid-point potential (pH 7.0) of +130 mV. In addition, signals characteristic of high-spin ferric haem (g = 6.20), low-spin ferric haem (g = 3.67, 3.36 and 3.01) and Cu2+ (g = 2.18 and 2.02) were also detected. The ferric-haem features, together with the Cu2+ and 'Rieske' centres, were enriched in membrane residues insoluble in Triton X-100, which are known from difference spectroscopy to contain cytochromes b-560, c-550 and a-601 (aa3 oxidase). The signals demonstrated by electron spin resonance for M. luteus membranes showed marked similarities to those documented for the complexes II, III, and IV of mitochondria. However, signals analogous to complex I (NADH-ubiquinone reductase) could not be demonstrated for M. luteus membranes.  相似文献   

9.
H A Dailey  Jr 《Journal of bacteriology》1976,127(3):1286-1291
The membrane-bound respiratory system of the gram-negative bacterium Spirillum itersonii was investigated. It contains cytochromes b (558), c (550), and o (558) and beta-dihydro-nicotinamide adenine dinucleotide (NADH) and succinate oxidase activities under all growth conditions. It is also capable of producing D-lactate and alpha-glycerophosphate dehydrogenases when grown with lactate or glycerol as sole carbon source. Membrane-bound malate dehydrogenase was not detectable under any conditions, although there is high activity of soluble nicotinamide adenine dinucleotide: malate dehydrogenase. When grown with oxygen as the sole terminal electron acceptor, approximately 60% of the total b-type cytochrome is present as cytochrome o, whereas only 40% is present as cytochrome o in cells grown with nitrate in the presence of oxygen. Both NADH and succinate oxidase are inhibited by azide, cyanide, antimycin A, and 2-n-heptyl-4-hydroxyquinoline-N-oxidase at low concentrations. The ability of these inhibitors to completely inhibit oxidase activity at low concentrations and their effects upon the aerobic steady-state reduction levels of b- and c-type cytochromes as well as the aerobic steady-state reduction levels obtained with NADH, succinate, and ascorbate-dichlorophenolindophenol suggest that presence of an unbranched respiratory chain in S. itersonii with the order ubiquinone leads to b leads to c leads to c leads to oxygen.  相似文献   

10.
1. Addition of KCN to aerobic, rotenone-inhibited rat liver mitochondria with out addition of substrate caused reduction of cytochromes b-562 (having an alpha-band at 562 nm at room temperature), c + c1, and a + a3. The effect of KCN on cytochrome b-562 was reversed by pentachlorophenol, though the effect of KCN on cytochromes c+c1 and a+a3 was not reversed by this uncoupler.2. Addition of ATP to aerobic, rat liver mitochondria inhibited with 500 muM KCN under conditions were cytochromes b-562, c+c1 and a+a3 were reduced, caused reduction of cytochrome b-566. The absorbance spectrum of cytochrome b-566 had an alpha-band at 565.5 nm, a beta-band at 538 nm and a gamma-band at 431 nm, but no shoulder around 558 nm at room temperature. 3. Addition of succinate to rotenone-KCN-inhibited and ATP-treated rat liver mitochondria under conditions where cytochromes b-566, b-562, c+c1 and a+a3 were already fully reduced, caused reduction of cytochrome b-558 (having an alpha-band at 558 nm, a beta-band at 527 nm and a gamma-band at 426 nm at room temperature) after exhaustion of molecular oxygen in the reaction medium, without any contribution from a long-wavelength species (cytochrome b-566). 4. It was concluded that the 558-nm band is not a short-wavelength shoulder of cytochrome b-566, but is due to a different species from cytochrome b-566.  相似文献   

11.
Mitochondria from glucagon-treated rats oxidize succinate, but not ascorbate plus tetramethylphenylenediamine, faster in the uncoupled state than do control mitochondria. The rate of O(2) uptake in the presence of both substrates is equal to the sum of the rates of the O(2) uptake in the presence of either substrate alone. It is concluded that the mitochondrial respiratory chain is limited at some point between cytochromes b and c and that this step is regulated by glucagon. Measurement of the cytochrome spectra under uncoupled conditions in the presence of succinate and rotenone demonstrates a crossover between cytochromes c and c(1) when control mitochondria are compared with those from glucagon-treated rats, cytochrome c being more oxidized and cytochrome c(1) more reduced in control mitochondria. Under conditions where pyruvate metabolism is studied the control mitochondria are generally more oxidized than those from glucagon-treated rats, the redox state of cytochrome b-566 correlating with the rate of pyruvate metabolism in sucrose medium. However, when the redox state of the mitochondria is taken into account, a crossover between cytochromes c and c(1) is again apparent. The spectra of the b cytochromes are complex, but cytochrome b-562 appears to become more reduced relative to cytochrome b-566 in mitochondria from glucagon-treated rats than in control mitochondria. This can be explained by the existence of a more alkaline matrix in glucagon-treated rats, the redox potential for cytochrome b being pH-sensitive. It is concluded that glucagon stimulates electron flow between cytochromes c(1) and c. The physiological significance of these findings is discussed.  相似文献   

12.
It has been found that the alkaliphilic Gram-negative bacterium Pseudomonas alcaliphila AL15-21T produces a larger amount of soluble c-type cytochromes at pH 10.0 under air-limited condition than at pH 7.0 under high aeration. Cytochrome c-552 was confirmed as the major c-type cytochrome among three soluble c-type cytochromes in the strain. To understand the physiological function of cytochrome c-552, a P. alcaliphila AL15-21T cytochrome c-552 gene deletion mutant without a marker gene was constructed by electrotransformation adjusted in this study for the strain. The maximum specific growth rate and maximum cell turbidity of cells grown at pHs 7.0 and 10.0 under the high-aeration condition did not differ significantly between the wild-type and cytochrome c-552 deletion mutant strains. In the mutant grown at pH 10.0 under low-aeration condition, marked decreases in the maximum specific growth rate (40%) and maximum cell turbidity (25%) compared with the wild type were observed. On the other hand, the oxygen consumption rates of cell suspensions of the mutant obtained by the growth at pH 10 under low-aeration condition were slightly higher than that of the wild type. Considering the high electron-retaining ability of cytochrome c-552, the above observations could be accounted for by cytochrome c-552 acting as an electron sink in the periplasmic space. This may facilitate terminal oxidation in the respiratory system at high pH under air-limited conditions.  相似文献   

13.
The mitochondria isolated from the ciliate protozoon Tetrahymena pyriformis carry an oxidative phosphorylation with P/O ratio of 2 for succinate oxidation and P/O ratio of 3 for the oxidation of the NAD-linked substrates. The respiration is more than 90% inhibited with 1 mM cyanide while antimycin A and rotenone inhibit at concentrations of 1000-fold higher than those effective in mammalian mitochondria.Using a combination of spectral studies and potentiometric titrations, the components of the respiratory chain were identified and characterized with respect to the values of their half-reduction potentials. In the cytochrome bc1 region of the chain a cytochrome c was present with an Em7.2 of 0.225 V and two components with absorption maxima at 560 nm and the half-reduction potential values of ?0.065 and ?0.15 V at pH 7.2. The cytochrome with the more positive half-reduction potential was identified as the analogue of the cytochrome(s) b present in mitochondria of higher organisms, while the cytochrome with the more negative half-reduction potential was tentatively identified as cytochrome o. In addition ubiquinone was present at a concentration of approx. 4 nmol per mg mitochondrial protein.In the spectral region where cytochromes a absorb at least three cytochromes were found. A cytochrome with an absorption maximum at 593 nm and a midpoint potential of ?0.085 V at pH 7.2 was identified as cytochrome a1. The absorption change at 615–640 nm, attributed usually to cytochrome a2 was resolved into two components with Em7.2 values of 0.245 and 0.345 V. It is concluded that the terminal oxidase in Tetrahymena pyriformis mitochondria is cytochrome a2 which in its two-component structure resembles cytochrome aa3.  相似文献   

14.
15.
1. Subcellular fractionation of sphaeroplasts produced at different stages during the first 4h of respiratory adaptation of anaerobically grown glucose-de-repressed Saccharomyces carlsbergensis gave mitochondrial fractions that contained all the detectable c- and a-type cytochromes. 2. The rates of cytochrome formation were studied; individual cytochromes were produced at different rates so as to give respiratory chains having widely differing cytochrome ratios. A CO-reacting haemoprotein other than cytochrome a(3) also increased throughout 8h of respiratory adaptation. 3. Even after short periods of aeration, organisms contained mitochondria in which cytochrome-cytochrome interactions and the reaction of cytochrome a(3) with O(2) proceeded at rates almost as fast as in organelles from aerobically grown cells. 4. The technique of flow-flash photolysis enabled kinetic resolution of the reoxidation of cytochromes a(3) and a to be achieved and their individual contributions to extinction changes in the Soret region were assessed. The ratio cytochrome a(3)/cytochrome a increased over the early stages of adaptation.  相似文献   

16.
The cytochromes of membranes of the cydA mutant Escherichia coli GR19N grown on a proline-amino acid medium were examined. Reduced minus oxidized difference spectra (including fourth-order finite difference spectra) showed that cytochromes with absorption maxima at 554-555, 556-557, 560-561.5 and 563.5-564.5 nm were present. In addition, there were two components with absorption maxima at 548.5 and 551.5 nm which made a minor contribution to the alpha-band absorbance. These were not examined further. Two pools within the cytochromes were detected. One pool, which was reduced rapidly by the substrates NADH, formate and succinate, consisted of cytochromes of the cytochrome o complex. These cytochromes had absorption maxima at 555, 557 and 563.5 nm. In addition, the low-potential cytochrome associated with formate dehydrogenase was reduced rapidly by formate, and a component absorbing at 560-561.5 nm was also present in this pool. The second pool of cytochromes was reduced more slowly by substrate, although the rate was accelerated greatly in the presence of the electron mediator phenazine methosulfate. These cytochromes absorbed maximally at about 556.5 nm. A portion of the cytochrome in this pool was reoxidized by fumarate. This cytochrome may be a component of the fumarate reductase pathway, since the membranes showed high NADH-fumarate reductase activity. The respiratory chain inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide appeared to act at two sites. One site of inhibition was between the dehydrogenases and the cytochromes. A second site of inhibition was located in the cytochrome o complex between cytochrome b-564 and oxygen.  相似文献   

17.
Two cytochromes c of Methylomonas J   总被引:2,自引:0,他引:2  
Two kinds of c-type cytochromes, cytochrome c-551 (I), and cytochrome c-551 (II), were highly purified and crystallized from cell-free extract of methanol-grown Methylomonas J (formerly Pseudomonas sp. J) and their physiochemical and biochemical properties were studied. Cytochrome c-551 (I) had an absorption peak at 409 nm in the oxidized form and peaks at 417, 523, 551 nm, and a shoulder at 532 nm in the reduced form. The millimolar extinction coefficient of the alpha-peak of the reduced form was 25.3. The isoelectric point was at pH 5.3 and its standard redox potential was 0.29 V at pH 7.0. The molecular weight was estimated to be 16,000. Cytochrome c-551 (II) had absorption maxima at 409 nm in the oxidized form, and at 416, 521, and 551 nm in the reduced form. The millimolar extinction coefficient of the alpha-peak of the reduced form was 22.4. The isoelectric point was at pH 4.3 and its standard redox form was 22.4. The isoelectric point was at pH 4.3 and its standard redox potential was 0.24 V at pH 7.0. The molecular weight was estimated to be 12,500. The two cytochromes were reduced by methanol dehydrogenase [EC 1.1.99.8] of this bacterium, and formaldehyde was detected as an oxidation product. Ammonium chloride was not essential for reduction of the cytochromes. No significant reduction of the cytochromes was observed by methylamine dehydrogenase isolated from methylamine-grown cells or by 2,6-dichlorophenol-indophenol (DCPIP)-dependent aldehyde dehydrogenase of the methanol-grown cells. The reduced forms of the cytochromes were oxidized by blue copper protein of the methanol-grown cells.  相似文献   

18.
The electron transport system of Neisseria gonorrhoeae was partially characterized by using spectrophotometric, spectroscopic, and oxygen consumption measurements. The effects of selected electron transport inhibitors (amytal, rotenone, 2-heptyl-4-hydroxyquinoline, antimycin A1, and potassium cyanide [KCN]) on electron transfer in whole-cell and sonically treated whole-cell preparations of N. gonorrhoeae were examined. The oxidation of reduced nicotinamide adenine dinucleotide, measured as a decrease in absorbance at 340 nm, was inhibited by each of the compounds tested. Oxygen consumption stimulated by reduced nicotinamide adenine dinucleotide was also inhibited, whereas oxygen uptake stimulated by succinate and malate was inhibited by KCN alone, suggesting the presence of a KCN-sensitive terminal oxidase. Room temperature optical difference spectra indicate an operational electron bypass around the amytal-rotenone-binding site. Difference spectra in the presence of 2-heptyl-4-hydroxyquinoline suggest a possible site of interaction of this compound at the substrate side of cytochrome b. Reduced-minus-oxidized spectra of ascorbate-tetramethyl-p-phenylenediamine suggest the participation of b-, a-, and d-type cytochromes in terminal oxidase activity. Hence, N. gonorrhoeae appears to have an electron transport chain containing cytochrome c, two b-type cytochromes (one of which has an oxidase function), and possibly a- and d-type cytochromes. An abbreviated chain exists through which succinate and malate can be oxidized directly by a KCN-sensitive component.  相似文献   

19.
Bacillus subtilis cells must have cytochromes for growth and can synthesize cytochromes of a-, b-, c-, d-, and o-types. After a long lag, our knowledge of the structure, genetics and specific role for these cytochromes is now growing exponentially as the result of recent research. This progress is reviewed here and includes, for example, the discovery of two different cytochrome a systems and genes required for their biogenesis.  相似文献   

20.
1. Cytochrome b-562 is more reduced in submitochondrial particles of mutant 28 during the aerobic steady-state respiration with succinate than in particles of the wild type. When anaerobiosis is reached, the reduction of cytochrome b is preceded by a rapid reoxidation in the mutnat. A similar reoxidation is observed in the wild type in the present of low concentrations of antimycin. 2. In contrast to the wild type, inhibition of electron transport in the mutant has a much higher antimycin titre than effects on cytochromes b (viz., aerobic steady-state reduction; reduction in the presence of substrate, cyanide and oxygen; the 'red shift' and lowering of E'-o of cytochrome b-562). Moreover, the titration curve of electron transport is hyperbolic whereas the curves for the reduction are sigmoidal. The conclusion is, that in both mutant and wild type, the actions of antimycin on electron transport and cytochromes b are separable. 3. The red shift in the mutant is more extensive than in the wild type. 4. Cytochrome b-558 and cytochrome b-566 (that absorbs in mutant and wild type at 564.5 nm) do not respond simultaneously to addition of antimycin, indicating that they are two separate cytochromes. 5. The difference between the effect of antimycin on electron transport and cytochromes b reduction is also found in intact cells of the mutant. 6. A model is suggested for the wild-type respiratory chain in which (i) the cytochromes b lie, in an uncoupled system, out of the main electron-transfer chain, (ii) antimycin induces a conformation change in QH-2-cytochrome c reductase resulting in effects on cytochrome b and inhibition of electron transport, (iii) a second antimycin-binding site with low affinity to the antibiotic is present, capable of inhibiting electron transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号