首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Across the world, the keeping of stingless bees is increasingly popular, providing commercial pollination, high-value honey and a rewarding pass time. The popularity of stingless beekeeping has resulted in large-scale anthropogenic movements of nests, sometimes from outside their native range. Colony movement has the potential to impact local populations via transfer of parasites and pathogens and gene flow across unnaturally large geographic scales. Tetragonula carbonaria is the most widespread and commonly kept stingless bee species in Australia. Concerns have been raised that large-scale artificial propagation of T. carbonaria colonies by Sydney beekeepers, from a small number of colonies that originated in south-east Queensland, may have two consequences. First, the managed population may be becoming increasingly inbred. Second, the wild population may be experiencing significant introgression of south-east Queensland genotypes, potentially diluting local adaptations to the Sydney environment and resulting in the loss of local alleles. Here we show, based on microsatellite and mitochondrial markers, that both the managed and wild Sydney populations are significantly different from the south-east Queensland population. Nonetheless there is evidence that introgression of south-east Queensland alleles is impacting the genetic structure of both wild and managed Sydney populations. The two Sydney populations are indistinguishable, suggesting two-way gene flow in Sydney consistent with expectations of gene flow via male dispersal. All populations have low inbreeding coefficients, suggesting that they are genetically healthy.  相似文献   

2.
Stingless bees are an important asset to assure plant biodiversity in many natural ecosystems, and fulfill the growing agricultural demand for pollination. However, across developing countries stingless beekeeping remains an essentially informal activity, technical knowledge is scarce, and management practices lack standardization. Here we profited from the large diversity of stingless beekeepers found in Brazil to assess the impact of particular management practices on productivity and economic revenues from the commercialization of stingless bee products. Our study represents the first large-scale effort aiming at optimizing stingless beekeeping for honey/colony production based on quantitative data. Survey data from 251 beekeepers scattered across 20 Brazilian States revealed the influence of specific management practices and other confounding factors over productivity and income indicators. Specifically, our results highlight the importance of teaching beekeepers how to inspect and feed their colonies, how to multiply them and keep track of genetic lineages, how to harvest and preserve the honey, how to use vinegar traps to control infestation by parasitic flies, and how to add value by labeling honey containers. Furthermore, beekeeping experience and the network of known beekeepers were found to be key factors influencing productivity and income. Our work provides clear guidelines to optimize stingless beekeeping and help transform the activity into a powerful tool for sustainable development.  相似文献   

3.
Pollination services are increasingly threatened by the loss and modification of natural habitats, posing a risk to the maintenance of both native plant biodiversity and agricultural production. In order to safeguard pollination services, it is essential to examine the impacts of habitat degradation on the population dynamics of key pollinators and identify potential “rescue pollinators” capable of persisting in these human-altered landscapes. Using a landscape genetic approach, we assessed the impact of landscape structure on genetic differentiation in the widely-distributed tropical stingless bee Trigona spinipes (Apidae: Meliponini) across agricultural landscape mosaics composed of coffee plantations and Atlantic forest fragments in southeastern Brazil. We genotyped 115 bees at 16 specific and highly polymorphic microsatellite loci, developed using next-generation sequencing. Our results reveal that T. spinipes is capable of dispersing across remarkably long distances, as we did not find genetic differentiation across a 200 km range, nor fine-scale spatial genetic structure. Furthermore, gene flow was not affected by forest cover, land cover, or elevation, indicating that reproductive individuals are able to disperse well through agricultural landscapes and across altitudinal gradients. We also found evidence of a recent population expansion, suggesting that this opportunistic stingless bee is capable of colonizing degraded habitats. Our results thus suggest that T. spinipes can persist in heavily-altered landscapes and can be regarded as a rescue pollinator, potentially compensating for the decline of other native pollinators in degraded tropical landscapes.  相似文献   

4.
Heterotrigona itama is a stingless bee species from Meliponini tribe. The bee collects nectar, pollen and resin to produce honey, bee bread, and propolis. The bee is also known to visit and collect nectar from various types of flowers but there are limited studies on why this species of bee prefers to visit certain types of flowers. This study was conducted to identify the nectar concentration in selected flowers favoured by H. itama and the relationship between the bee and the morphology of the flowers. Nectar was obtained from different species of flowers and the concentrations were measured using a digital refractometer. The tube length of each flower species and the tongue length of the bees were also measured. The results revealed that flowers preferred by H. itama have high nectar concentrations. The tube lengths of the preferred flowers were between 2.0 and 4.0 mm, which is compatible with the tongue length of the bee. This study revealed that both nectar concentration and flower morphology are important factors for the bees in choosing their food sources. The results from this study will benefit the beekeepers in the identification of flowers that should be planted in their farms to improve stingless bee beekeeping activities. Understanding the relationship between the bees and their flower preferences could also help us to understand the importance of conserving both the bee colonies and the various species of flowering plants to ensure the sustainability of flora and fauna in the ecosystem.  相似文献   

5.
The decline of both managed and wild bee populations has been extensively reported for over a decade now, with growing concerns amongst the scientific community. Also, evidence is growing that both managed and feral honey bees may exacerbate threats to wild bees. In Australia, there are over 1600 native bee species and introduced European honey bees (Apis mellifera) have established throughout most landscapes. There is a major gap in knowledge of the interactions between honey bees and native bees in Australian landscapes, especially floral resource use.Here we report on the pollen diets of wild bees in protected areas of coastal heathland, an ecosystem characterised by mass flowering in late winter and spring. We sampled bees within three sites and DNA metabarcoding was used to compare the pollen diets of honey bees and native bees. We recorded 2, 772 bees in total, with 13 genera and 18 described species identified. Apis mellifera was the most common species across all locations, accounting for 42% of all bees collected. Native bee genera included eusocial Tetragonula (stingless bees) (37%), and semi-social Exoneura and Braunsapis (19.8% combined). Metabarcoding data revealed both Tetragonula and honey bees have wide foraging patterns, and the bipartite network overall was highly generalised (H2’ = 0.24). Individual honey bees carried pollen of 7–29 plant species, and significantly more species than all other bees. We found niche overlap in the diets of honey bees and native bees generally (0.42), and strongest overlap with stingless bees (0.70) and species of Braunsapis (0.62). A surprising finding was that many species carried pollen from Restionaceae and Cyperaceae, families generally considered to be predominantly wind-pollinated in Australia. Our study showed introduced honey bee use of resources overlaps with that of native bees in protected heathlands, but there are clear differences in their diet preferences.  相似文献   

6.
Tropical forest loss and fragmentation can change bee community dynamics and potentially interrupt plant–pollinator relationships. While bee community responses to forest fragmentation have been investigated in a number of tropical regions, no studies have focused on this topic in Australia. In this study, we examine taxonomic and functional diversity of bees visiting flowers of three tree species across small and large rainforest fragments in Australian tropical landscapes. We found lower taxonomic diversity of bees visiting flowers of trees in small rainforest fragments compared with large forest fragments and show that bee species in small fragments were subsets of species in larger fragments. Bees visiting trees in small fragments also had higher mean body sizes than those in larger fragments, suggesting that small‐sized bees may be less likely to persist in small fragments. Lastly, we found reductions in the abundance of eusocial stingless bees visiting flowers in small fragments compared to large fragments. These results suggest that pollinator visits to native trees living in small tropical forest remnants may be reduced, which may in turn impact on a range of processes, potentially including forest regeneration and diversity maintenance in small forest remnants in Australian tropical countryside landscapes.  相似文献   

7.
To achieve maximised and sustainable crop productivity, it is critical that we develop crop-specific strategies for managing pollination. Honey bees (Apis mellifera) and stingless bees (Tetragonula carbonaria) are considered effective pollinators of macadamia (Macadamia integrifolia). The introduction of managed honey bee or stingless bee hives into orchards is likely to boost the numbers of these insects visiting flowers; however, there is a lack of published information and consensus regarding their management for pollination. Here, we identify factors that affect the distribution of both honey bees and stingless bees across cultivated macadamia, and establish whether increased flower visitation leads to higher nut set. A gradient of bee visitation rates was created by placing colonies on the ends of a four-hectare block, and mixed-effect models were applied to assess forager abundance and nut set with respect to distance from hive, time of day, cultivar, and floral display size. Distance from colony had a strong effect on stingless bee numbers, with >96% of individuals recorded within 100 metres of colonies, whereas the distribution of honey bees was more closely related to daily floral display: trees with greater numbers of flowers attracted more honey bees. Simplified surveys conducted in a further 17 macadamia blocks confirm that these are broadly occurring distribution patterns. Bee abundance alone did not significantly predict nut production; however, an indirect effect of bee visits to flowers is inferred, as nut production increased with size of floral display. To encourage a more even distribution of bees and uniform pollination, we recommend placement of stingless bee hives to maximise their distribution through a block (e.g. at 100-m intervals) and management practices that promote even distributions of flowers across trees.  相似文献   

8.
Agricultural intensification is a major driver of wild bee decline. Vineyards may be inhabited by plant and animal species, especially when the inter‐row space is vegetated with spontaneous vegetation or cover crops. Wild bees depend on floral resources and suitable nesting sites which may be found in vineyard inter‐rows or in viticultural landscapes. Inter‐row vegetation is managed by mulching, tillage, and/or herbicide application and results in habitat degradation when applied intensively. Here, we hypothesize that lower vegetation management intensities, higher floral resources, and landscape diversity affect wild bee diversity and abundance dependent on their functional traits. We sampled wild bees semi‐quantitatively in 63 vineyards representing different vegetation management intensities across Europe in 2016. A proxy for floral resource availability was based on visual flower cover estimations. Management intensity was assessed by vegetation cover (%) twice a year per vineyard. The Shannon Landscape Diversity Index was used as a proxy for landscape diversity within a 750 m radius around each vineyard center point. Wild bee communities were clustered by country. At the country level, between 20 and 64 wild bee species were identified. Increased floral resource availability and extensive vegetation management both affected wild bee diversity and abundance in vineyards strongly positively. Increased landscape diversity had a small positive effect on wild bee diversity but compensated for the negative effect of low floral resource availability by increasing eusocial bee abundance. We conclude that wild bee diversity and abundance in vineyards is efficiently promoted by increasing floral resources and reducing vegetation management frequency. High landscape diversity further compensates for low floral resources in vineyards and increases pollinating insect abundance in viticulture landscapes.  相似文献   

9.
The article by Harpur et al. (2012) ‘Management increases genetic diversity of honey bees via admixture’ concludes that ‘…honey bees do not suffer from reduced genetic diversity caused by management and, consequently, that reduced genetic diversity is probably not contributing to declines of managed Apis mellifera populations’. In the light of current honeybee and beekeeping declines and their consequences for honeybee conservation and the pollination services they provide, we would like to express our concern about the conclusions drawn from the results of Harpur et al. (2012). While many honeybee management practices do not imply admixture, we are convinced that the large-scale genetic homogenization of admixed populations could drive the loss of valuable local adaptations. We also point out that the authors did not account for the extensive gene flow that occurs between managed and wild/feral honeybee populations and raise concerns about the data set used. Finally, we caution against underestimating the importance of genetic diversity for honeybee colonies and highlight the importance of promoting the use of endemic honeybee subspecies in apiculture.  相似文献   

10.
Bacterial symbionts of insects have received increasing attention due to their prominent role in nutrient acquisition and defense. In social bees, symbiotic bacteria can maintain colony homeostasis and fitness, and the loss or alteration of the bacterial community may be associated with the ongoing bee decline observed worldwide. However, analyses of microbiota associated with bees have been largely confined to the social honeybees (Apis mellifera) and bumblebees (Bombus spec.), revealing – among other taxa – host-specific lactic acid bacteria (LAB, genus Lactobacillus) that are not found in solitary bees. Here, we characterized the microbiota of three Australian stingless bee species (Apidae: Meliponini) of two phylogenetically distant genera (Tetragonula and Austroplebeia). Besides common plant bacteria, we find LAB in all three species, showing that LAB are shared by honeybees, bumblebees and stingless bees across geographical regions. However, while LAB of the honeybee-associated Firm4–5 clusters were present in Tetragonula, they were lacking in Austroplebeia. Instead, we found a novel clade of likely host-specific LAB in all three Australian stingless bee species which forms a sister clade to a large cluster of Halictidae-associated lactobacilli. Our findings indicate both a phylogenetic and geographical signal of host-specific LAB in stingless bees and highlight stingless bees as an interesting group to investigate the evolutionary history of the bee-LAB association.  相似文献   

11.
The European honey bee exploits floral resources efficiently and may therefore compete with solitary wild bees. Hence, conservationists and bee keepers are debating about the consequences of beekeeping for the conservation of wild bees in nature reserves. We observed flower-visiting bees on flowers of Calluna vulgaris in sites differing in the distance to the next honey-bee hive and in sites with hives present and absent in the Lüneburger Heath, Germany. Additionally, we counted wild bee ground nests in sites that differ in their distance to the next hive and wild bee stem nests and stem-nesting bee species in sites with hives present and absent. We did not observe fewer honey bees or higher wild bee flower visits in sites with different distances to the next hive (up to 1,229 m). However, wild bees visited fewer flowers and honey bee visits increased in sites containing honey-bee hives and in sites containing honey-bee hives we found fewer stem-nesting bee species. The reproductive success, measured as number of nests, was not affected by distance to honey-bee hives or their presence but by availability and characteristics of nesting resources. Our results suggest that beekeeping in the Lüneburg Heath can affect the conservation of stem-nesting bee species richness but not the overall reproduction either of stem-nesting or of ground-nesting bees. Future experiments need control sites with larger distances than 500 m to hives. Until more information is available, conservation efforts should forgo to enhance honey bee stocking rates but enhance the availability of nesting resources.  相似文献   

12.
The prospects for persistence of bees living in fragmented landscapes is a topic of considerable interest due to bees’ importance as pollinators of agricultural crops and wild plants, coupled with the ubiquity of native habitat loss and evidence that bees may be declining worldwide. Population persistence in fragmented areas depends on dispersal potential and maintenance of gene flow among fragments of habitat. Here we used population genetic techniques to characterize, for two equally abundant orchid bee species that differ in their physiology and ecology, levels of genetic differentiation among fragments of tropical forest in southeastern Costa Rica in a ~200 km2 landscape. We measured population differentiation with ϕPT (an analogue to the traditional summary statistic Fst), as well as two measures that may more accurately reflect the level of differentiation when highly variable loci are used: G’st and Dest. We also calculated pairwise genetic distances among individuals and conducted Mantel tests to test the correlation of genetic and geographic distance, for each species. We found strong differences in genetic structure between the species. Contrary to our expectations, each measure of genetic structure revealed that the larger-bodied species, Eulaema bombiformis, had higher levels of differentiation than the smaller species, Euglossa championi. Furthermore, for Eulaema bombiformis there was a significant positive correlation of genetic and geographic distance while for Euglossa championi there was no significant positive correlation. Our results demonstrate that bee species can have strikingly different levels of gene flow in fragmented habitats, and that body size may not always act as a useful proxy for dispersal, even in closely related taxa.  相似文献   

13.
Tetragonisca angustula is one of the most widespread stingless bees in the Neotropics. This species swarms frequently and is extremely successful in urban environments. In addition, it is one of the most popular stingless bee species for beekeeping in Latin America, so nest transportation and trading is common. Nest transportation can change the genetic structure of the host population, reducing inbreeding and increasing homogenization. Here, we evaluate the genetic structure of 17 geographic populations of T. angustula in southern Brazil to quantify the level of genetic differentiation between populations. Analyses were conducted on partially sequenced mitochondrial genes and 11 microsatellite loci of 1002 workers from 457 sites distributed on the mainland and on 3 islands. Our results show that T. angustula populations are highly differentiated as demonstrated by mitochondrial DNA (mtDNA) and microsatellite markers. Of 73 haplotypes, 67 were population‐specific. MtDNA diversity was low in 9 populations but microsatellite diversity was moderate to high in all populations. Microsatellite data suggest 10 genetic clusters and low level of gene flow throughout the studied area. However, physical barriers, such as rivers and mountain ranges, or the presence or absence of forest appear to be unrelated to population clusters. Factors such as low dispersal, different ecological conditions, and isolation by distance are most likely shaping the population structure of this species. Thus far, nest transportation has not influenced the general population structure in the studied area. However, due to the genetic structure we found, we recommend that nest transportation should only occur within and between populations that are genetically similar.  相似文献   

14.
Stingless bees play an important ecological role as pollinators of many wild plant species in the tropics and have significant potential for the pollination of agricultural crops. Nevertheless, conservation efforts as well as commercial breeding programmes require better guidelines on the amount of genetic variation that is needed to maintain viable populations. In this context, we carried out a long-term genetic study on the stingless bee Melipona scutellaris to evaluate the population viability consequences of prolonged breeding from a small number of founder colonies. In particular, it was artificially imposed a genetic bottleneck by setting up a population starting from only two founder colonies, and continued breeding from it for a period of over 10?years in a location outside its natural area of occurrence. We show that despite a great reduction in the number of alleles present at both neutral microsatellite loci and the sex-determining locus relative to its natural source population, and an increased frequency in the production of sterile diploid males, the genetically impoverished population could be successfully bred and maintained for at least 10?years. This shows that in stingless bees, breeding from a small stock of colonies may have less severe consequences than previously suspected. In addition, we provide a simulation model to determine the number of colonies that are needed to maintain a certain number of sex alleles in a population, thereby providing useful guidelines for stingless bee breeding and conservation efforts.  相似文献   

15.
Theodore Munyuli 《Grana》2013,52(1):69-89
An on-farm pollination experiment was conducted during the June–August and November–February blooming seasons of 2007 to 2008, in 30 small-scale coffee fields characterised by different habitat and vegetation types. The study was conducted in order to determine the best pollinator groups for coffee in Uganda and to collect relevant field information and determine the pollination efficiency of different bee species. Results indicate that across blooming seasons, coffee flowers were visited by 24–36 bee species. Hypotrigona gribodoi was the most frequent flower visitor, comprising over 60% of 5941 bee-visits recorded. Foraging rate and pollination speed varied among bee species. Solitary bees foraged on more flowers than social bees, but they spent less time per flower visited. Solitary bees visited more coffee trees and fields, but deposited less pollen, whereas social bees visited less trees and coffee fields in the landscape, but deposited more pollen on flowers. Fruit set was of 87%, 64% and 0.9%, respectively, in hand-cross pollination, open pollination and controlled-pollination treatments. Fruit abortion due to self-pollination was insignificant in this study. There was variability in pollination efficiency of different bee species. Pollination efficiency varied more significantly with sociality than with other bee functional traits and was not significantly influenced by tongue length and bee body size. Single-flower visits by social and solitary bees resulted in 89.7% and 68.14% fruit set, respectively. The most efficient bee species was Meliponula ferruginea (98.3%) followed by Meliponula nebulata (97.1%). Thus, very good pollinator species were wild social bees (mainly stingless bees) as opposed to honeybees and solitary bees that were previously reported to be the best pollinators of coffee in Panama and Indonesia. Morphological and anatomical characteristics of the bee pollen storage features may explain the difference in foraging behaviour activities and in pollination efficiency of social and solitary afrotropical bee species visiting lowland coffee in Uganda. In addition, pollination efficiency was influenced by land-use intensity, field management systems and habitat types found in the immediate surroundings of coffee fields, but not by coffee field size, coffee genotypes and mass blooming wild vegetation. It is recommended to farmers to adopt pollinator-friendly conservation and farming practices such as keeping an uncultivated portion (25%–30%) of their farms as pollinator reservoirs, protecting semi-natural habitats found in the vicinity of coffee fields, as well as promoting high on-farm tree cover to benefit a functionally diverse pollinator community.  相似文献   

16.
Bees require distinct foraging and nesting resources to occur in close proximity. However, spatial and temporal patterns in the availability and quantity of these resources can be affected by disturbances like wildfire. The potential for spatial or temporal separation of foraging and nesting resources is of particular concern for solitary wood‐cavity‐nesting bees as they are central‐place, short‐distance foragers once they have established their nest. Often the importance of nesting resources for bees have been tested by sampling foraging bees as a proxy, and nesting bees have rarely been studied in a community context, particularly postdisturbance. We tested how wood‐cavity‐nesting bee species richness, nesting success, and nesting and floral resources varied across gradients of wildfire severity and time‐since‐burn. We sampled nesting bees via nesting boxes within four wildfires in southwest Montana, USA, using a space‐for‐time substitution chronosequence approach spanning 3–25 years postburn and including an unburned control. We found that bee nesting success and species richness declined with increasing time postburn, with a complete lack of successful bee nesting in unburned areas. Nesting and floral resources were highly variable across both burn severity and time‐since‐burn, yet generally did not have strong effects on nesting success. Our results together suggest that burned areas may provide important habitat for wood‐cavity‐nesting bees in this system. Given ongoing fire regime shifts as well as other threats facing wild bee communities, this work helps provide essential information necessary for the management and conservation of wood‐cavity‐nesting bees.  相似文献   

17.
Loss of habitat and chemical use associated with agriculture can cause population declines of wild pollinators. Less is known about the evolutionary consequences of interactions between species used in commercial agriculture and wild pollinators. Given population declines of many wild bee species, it is crucial to understand if commercial queens become established in natural areas, if wild bees visit agricultural fields and have the potential to interact with commercial bees, and if gene flow occurs between commercial and wild bees. We drew on a long-term data set that documents commercial bumble bee (Bombus impatiens) use in New England, and we conducted genetic analyses of foraging B. impatiens from areas with varying intensities of commercial bee use. In agricultural areas with a history of commercial bee use we also sampled bees directly from commercial hives. We found significant genetic differences among foraging B. impatiens and B. impatiens sampled directly from hives (average pairwise F′ST = 0.14), but not among samples of foraging bees from natural areas (average F′ST among foraging bees?=?0.002). Furthermore, Bayesian analysis of population structure revealed that foraging bees caught in areas with a history of commercial bee use grouped with samples from natural areas. These results document an agricultural setting where there was no widespread introgression of alleles from commercial bumble bees to wild bumble bees, commercial bumble bees did not become established in natural areas, and wild bees were providing pollination services to crops.  相似文献   

18.
Bees are known to collect pollen and nectar to provide their larvae and themselves with food. That bees, especially the tropical stingless bees (Apidae: Meliponini), also collect plant resins has, however, been barely addressed in scientific studies on resource use in bees. Resins are used for nest construction, nest maintenance and nest defence. Furthermore, some South‐East Asian species transfer resin‐derived terpenes to their cuticular profiles. The resin requirement of bees is in turn used by certain plant species, which attract bees either for pollination by providing resin in their inflorescences, or for seed dispersal by providing resin in their seed capsules (mellitochory). Mellitochory is found in the eucalypt tree Corymbia torelliana, the resin of which is collected by Australian stingless bees. We investigated how the interaction between C. torelliana and resin‐collecting bees affects the chemical ecology of two Australian stingless bee genera by comparing the chemical profiles of eight bee species with resin from C. torelliana fruits. The two bee genera differed significantly in their chemical profiles. Similar to South‐East Asian stingless bees, 51% of all compounds on the body surfaces of the five Tetragonula species were most likely derived from plant resins. Up to 32 compounds were identical with compounds from C. torelliana resin, suggesting that Tetragonula species include C. torelliana compounds in their chemical profiles. By contrast, few or none resinous compounds were found on the body surfaces of the three Austroplebeia species sampled. However, one prominent but as yet unknown substance was found in both C. torelliana resin and the chemical profiles of all Tetragonula and four Austroplebeia colonies sampled, suggesting that most colonies (76%) gathered resin from C. torelliana. Hence, C. torelliana resin may be commonly collected by Australian stingless bees and, along with resins from other plant species, shape their chemical ecology.  相似文献   

19.
Many wild and managed bee pollinators have experienced population declines over the past several decades, and molecular and population genetic tools have been valuable in understanding conservation threats across the bee tree of life. Emerging genomic tools have the potential to improve classical applications of conservation genetics, such as assessing species status, and quantifying genetic diversity, gene flow and effective population sizes. Genomic tools can also revolutionize novel research in bee conservation and management, including the identification of loci underlying adaptive and economically desirable traits, such as those involved in disease susceptibility, responses to multiple environmental stressors, and even discovering and understanding the hidden diversity of beneficial microorganisms associated with bees. In this perspective, we provide a survey of some of the ways genomic tools can be applied to bee conservation to bridge the gap between basic and applied genomics research.  相似文献   

20.
This study documents the stingless bees' (Meliponinae) recent displacement in the Yucatan (Quintana Roo, Mexico) and the effects of human‐induced ecosystem disturbance on bee diversity. Point observations of flower‐visiting bees were made along transects in three communities with different degrees of human‐induced ecosystem disturbance. The community with the greatest anthropogenic disturbance had lower overall species richness of stingless bees and the highest degree of dominance of the Africanized honeybee (Apis mellifera scutellata), while the area with the most intact ecosystem had the highest diversity of stingless bees, though A. mellifera was still the dominant species. We observed aggressive competitive behavior involving physical attacks by A. mellifera against stingless bees, indicating that Africanized honeybees are adopting new behaviors to compete better with dominant native pollinator species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号