首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Migratory behaviors such as the timing and duration of migration are genetically inherited and can be under strong natural selection, yet we still know very little about the specific genes or molecular pathways that control these behaviors. Studies in candidate genes Clock and Adcyap1 have revealed that both of these loci can be significantly correlated with migratory behaviors in birds, though observed relationships appear to vary across species. We investigated geographic genetic structure of Clock and Adcyap1 in four populations of blackpoll warblers (Setophaga striata), a Neotropical–Nearctic migrant that exhibits geographic variation in migratory timing and duration across its boreal breeding distribution. Further, we used data on migratory timing and duration, obtained from light‐level geolocator trackers to investigate candidate genotype–phenotype relationships at the individual level. While we found no geographic structure in either candidate gene, we did find evidence that candidate gene lengths are correlated with five of the six migratory traits. Maximum Clock allele length was significantly and negatively associated with spring arrival date. Minimum Adcyap1 allele length was significantly and negatively associated with spring departure date and positively associated with fall arrival date at the wintering grounds. Additionally, we found a significant interaction between Clock and Adcyap1 allele lengths on both spring and fall migratory duration. Adcyap1 heterozygotes also had significantly shorter migration duration in both spring and fall compared to homozygotes. Our results support the growing body of evidence that Clock and Adcyap1 allele lengths are correlated with migratory behaviors in birds.  相似文献   

2.
    
Understanding the genetic background of complex behavioral traits, showing multigenic control and extensive environmental effects, is a challenging task. Among such traits, migration is known to show a large additive genetic component. Yet, the identification of specific genes or gene regions explaining phenotypic variance in migratory behavior has received less attention. Migration ultimately depends on seasonal cycles, and polymorphism at phenological candidate genes may underlie variation in timing of migration or other aspects of migratory behavior. In this study of a Nearctic–Neotropical migratory songbird, the Wilson's warbler (Cardellina pusilla), we investigated the association between polymorphism at two phenological candidate genes, Clock and Adcyap1, and two aspects of the migratory phenotype, timing of spring migration through a stopover site and inferred latitude of the breeding destination. The breeding destination of migrating individuals was identified using feather deuterium ratio (δ2H), which reliably reflects breeding latitude throughout the species' western breeding range. Ninety‐eight percent of the individuals were homozygous at Clock, and the rare heterozygotes did not deviate from homozygous migration phenology. Adcyap1 was highly polymorphic, and allele size was not significantly associated with migration date. However, Adcyap1 allele size significantly positively predicted the inferred breeding latitude of males but not of females. Moreover, we found a strong positive association between inferred breeding latitude and Adcyap1 allele size in long‐distance migrating birds from the northern sector of the breeding range (western Canada), while this was not the case in short‐distance migrating birds from the southern sector of the breeding range (coastal California). Our findings support previous evidence for a role of Adcyap1 in shaping the avian migratory phenotype, while highlighting that patterns of phenological candidate gene–phenotype associations may be complex, significantly varying between geographically distinct populations and even between the sexes.  相似文献   

3.
    
Timing is a crucial aspect for survival and reproduction in seasonal environments leading to carefully scheduled annual programs of migration in many species. But what are the exact mechanisms through which birds (class: Aves) can keep track of time, anticipate seasonal changes, and adapt their behaviour? One proposed mechanism regulating annual behaviour is the circadian clock, controlled by a highly conserved set of genes, collectively called ‘clock genes’ which are well established in controlling the daily rhythmicity of physiology and behaviour. Due to diverse migration patterns observed within and among species, in a seemingly endogenously programmed manner, the field of migration genetics has sought and tested several candidate genes within the clock circuitry that may underlie the observed differences in breeding and migration behaviour. Among others, length polymorphisms within genes such as Clock and Adcyap1 have been hypothesised to play a putative role, although association and fitness studies in various species have yielded mixed results. To contextualise the existing body of data, here we conducted a systematic review of all published studies relating polymorphisms in clock genes to seasonality in a phylogenetically and taxonomically informed manner. This was complemented by a standardised comparative re-analysis of candidate gene polymorphisms of 76 bird species, of which 58 are migrants and 18 are residents, along with population genetics analyses for 40 species with available allele data. We tested genetic diversity estimates, used Mantel tests for spatial genetic analyses, and evaluated relationships between candidate gene allele length and population averages for geographic range (breeding- and non-breeding latitude), migration distance, timing of migration, taxonomic relationships, and divergence times. Our combined analysis provided evidence (i) of a putative association between Clock gene variation and autumn migration as well as a putative association between Adcyap1 gene variation and spring migration in migratory species; (ii) that these candidate genes are not diagnostic markers to distinguish migratory from sedentary birds; and (iii) of correlated variability in both genes with divergence time, potentially reflecting ancestrally inherited genotypes rather than contemporary changes driven by selection. These findings highlight a tentative association between these candidate genes and migration attributes as well as genetic constraints on evolutionary adaptation.  相似文献   

4.
    
Dissecting phenotypic variance in life history traits into its genetic and environmental components is at the focus of evolutionary studies and of pivotal importance to identify the mechanisms and predict the consequences of human‐driven environmental change. The timing of recurrent life history events (phenology) is under strong selection, but the study of the genes that control potential environmental canalization in phenological traits is at its infancy. Candidate genes for circadian behaviour entrained by photoperiod have been screened as potential controllers of phenological variation of breeding and moult in birds, with inconsistent results. Despite photoperiodic control of migration is well established, no study has reported on migration phenology in relation to polymorphism at candidate genes in birds. We analysed variation in spring migration dates within four trans‐Saharan migratory species (Luscinia megarhynchos; Ficedula hypoleuca; Anthus trivialis; Saxicola rubetra) at a Mediterranean island in relation to Clock and Adcyap1 polymorphism. Individuals with larger number of glutamine residues in the poly‐Q region of Clock gene migrated significantly later in one or, respectively, two species depending on sex and whether the within‐individual mean length or the length of the longer Clock allele was considered. The results hinted at dominance of the longer Clock allele. No significant evidence for migration date to covary with Adcyap1 polymorphism emerged. This is the first evidence that migration phenology is associated with Clock in birds. This finding is important for evolutionary studies of migration and sheds light on the mechanisms that drive bird phenological changes and population trends in response to climate change.  相似文献   

5.
    
The halophyte model plant Eutrema salsugineum (Brassicaceae) disjunctly occurs in temperate to subarctic Asia and North America. This vast, yet extremely discontinuous distribution constitutes an ideal system to examine long‐distance dispersal and the ensuing accumulation of deleterious mutations as expected in expanding populations of selfing plants. In this study, we resequenced individuals from 23 populations across the range of Esalsugineum. Our population genomic data indicate that Esalsugineum migrated “out of the Altai region” at least three times to colonize northern China, northeast Russia and western China. It then expanded its distribution into North America independently from northeast Russia and northern China, respectively. The species colonized northern China around 33.7 thousand years ago (kya) and underwent a considerable expansion in range size approximately 7–8 kya. The western China lineage is likely a hybrid derivative of the northern China and Altai lineages, originating approximately 25–30 kya. Deleterious alleles accumulated in a stepwise manner from (a) Altai to northern China and North America and (b) Altai to northeast Russia and North America. In summary, Esalsugineum dispersed from Asia to North America and deleterious mutations accumulated in a stepwise manner during the expansion of the species’ distribution.  相似文献   

6.
    
Beet yellows virus (BYV), a member of the Closteroviridae family, is one of the most important sugar beet yellowing viruses. The nine ORFs of BYV genome encode different proteins required for BYV life cycle. We sequenced a part of the genome of BYV Iranian isolate consisting of ORF6, ORF7 and ORF8. The primer pair BYVA/Z was used for amplification of this region in RT‐PCR. The amplicon (1615 bp) was cloned and sequenced. Comparisons showed the amplified segment is corresponding to ORF6, ORF7 and ORF8 of BYV genome encoding coat protein, p20 and p21 proteins, respectively. The ORF7 of BYV Iranian isolate overlaps with ORF6 and ORF8 in four and 26 nucleotides at 5′ and 3′ ends, respectively. The ORF7 of Iranian isolate of BYV was sequenced completely. However, approximately 24 nt. from the beginning of ORF6 and 23 nt. from end of ORF8, including the stop codon, were not determined. ORF6, ORF7 and ORF8 showed the highest similarity at nucleotide (98.3, 99.4 and 99.2%) and amino acid (97.4, 98.9 and 100%) sequence levels, with BYV Ukrainian isolate. Phylogenetic analysis of the deduced amino acid sequences of ORF6, ORF7 and ORF8 revealed closer relationship of Iranian isolate of BYV with BYV Ukrainian isolate than other BYV isolates available at GenBank.  相似文献   

7.
    
Understanding the migratory movements and habitats used during the annual cycle of migrants is essential to developing comprehensive conservation strategies. Mountain Plovers (Charadrius montanus) are short‐distance migrants listed as a species of conservation concern in many states across their range, however, little is known about their migratory ecology. We used data from geolocators to describe the first direct estimates of migratory routes and migration schedules for Mountain Plovers breeding in Phillips County, Montana. We attached geolocators to 36 Mountain Plovers in 2010–2012 and recovered five (13.9%; three males and two females). Four of five Mountain Plovers in our study overwintered in Texas, and one overwintered in Arizona. Migration routes were relatively linear, with the exception of one plover that moved south and then west to reach its winter range in Arizona. Two plovers left breeding areas in mid‐July and the other three left in late September. All plovers used stopover sites near either eastern Colorado or southwest Kansas. Plovers that departed earlier used stopover sites for ~100 d, whereas those that left later used them for ~35 d. All plovers in our study arrived in wintering areas by early November and departed by late March. Our results suggest that eastern Colorado and southwest Kansas are important stopover areas during migration, and highlight the need to better understand how these locations support non‐breeding plovers.  相似文献   

8.
    
L. Zhou  W. Zhao  Y. Fu  X. Fang  S. Ren  J. Ren 《Animal genetics》2019,50(6):753-756
Body conformation at birth and teat number are economically important traits in the pig industry, as these traits are usually explored to evaluate the growth and reproductive potential of piglets. To detect genetic loci and candidate genes for these traits, we performed a GWAS on 269 pigs from a recently developed Chinese breed (Sushan) using 38  128 informative SNPs on the Affymetrix Porcine SNP 55K Array. In total, we detected one genome‐wide significant (P = 1.31e‐6) SNP for teat number on chromosome X and 15 chromosome‐wide significant SNPs for teat number, body weight, body length, chest circumference and cannon circumference at birth on chromosomes 1, 3, 4, 6, 7, 9, 10, 13, 14, 15, 17 and 18. The most significant SNP had an additive effect of 0.74 × total teat number, explaining 20% of phenotypic variance. Five significant SNPs resided in the previously reported quantitative trait loci for these traits and seven significant SNPs had a pleiotropic effect on multiple traits. Intriguingly, 12 of the genes nearest to the significant SNPs are functionally related to body conformation and teat number traits, including SPRED2, MKX, TMSB4X and ESR1. GO analysis revealed that candidate genes proximal to the significant SNPs were enriched in the G‐protein coupled receptor and steroid hormone‐mediated signaling pathway. Our findings shed light on the genetic basis of the measured traits and provide molecular markers especially for the genetic improvement of teat number in Sushan and related pigs.  相似文献   

9.
    
Under time‐selected migration, birds should choose a strategy for outcompeting rivals over securing access to prime resources at the final destination. Thus, migration can be viewed as a race among individuals where winners are arriving first when conditions are suitable. The sprint migration hypothesis predicts that individuals shift from maximum sustained speed to a final burst of sprint to shorten the transition from migration to breeding (Alerstam, 2006). In this study, we test the hypothesis of a final sprint migration in a long‐distance Afro‐Palearctic migrant, the collared flycatcher Ficedula albicollis, during autumn and spring, and compare migration strategies between the seasons. In both seasons, collared flycatchers evidently exhibited sprint migration by increasing their overall speed over the last leg of migration after the Sahara crossing. This phenomenon was more pronounced in spring, contributing to overall faster spring migration and possibly highlighting higher importance for early arrival at the breeding grounds. In both seasons and particularly in spring, late departing individuals flew at a faster rate, partially being able to catch up with their early departing conspecifics. Differential fueling strategies may play an important role in determining migration speed, especially during the early stages of the migration, and might explain the observed differences in migration speeds between late and early departing individuals. Our findings suggest competition for early arrival at the breeding and at the nonbreeding destinations alike. Sprint migration might be an appropriate strategy to gain advantage over conspecifics and settle in prime territories as well as to cope with the increasingly earlier springs at high latitudes.  相似文献   

10.
    
Mit mutations that disrupt function of the mitochondrial electron transport chain can, inexplicably, prolong Caenorhabditis elegans lifespan. In this study we use a metabolomics approach to identify an ensemble of mitochondrial‐derived α‐ketoacids and α‐hydroxyacids that are produced by long‐lived Mit mutants but not by other long‐lived mutants or by short‐lived mitochondrial mutants. We show that accumulation of these compounds is dependent on concerted inhibition of three α‐ketoacid dehydrogenases that share dihydrolipoamide dehydrogenase (DLD) as a common subunit, a protein previously linked in humans with increased risk of Alzheimer's disease. When the expression of DLD in wild‐type animals was reduced using RNA interference we observed an unprecedented effect on lifespan – as RNAi dosage was increased lifespan was significantly shortened, but, at higher doses, it was significantly lengthened, suggesting that DLD plays a unique role in modulating length of life. Our findings provide novel insight into the origin of the Mit phenotype.  相似文献   

11.
12.
    
The morphology of Nyctotheroides hubeiensis (Acta Hydrobiol. Sin. 1998, 22(suppl.):187), collected from the rectum of Phelophylax nigromaculatus, is presented in this paper based on detailed morphological information and molecular data. Our phylogenetic analysis showed that N. hubeiensis fell into the Nyctotheroides clade, which was strongly supported as monophyletic and clustered as basal to the genera Nyctotherus and Clevelandella. Also, the monophyly of the Order Clevelandellida and the affinity of parasitic nyctotherids and free‐living metopids were indicated in our work. The origin of clevelandellid ciliates as well as their possible evolutionary history was also discussed here; however, the analysis of more species from other vertebrate hosts (fish, reptiles) should be made before a well‐supported conclusion can be drawn.  相似文献   

13.
14.
15.
16.
    
  1. The transport of seeds by water, i.e. hydrochory, is a key mechanism of long‐distance dispersal constrained by the attributes of the seed and hydrodynamics. In the freshwater Amazon estuary, river hydrodynamics are influenced by seasonal changes in precipitation and tidal cycles. It is not known to what extent a hydrodynamic model may be able to predict seed dispersal.
  2. Here we parameterised a simulation model (SisBaHia) to estimate maximum seed dispersal distances per tidal cycle, which were then compared with data from in situ seed dispersal experiments. The study was conducted along a 27‐km stretch of a tributary of the Amazon estuary, using the seeds of a widely distributed riparian tree—Carapa guianensis (Meliaceae).
  3. Based on the simulation model, maximum potential seed dispersal distance was higher in the rainy season (c. 8.7 km) when compared with the dry season (5.6 km), for one tidal cycle (12 hr). The seeds of C. guianensis were dispersed further during the ebb than flood tide during the rainy season, the period of seed dispersal. Average dispersal distances observed in seed dispersal experiments conducted during the rainy season, and those predicted by SisBaHia for the same period were within the same order of magnitude.
  4. The results of this study confirm that the period of higher precipitation provides favourable hydrological conditions for hydrochory in the Amazon river‐estuary complex. The fact that the time taken for the tide to fall is longer in relation to the time taken for it to rise also favours the arrival of the seeds in the main channel of the Amazon, thereby increasing the probability of long‐distance dispersal events.
  相似文献   

17.
    
Climate warming has been shown to affect the timing of the onset of breeding of many bird species across the world. However, for multi‐brooded species, climate may also affect the timing of the end of the breeding season, and hence also its duration, and these effects may have consequences for fitness. We used 28 years of field data to investigate the links between climate, timing of breeding, and breeding success in a cooperatively breeding passerine, the superb fairy‐wren (Malurus cyaneus). This multi‐brooded species from southeastern Australia has a long breeding season and high variation in phenology between individuals. By applying a “sliding window” approach, we found that higher minimum temperatures in early spring resulted in an earlier start and a longer duration of breeding, whereas less rainfall and more heatwaves (days > 29°C) in late summer resulted in an earlier end and a shorter duration of breeding. Using a hurdle model analysis, we found that earlier start dates did not predict whether or not females produced any young in a season. However, for successful females who produced at least one young, earlier start dates were associated with higher numbers of young produced in a season. Earlier end dates were associated with a higher probability of producing at least one young, presumably because unsuccessful females kept trying when others had ceased. Despite larger scale trends in climate, climate variables in the windows relevant to this species’ phenology did not change across years, and there were no temporal trends in phenology during our study period. Our results illustrate a scenario in which higher temperatures advanced both start and end dates of individuals’ breeding seasons, but did not generate an overall temporal shift in breeding times. They also suggest that the complexity of selection pressures on breeding phenology in multi‐brooded species may have been underestimated.  相似文献   

18.
    
  • Aflatoxin contamination in peanut is a serious food safety issue to human health around the world. Finding disease resistance genes is a key strategy for genetic improvement in breeding to deal with this issue.
  • We identified an Aspergillus flavus‐induced NBS‐LRR gene, AhRAF4, using a microarray‐based approach. By comparison of 23 sequences from three species using phytogenetics, protein secondary structure and three‐dimensional structural analyses, AhRAF4 was revealed to be derived from Arachis duranensis by recombination, and has newly evolved into a family of several members, characterised by duplications and point mutations. However, the members of the family descended from Aipaensis were lost following tetraploidisation.
  • AhRAF4 was slightly up‐regulated by low temperature, drought, salicylic acid and ethylene, but down‐regulated by methyl jasmonate. The distinct responses upon As. flavus inoculation and the differential reactions between resistant and susceptible varieties indicate that AhRAF4 might play a role in defence responses. Temporal and spatial expression and the phenotype of transformed protoplasts suggest that AhRAF4 may also be associated with pericarp development.
  • Because tetraploid cultivated peanuts are vulnerable to many pathogens, an exploration of R‐genes may provide an effective method for genetic improvement of peanut cultivars.
  相似文献   

19.
20.
    
Blast caused by Magnaporthe oryzae is the most devastating disease causing significant loss in rice production. The destructive nature of the disease is mainly due to the genetic plasticity of M. oryzae which complicates the breeding strategies. Blast can be effectively managed by the deployment of R genes. In this study, broad‐spectrum blast resistance genes Pi2 and Pi5 were introgressed independently into popular but blast susceptible rice variety, Samba Mahsuri (BPT5204) by applying marker‐assisted backcross breeding approach. Tightly linked markers AP5930 for Pi2 and 40N23r for Pi5 gene were used in foreground selection. Background selection helped to identify the lines with maximum recovery of recurrent parent genome (RPG). The RPG recovery in Pi2 introgression lines was up to 90.17 and 91.46% in Pi5 lines. Homozygous introgression lines in BC3F4 generation carrying Pi2 and Pi5 gene were field evaluated for blast resistance, yield per se and yield‐related traits. The lines showed resistance to leaf and neck blast in multilocation field evaluation. Improved BPT5204 lines with improvement for blast resistance were on par with original BPT5204 in terms of grain yield and grain features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号