首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The present study aimed to analyze long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression profiles in septic mice heart and to identify potential lncRNAs and mRNAs that be responsible for cardiac mitochondrial dysfunction during sepsis. Mice were treated with 10 mg/kg of lipopolysaccharides to induce sepsis. LncRNAs and mRNAs expression were evaluated by using lncRNA and mRNA microarray or real‐time polymerase chain reaction technique. LncRNA‐mRNA coexpression network assay, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. The results showed that 1275 lncRNAs were differentially expressed in septic myocardium compared with those in the control group. A total of 2769 mRNAs were dysregulated in septic mice heart, most of which are mainly related to the process of inflammation, mitochondrial metabolism, oxidative stress, and apoptosis. Coexpression network analysis showed that 14 lncRNAs were highly correlated with 11 mitochondria‐related differentially expressed mRNA. Among all lncRNAs and their cis‐acting mRNAs, 41 lncRNAs‐mRNA pairs (such as NONMMUG004378 and Apaf1 gene) were enriched in GO terms and KEGG pathways. In summary, we gained some specific lncRNAs and their potential target mRNAs that might be involved in mitochondrial dysfunction in septic myocardium. These findings provide a panoramic view of lncRNA and might allow developing new treatment strategies for sepsis.  相似文献   

4.
5.
6.
7.
8.
The interactions between Arabidopsis thaliana and Plutella xylostella have been considered as a model system to unravel the responses of plants to herbivorous insects. Here, we use a 2-DE proteome approach to detect protein expression changes in the leaves of Arabidopsis plants exposed to P. xylostella larval infestation at 27°C within 8?h. Approximately 450 protein spots were reproducibly detected on gels. Of these, comparing healthy and infested leaves, we identified 18 differentially expressed protein spots. Thirteen proteins were successfully identified by MALDI-TOF/MS and LC-ESI-MS/MS. Functional classification analysis indicated that the differentially identified proteins were associated with amino acid, carbohydrate, energy, lipid metabolism, and photosynthesis. In addition, their relative abundances were assessed according to larval pest feeding on Arabidopsis leaves. These data provide valuable new insights for further works in plant-biotic and environmental stress interaction.  相似文献   

9.
Researchers have widely adopted the hairy root culture system as a means for producing secondary metabolites, including ginsenosides from ginseng. Although bacterial genes are involved, the aspects of plant gene expression are unclear. Using a cDNA microarray approach, we identified genes that are differentially expressed in ginseng hairy roots afterAgrobacterium rhizogenes infection. Our goal was to gain an initial understanding of the correlation between hairy root morphology and ginsenoside production. Among the 250 genes analyzed here, 63 (including 14 that are unclassified) were differentially expressed in a hairy root line containing a high level of ginsenosides. Of the genes that had been functionally categorized, 29% and 17% were active in metabolism and stress responses, respectively. Most were primarily associated with ribosomal proteins, thereby functioning in protein synthesis and destination. Their expression was down-regulated in hairy roots having less lateral branching. This phenotype may have resulted from the manipulation of metabolic activities by the translational machinery.  相似文献   

10.
Oxidative stress is a threat to mammalian cells. To better understand the molecular response and mechanism underlying oxidative stress, we applied two‐dimensional polyacrylamide gel electrophoresis and matrix‐assisted laser desorption ionization time‐of‐fight mass spectrometry analysis to identify differential nuclear protein profiling of mouse fibroblast NIH‐3T3 cells exposed to mild‐H2O2. Thirteen differentially expressed proteins were identified by MS and two of them were further validated by Western blot. The results revealed that exposure to mild‐H2O2 for 12 h cause up‐regulated expression of DJ‐1, glutathione S‐transferase P 1, DNA ligase I, dynamin 2, nucleophosmin, and down‐regulated expression of nucleoside diphosphate kinase A, enolase‐α, barrier‐to‐autointegration factor 1, metastasis associated protein 1, glycosytransferase‐like domain containing protein 1, synaptonemal complex protein 1, alpha‐centractin, bromodomain, and PHD finger containing 1 (BRPF1). Most of the identified proteins are supported as nuclear proteins localized by previous research. The findings may provide some clues to elucidate cell responses to H2O2 and the potential mechanism underlying protection against oxidative stress in fibroblast cells. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Intracellular sorting of mRNAs is an essential process for regulating gene expression and protein localization. Most mitochondrial proteins are nuclear‐encoded and imported into the mitochondria through post‐translational or co‐translational processes. In the latter case, mRNAs are found to be enriched in the vicinity of mitochondria. A genome‐scale analysis of mRNAs associated with mitochondria has been performed to determine plant cytosolic mRNAs targeted to the mitochondrial surface. Many messengers encoding mitochondrial proteins were found associated with mitochondria. These mRNAs correspond to particular functions and complexes, such as respiration or mitoribosomes, which indicates a coordinated control of mRNA localization within metabolic pathways. In addition, upstream AUGs in 5' untranslated regions (UTRs), which modulate the translation efficiency of downstream sequences, were found to negatively affect the association of mRNAs with mitochondria. A mutational approach coupled with in vivo mRNA visualization confirmed this observation. Moreover, this technique allowed the identification of 3'‐UTRs as another essential element for mRNA localization at the mitochondrial surface. Therefore, this work offers new insights into the mechanism, function and regulation of the association of cytosolic mRNAs with plant mitochondria.  相似文献   

13.
14.
15.
16.
17.
18.
19.
A subtracted cDNA library forDavidia involucrata was constructed using suppression subtractive hybridization (SSH). mRNA isolated from young leaves was used as a “driver,” and mRNAs isolated from young bracts were used as “testers.” The differentially expressed cDNA fragments in bracts were identified by differential screening. Of the 16 clones selected randomly from the screened library, 8 were known genes found in GenBank, and 2 had no similar sequences. Northern blot analysis revealed that the expression level of P1A5 cDNAs selected randomly was dominantly expressed in bracts. This indicates that SSH can be used to clone differentially expressed cDNAs inD. involucrata bracts.  相似文献   

20.
The neuronal RNA‐binding protein HuD is involved in synaptic plasticity and learning and memory mechanisms. These effects are thought to be due to HuD‐mediated stabilization and translation of target mRNAs associated with plasticity. To investigate the potential role of HuD in drug addiction, we first used bioinformatics prediction algorithms together with microarray analyses to search for specific genes and functional networks upregulated within the forebrain of HuD overexpressing mice (HuDOE). When this set was further limited to genes in the knowledgebase of addiction‐related genes database (KARG) that contains predicted HuD‐binding sites in their 3′ untranslated regions (3′UTRs), we found that HuD regulates networks that have been associated with addiction‐like behavior. These genes included Bdnf and Camk2a, 2 previously validated HuD targets. Since addiction is hypothesized to be a disorder stemming from altered gene expression causing aberrant plasticity, we sought to test the role of HuD in cocaine conditioned placed preference (CPP), a model of addiction‐related behaviors. HuD mRNA and protein were upregulated by CPP within the nucleus accumbens of wild‐type C57BL/6J mice. These changes were associated with increased expression of Bdnf and Camk2a mRNA and protein. To test this further, we trained HuDOE and wild‐type mice in CPP and found that HuDOE mice showed increased cocaine CPP compared with controls. This was also associated with elevated expression of HuD target mRNAs and proteins, CaMKIIα and BDNF. These findings suggest HuD involvement in addiction‐related behaviors such as cocaine conditioning and seeking, through increased plasticity‐related gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号