首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Currently, there is much debate on the genetic architecture of quantitative traits in wild populations. Is trait variation influenced by many genes of small effect or by a few genes of major effect? Where is additive genetic variation located in the genome? Do the same loci cause similar phenotypic variation in different populations? Great tits (Parus major) have been studied extensively in long‐term studies across Europe and consequently are considered an ecological ‘model organism’. Recently, genomic resources have been developed for the great tit, including a custom SNP chip and genetic linkage map. In this study, we used a suite of approaches to investigate the genetic architecture of eight quantitative traits in two long‐term study populations of great tits—one in the Netherlands and the other in the United Kingdom. Overall, we found little evidence for the presence of genes of large effects in either population. Instead, traits appeared to be influenced by many genes of small effect, with conservative estimates of the number of contributing loci ranging from 31 to 310. Despite concordance between population‐specific heritabilities, we found no evidence for the presence of loci having similar effects in both populations. While population‐specific genetic architectures are possible, an undetected shared architecture cannot be rejected because of limited power to map loci of small and moderate effects. This study is one of few examples of genetic architecture analysis in replicated wild populations and highlights some of the challenges and limitations researchers will face when attempting similar molecular quantitative genetic studies in free‐living populations.  相似文献   

2.
In rainbow trout farming, Flavobacterium psychrophilum, the causative agent of bacterial cold water disease, is responsible for important economic losses. Resistance to F. psychrophilum is heritable, and several quantitative trait loci (QTL) with moderate effects have been detected, opening up promising perspectives for the genetic improvement of resistance. In most studies however, resistance to F. psychrophilum was assessed in experimental infectious challenges using injection as the infection route, which is not representative of natural infection. Indeed, injection bypasses external barriers, such as mucus and skin, that likely play a protective role against the infection. In this study, we aimed at describing the genetic architecture of the resistance to F. psychrophilum after a natural disease outbreak. In a 2000‐fish cohort, reared on a French farm, 720 fish were sampled and genotyped using the medium‐throughput Axiom? Trout Genotyping Array. Overall mortality at the end of the outbreak was 25%. Genome‐wide association studies were performed under two different models for time to death measured on 706 fish with validated genotypes for 30 060 SNPs. This study confirms the polygenic inheritance of resistance to F. psychrophilum with a few QTL with moderate effects and a large polygenic background, the heritability of the trait being estimated at 0.34. Two new chromosome‐wide significant QTL and three suggestive QTL were detected, each of them explaining between 1% and 4% of genetic variance.  相似文献   

3.
Stomata are essential for diffusive entry of gases to support photosynthesis, but may also expose internal leaf tissues to pathogens. To uncover trade‐offs in range‐wide adaptation relating to stomata, we investigated the underlying genetics of stomatal traits and linked variability in these traits with geoclimate, ecophysiology, condensed foliar tannins and pathogen susceptibility in black cottonwood (Populus trichocarpa). Upper (adaxial) and lower (abaxial) leaf stomatal traits were measured from 454 accessions collected throughout much of the species range. We calculated broad‐sense heritability (H2) of stomatal traits and, using SNP data from a 34K Populus SNP array, performed a genome‐wide association studies (GWAS) to uncover genes underlying stomatal trait variation. H2 values for stomatal traits were moderate (average H2 = 0.33). GWAS identified genes associated primarily with adaxial stomata, including polarity genes (PHABULOSA), stomatal development genes (BRASSINOSTEROID‐INSENSITIVE 2) and disease/wound‐response genes (GLUTAMATE‐CYSTEINE LIGASE). Stomatal traits correlated with latitude, gas exchange, condensed tannins and leaf rust (Melampsora) infection. Latitudinal trends of greater adaxial stomata numbers and guard cell pore size corresponded with higher stomatal conductance (gs) and photosynthesis (Amax), faster shoot elongation, lower foliar tannins and greater Melampsora susceptibility. This suggests an evolutionary trade‐off related to differing selection pressures across the species range. In northern environments, more adaxial stomata and larger pore sizes reflect selection for rapid carbon gain and growth. By contrast, southern genotypes have fewer adaxial stomata, smaller pore sizes and higher levels of condensed tannins, possibly linked to greater pressure from natural leaf pathogens, which are less significant in northern ecosystems.  相似文献   

4.
Fungal pathogens pose a major challenge to global crop production. Crop varieties that resist disease present the best defence and offer an alternative to chemical fungicides. Exploiting durable nonhost resistance (NHR) for crop protection often requires identification and transfer of NHR‐linked genes to the target crop. Here, we identify genes associated with NHR of Arabidopsis thaliana to Phakopsora pachyrhizi, the causative agent of the devastating fungal disease called Asian soybean rust. We transfer selected Arabidopsis NHR‐linked genes to the soybean host and discover enhanced resistance to rust disease in some transgenic soybean lines in the greenhouse. Interspecies NHR gene transfer thus presents a promising strategy for genetically engineered control of crop diseases.  相似文献   

5.
Reproduction is an energetically costly behavior for many organisms, including species with mating systems in which males call to attract females. In these species, calling males can often attract more females by displaying more often, with higher intensity, or at certain frequencies. Male frogs attract females almost exclusively by calling, and we know little about how pathogens, including the globally devastating fungus, Batrachochytrium dendrobatidis, influence calling effort and call traits. A previous study demonstrated that the nightly probability of calling by male treefrogs, Litoria rheocola, is elevated when they are in good body condition and are infected by B. dendrobatidis. This suggests that infections may cause males to increase their present investment in mate attraction to compensate for potential decreases in future reproduction. However, if infection by B. dendrobatidis decreases the attractiveness of their calls, infected males might experience decreased reproductive success despite increases in calling effort. We examined whether calls emitted by L. rheocola infected by B. dendrobatidis differed from those of uninfected individuals in duration, pulse rate, dominant frequency, call rate, or intercall interval, the attributes commonly linked to mate choice. We found no effects of fungal infection status or infection intensity on any call attribute. Our results indicate that infected males produce calls similar in all the qualities we measured to those of uninfected males. It is therefore likely that the calls of infected and uninfected males should be equally attractive to females. The increased nightly probability of calling previously demonstrated for infected males in good condition may therefore lead to greater reproductive success than that of uninfected males. This could reduce the effectiveness of natural selection for resistance to infection, but could increase the effectiveness of selection for infection tolerance, the ability to limit the harm caused by infection, such as reductions in body condition.  相似文献   

6.
Community genetics aims to understand the effects of intraspecific genetic variation on community composition and diversity, thereby connecting community ecology with evolutionary biology. Thus far, research has shown that plant genetics can underlie variation in the composition of associated communities (e.g., insects, lichen and endophytes), and those communities can therefore be considered as extended phenotypes. This work, however, has been conducted primarily at the plant genotype level and has not identified the key underlying genes. To address this gap, we used genome‐wide association mapping with a population of 445 aspen (Populus tremuloides) genets to identify the genes governing variation in plant traits (defence chemistry, bud phenology, leaf morphology, growth) and insect community composition. We found 49 significant SNP associations in 13 Populus genes that are correlated with chemical defence compounds and insect community traits. Most notably, we identified an early nodulin‐like protein that was associated with insect community diversity and the abundance of interacting foundation species (ants and aphids). These findings support the concept that particular plant traits are the mechanistic link between plant genes and the composition of associated insect communities. In putting the “genes” into “genes to ecosystems ecology”, this work enhances understanding of the molecular genetic mechanisms that underlie plant–insect associations and the consequences thereof for the structure of ecological communities.  相似文献   

7.
To find sequence variants affecting prostate cancer (PCA) susceptibility in an unscreened Romanian population we use a genome‐wide association study (GWAS). The study population included 990 unrelated pathologically confirmed PCA cases and 1034 male controls. DNA was genotyped using Illumina SNP arrays, and 24.295.558 variants were imputed using the 1000 Genomes data set. An association test was performed between the imputed markers and PCA. A systematic literature review for variants associated with PCA risk identified 115 unique variants that were tested in the Romanian sample set. Thirty of the previously reported SNPs replicated (P‐value < 0.05), with the strongest associations observed at: 8q24.21, 11q13.3, 6q25.3, 5p15.33, 22q13.2, 17q12 and 3q13.2. The replicated variants showing the most significant association in Romania are rs1016343 at 8q24.21 (P = 2.2 × 10?4), rs7929962 at 11q13.3 (P = 2.7 × 10?4) and rs9364554 at 6q25.2 (P = 4.7 × 10?4). None of the variants tested in the Romanian GWAS reached genome‐wide significance (P‐value <5 × 10?8) but 807 markers had P‐values <1 × 10?4. Here, we report the results of the first GWAS of PCA performed in a Romanian population. Our study provides evidence that a substantial fraction of previously validated PCA variants associate with risk in this unscreened Romanian population.  相似文献   

8.
Evolutionary biologists explain the maintenance of intermediate levels of defense in plant populations as being due to trade-offs, or negative genetic covariances among ecologically important traits. Attempts at detecting trade-offs as constraints on the evolution of defense have not always been successful, leading some to conclude that such trade-offs rarely explain current levels of defense in the population. Using the agricultural pest Ipomoea purpurea, we measured correlations between traits involved in defense to glyphosate, the active ingredient in Roundup, a widely used herbicide. We found significant allocation costs of tolerance, as well as trade-offs between resistance and two measures of tolerance to glyphosate. Selection on resistance and tolerance exhibited differing patterns: tolerance to leaf damage was under negative directional selection, whereas resistance was under positive directional selection. The joint pattern of selection on resistance and tolerance to leaf damage indicated the presence of alternate peaks in the fitness landscape such that a combination of either high tolerance and low resistance, or high resistance and low tolerance was favored. The widespread use of this herbicide suggests that it is likely an important selective agent on weed populations. Understanding the evolutionary dynamics of herbicide defense traits is thus of increasing importance in the context of human-mediated evolution.  相似文献   

9.
In a rapidly changing world, phenotypic plasticity may be a critical mechanism allowing populations to rapidly acclimate when faced with novel anthropogenic stressors. Theory predicts that if exposure to anthropogenic stress is heterogeneous, plasticity should be maintained as it allows organisms to avoid unnecessary expression of costly traits (i.e., phenotypic costs) when stressors are absent. Conversely, if exposure to stressors becomes constant, costs or limits of plasticity may lead to evolutionary trait canalization (i.e., genetic assimilation). While these concepts are well‐established in theory, few studies have examined whether these factors explain patterns of plasticity in natural populations facing anthropogenic stress. Using wild populations of wood frogs that vary in plasticity in tolerance to pesticides, the goal of this study was to evaluate the environmental conditions under which plasticity is expected to be advantageous or detrimental. We found that when pesticides were absent, more plastic populations exhibited lower pesticide tolerance and were more fit than less plastic populations, likely avoiding the cost of expressing high tolerance when it was not necessary. Contrary to our predictions, when pesticides were present, more plastic populations were as fit as less plastic populations, showing no signs of costs or limits of plasticity. Amidst unprecedented global change, understanding the factors shaping the evolution of plasticity will become increasingly important.  相似文献   

10.
In recent years developments in plant phenomic approaches and facilities have gradually caught up with genomic approaches. An opportunity lies ahead to dissect complex, quantitative traits when both genotype and phenotype can be assessed at a high level of detail. This is especially true for the study of natural variation in photosynthetic efficiency, for which forward genetics studies have yielded only a little progress in our understanding of the genetic layout of the trait. High‐throughput phenotyping, primarily from chlorophyll fluorescence imaging, should help to dissect the genetics of photosynthesis at the different levels of both plant physiology and development. Specific emphasis should be directed towards understanding the acclimation of the photosynthetic machinery in fluctuating environments, which may be crucial for the identification of genetic variation for relevant traits in food crops. Facilities should preferably be designed to accommodate phenotyping of photosynthesis‐related traits in such environments. The use of forward genetics to study the genetic architecture of photosynthesis is likely to lead to the discovery of novel traits and/or genes that may be targeted in breeding or bio‐engineering approaches to improve crop photosynthetic efficiency. In the near future, big data approaches will play a pivotal role in data processing and streamlining the phenotype‐to‐gene identification pipeline.  相似文献   

11.
Because of the frequent breakdown of major resistance (R) genes, identification of new partial R genes against rice blast disease is an important goal of rice breeding. In this study, we used a core collection of the Rice Diversity Panel II (C‐RDP‐II), which contains 584 rice accessions and are genotyped with 700 000 single‐nucleotide polymorphism (SNP) markers. The C‐RDP‐II accessions were inoculated with three blast strains collected from different rice‐growing regions in China. Genome‐wide association study identified 27 loci associated with rice blast resistance (LABRs). Among them, 22 LABRs were not associated with any known blast R genes or QTLs. Interestingly, a nucleotide‐binding site leucine‐rich repeat (NLR) gene cluster exists in the LABR12 region on chromosome 4. One of the NLR genes is highly conserved in multiple partially resistant rice cultivars, and its expression is significantly up‐regulated at the early stages of rice blast infection. Knockout of this gene via CRISPR‐Cas9 in transgenic plants partially reduced blast resistance to four blast strains. The identification of this new non‐strain specific partial R gene, tentatively named rice blast Partial Resistance gene 1 (PiPR1), provides genetic material that will be useful for understanding the partial resistance mechanism and for breeding durably resistant cultivars against blast disease of rice.  相似文献   

12.
Natural variation has become a prime resource to identify genetic variants that contribute to phenotypic variation. The regional mapping (RegMap) population is one of the most important populations for studying natural variation in Arabidopsis thaliana, and has been used in a large number of association studies and in studies on climatic adaptation. However, only 413 RegMap accessions have been completely sequenced, as part of the 1001 Genomes (1001G) Project, while the remaining 894 accessions have only been genotyped with the Affymetrix 250k chip. As a consequence, most association studies involving the RegMap are either restricted to the sequenced accessions, reducing power, or rely on a limited set of SNPs. Here we impute millions of SNPs to the 894 accessions that are exclusive to the RegMap, using the 1135 accessions of the 1001G Project as the reference panel. We assess imputation accuracy using a novel cross‐validation scheme, which we show provides a more reliable measure of accuracy than existing methods. After filtering out low accuracy SNPs, we obtain high‐quality genotypic information for 2029 accessions and 3 million markers. To illustrate the benefits of these imputed data, we reconducted genome‐wide association studies on five stress‐related traits and could identify novel candidate genes.  相似文献   

13.
The European gypsy moth (Lymantria dispar L.) was first introduced to Massachusetts in 1869 and within 150 years has spread throughout eastern North America. This large‐scale invasion across a heterogeneous landscape allows examination of the genetic signatures of adaptation potentially associated with rapid geographical spread. We tested the hypothesis that spatially divergent natural selection has driven observed changes in three developmental traits that were measured in a common garden for 165 adult moths sampled from six populations across a latitudinal gradient covering the entirety of the range. We generated genotype data for 91,468 single nucleotide polymorphisms based on double digest restriction‐site associated DNA sequencing and used these data to discover genome‐wide associations for each trait, as well as to test for signatures of selection on the discovered architectures. Genetic structure across the introduced range of gypsy moth was low in magnitude (FST = 0.069), with signatures of bottlenecks and spatial expansion apparent in the rare portion of the allele frequency spectrum. Results from applications of Bayesian sparse linear mixed models were consistent with the presumed polygenic architectures of each trait. Further analyses indicated spatially divergent natural selection acting on larval development time and pupal mass, with the linkage disequilibrium component of this test acting as the main driver of observed patterns. The populations most important for these signals were two range‐edge populations established less than 30 generations ago. We discuss the importance of rapid polygenic adaptation to the ability of non‐native species to invade novel environments.  相似文献   

14.
Tipburn is an irreversible physiological disorder of Chinese cabbage that decreases crop value. Because of a strong environmental component, tipburn‐resistant cultivars are the only solution, although tipburn resistance genes are unknown in Chinese cabbage. We studied three populations of Chinese cabbage over four growing seasons under field conditions: (a) 194 diverse inbred lines, (b) a doubled haploid (DH100) population, and (c) an F2 population. The 194 lines were genotyped using single nucleotide polymorphism markers, and genome‐wide‐association mapping showed that 24 gQTLs were significantly associated with tipburn disease index. Analysis of the DH100 and F2 populations identified a shared tipburn‐associated locus, gqbTRA06, that was found to cover the region defined by one of the 24 gQTLs. Of 35 genes predicted in the 0.14‐Mb quantitative trait locus region, Bra018575 (calreticulin family protein, BrCRT2) showed higher expression levels during disease development. We cloned the two BrCRT2 alleles from tipburn‐resistant (BrCRT2R) and tipburn‐susceptible (BrCRT2S) lines and identified a 51‐bp deletion in BrCRT2S. Overexpression of BrCRT2R increased Ca2+ storage in the Arabidopsis crt2 mutant and also reduced cell death in leaf tips and margins under Ca2+‐depleted conditions. Our results suggest that BrCRT2 is a possible candidate gene for controlling tipburn in Chinese cabbage.  相似文献   

15.
Crop evolution is a long‐term process involving selection by natural evolutionary forces and anthropogenic influences; however, the genetic mechanisms underlying the domestication and improvement of fruit crops have not been well studied to date. Here, we performed a population structure analysis in peach (Prunus persica) based on the genome‐wide resequencing of 418 accessions and confirmed the presence of an obvious domestication event during evolution. We identified 132 and 106 selective sweeps associated with domestication and improvement, respectively. Analysis of their tissue‐specific expression patterns indicated that the up‐regulation of selection genes during domestication occurred mostly in fruit and seeds as opposed to other organs. However, during the improvement stage, more up‐regulated selection genes were identified in leaves and seeds than in the other organs. Genome‐wide association studies (GWAS) using 4.24 million single nucleotide polymorphisms (SNPs) revealed 171 loci associated with 26 fruit domestication traits. Among these loci, three candidate genes were highly associated with fruit weight and the sorbitol and catechin content in fruit. We demonstrated that as the allele frequency of the SNPs associated with high polyphenol composition decreased during peach evolution, alleles associated with high sugar content increased significantly. This indicates that there is genetic potential for the breeding of more nutritious fruit with enhanced bioactive polyphenols without disturbing a harmonious sugar and acid balance by crossing with wild species. This study also describes the development of the genomic resources necessary for evolutionary research in peach and provides the large‐scale characterization of key agronomic traits in this crop species.  相似文献   

16.
As overfertilization leads to environmental concerns and the cost of N fertilizer increases, the issue of how to select crop cultivars that can produce high yields on N‐deficient soils has become crucially important. However, little information is known about the genetic mechanisms by which crops respond to environmental changes induced by N signaling. Here, we dissected the genetic architecture of N‐induced phenotypic plasticity in bread wheat (Triticum aestivum L.) by integrating functional mapping and semiautomatic high‐throughput phenotyping data of yield‐related canopy architecture. We identified a set of quantitative trait loci (QTLs) that determined the pattern and magnitude of how wheat cultivars responded to low N stress from normal N supply throughout the wheat life cycle. This analysis highlighted the phenological landscape of genetic effects exerted by individual QTLs, as well as their interactions with N‐induced signals and with canopy measurement angles. This information may shed light on our mechanistic understanding of plant adaptation and provide valuable information for the breeding of N‐deficiency tolerant wheat varieties.  相似文献   

17.
Traditional selection for sow reproductive longevity is ineffective due to low heritability and late expression of the trait. Incorporation of DNA markers into selection programs is potentially a more practical approach for improving sow lifetime productivity. Using a resource population of crossbred gilts, we explored pleiotropic sources of variation that influence age at puberty and reproductive longevity. Of the traits recorded before breeding, only age at puberty significantly affected the probability that females would produce a first parity litter. The genetic variance explained by 1‐Mb windows of the sow genome, compared across traits, uncovered regions that influence both age at puberty and lifetime number of parities. Allelic variants of SNPs located on SSC5 (27–28 Mb), SSC8 (36–37 Mb) and SSC12 (1.2–2 Mb) exhibited additive effects and were associated with both early expression of puberty and a greater than average number of lifetime parities. Combined analysis of these SNPs showed that an increase in the number of favorable alleles had positive impact on reproductive longevity, increasing number of parities by up to 1.36. The region located on SSC5 harbors non‐synonymous alleles in the arginine vasopressin receptor 1A (AVPR1A) gene, a G‐protein‐coupled receptor associated with social and reproductive behaviors in voles and humans and a candidate for the observed effects. This region is characterized by high levels of linkage disequilibrium in different lines and could be exploited in marker‐assisted selection programs across populations to increase sow reproductive longevity.  相似文献   

18.
Evolutionary dynamics of integrative traits such as phenology are predicted to be critically important to range expansion and invasion success, yet there are few empirical examples of such phenomena. In this study, we used multiple common gardens to examine the evolutionary significance of latitudinal variation in phenology of a widespread invasive species, the Asian short‐day flowering annual grass Microstegium vimineum. In environmentally controlled growth chambers, we grew plants from seeds collected from multiple latitudes across the species' invasive range. Flowering time and biomass were both strongly correlated with the latitude of population origin such that populations collected from more northern latitudes flowered significantly earlier and at lower biomass than populations from southern locations. We suggest that this pattern may be the result of rapid adaptive evolution of phenology over a period of less than one hundred years and that such changes have likely promoted the northward range expansion of this species. We note that possible barriers to gene flow, including bottlenecks and inbreeding, have apparently not forestalled evolutionary processes for this plant. Furthermore, we hypothesize that evolution of phenology may be a widespread and potentially essential process during range expansion for many invasive plant species.  相似文献   

19.
To mine possibly hidden causal single‐nucleotide polymorphisms (SNPs) of melanoma, we investigated the association of SNPs in 76 M/G1 transition genes with melanoma risk using our published genome‐wide association study (GWAS) data set with 1804 melanoma cases and 1026 cancer‐free controls. We found multiple SNPs with P < 0.01 and performed validation studies for 18 putative functional SNPs in PSMB9 in two other GWAS data sets. Two SNPs (rs1351383 and rs2127675) were associated with melanoma risk in the GenoMEL data set (P = 0.013 and 0.004, respectively), but failed in validation using the Australian data set. Genotype–phenotype analysis revealed these two SNPs were significantly correlated with mRNA expression level of PSMB9. Further experiments revealed that SNP rs2071480, which is in high LD with rs1351383 and rs2127675, may have a weak effect on the promoter activity of PSMB9. Taken together, our data suggested that functional variants in PSMB9 may contribute to melanoma susceptibility.  相似文献   

20.
A defining feature of the nutritional ecology of plant sap‐feeding insects is that the dietary deficit of essential amino acids (EAAs) in plant sap is supplemented by EAA‐provisioning microbial symbionts in the insect. Here, we demonstrated substantial variation in the nutritional phenotype of 208 genotypes of the pea aphid Acyrthosiphon pisum collected from a natural population. Specifically, the genotypes varied in performance (larval growth rates) on four test diets lacking the EAAs arginine, histidine and methionine or aromatic EAAs (phenylalanine and tryptophan), relative to the diet containing all EAAs. These data indicate that EAA supply from the symbiotic bacteria Buchnera can meet total aphid nutritional demand for only a subset of the EAA/aphid genotype combinations. We then correlated single nucleotide polymorphisms (SNPs) identified in the aphid and Buchnera genomes by reduced genome sequencing against aphid performance for each EAA deletion diet. This yielded significant associations between performance on the histidine‐free diet and Buchnera SNPs, including metabolism genes predicted to influence histidine biosynthesis. Aphid genetic correlates of performance were obtained for all four deletion diets, with associations on the arginine‐free diet and aromatic‐free diets dominated by genes functioning in the regulation of metabolic and cellular processes. The specific aphid genes associated with performance on different EAA deletion diets are largely nonoverlapping, indicating some independence in the regulatory circuits determining aphid phenotype for the different EAAs. This study demonstrates how variation in the phenotype of associations collected from natural populations can be applied to elucidate the genetic basis of ecologically important traits in systems intractable to traditional forward/reverse genetic techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号