首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is growing concern that modifications to the global environment such as ocean acidification and increased ultraviolet radiation may interact with anthropogenic pollutants to adversely affect the future marine environment. Despite this, little is known about the nature of the potential risks posed by such interactions. Here, we performed a multifactorial microcosm experiment to assess the impact of ocean acidification, ultraviolet B (UV‐B) radiation and oil hydrocarbon contamination on sediment chemistry, the microbial community (composition and function) and biochemical marker response of selected indicator species. We found that increased ocean acidification and oil contamination in the absence of UV‐B will significantly alter bacterial composition by, among other things, greatly reducing the relative abundance of Desulfobacterales, known to be important oil hydrocarbon degraders. Along with changes in bacterial composition, we identified concomitant shifts in the composition of oil hydrocarbons in the sediment and an increase in oxidative stress effects on our indicator species. Interestingly, our study identifies UV‐B as a critical component in the interaction between these factors, as its presence alleviates harmful effects caused by the combination of reduced pH and oil pollution. The model system used here shows that the interactive effect of reduced pH and oil contamination can adversely affect the structure and functioning of sediment benthic communities, with the potential to exacerbate the toxicity of oil hydrocarbons in marine ecosystems.  相似文献   

2.
Faecal contamination is one of the major factors affecting biological water quality. In this study, we investigated microbial taxonomic diversity of faecally polluted lotic ecosystems in Norway. These ecosystems comprise tributaries of drinking water reservoirs with moderate and high faecal contamination levels, an urban creek exposed to extremely high faecal pollution and a rural creek that was the least faecally polluted. The faecal water contamination had both anthropogenic and zoogenic origins identified through quantitative microbial source tracking applying host-specific Bacteroidales 16S rRNA genetic markers. The microbial community composition revealed that Proteobacteria and Bacteroidetes (70–90% relative abundance) were the most dominant bacterial phyla, followed by Firmicutes, especially in waters exposed to anthropogenic faecal contamination. The core archaeal community consisted of Parvarchaeota (mainly in the tributaries of drinking water reservoirs) and Crenarchaeota (in the rural creek). The aquatic microbial diversity was substantially reduced in water with severe faecal contamination. In addition, the community compositions diverge between waters with dominant anthropogenic or zoogenic pollution origins. These findings present novel interpretations of the effect of anthropo-zoogenic faecal water contamination on microbial diversity in lotic ecosystems.  相似文献   

3.
Outbreaks of crown‐of‐thorns starfish (COTS), Acanthaster planci, contribute to major declines of coral reef ecosystems throughout the Indo‐Pacific. As the oceans warm and decrease in pH due to increased anthropogenic CO2 production, coral reefs are also susceptible to bleaching, disease and reduced calcification. The impacts of ocean acidification and warming may be exacerbated by COTS predation, but it is not known how this major predator will fare in a changing ocean. Because larval success is a key driver of population outbreaks, we investigated the sensitivities of larval A. planci to increased temperature (2–4 °C above ambient) and acidification (0.3–0.5 pH units below ambient) in flow‐through cross‐factorial experiments (3 temperature × 3 pH/pCO2 levels). There was no effect of increased temperature or acidification on fertilization or very early development. Larvae reared in the optimal temperature (28 °C) were the largest across all pH treatments. Development to advanced larva was negatively affected by the high temperature treatment (30 °C) and by both experimental pH levels (pH 7.6, 7.8). Thus, planktonic life stages of A. planci may be negatively impacted by near‐future global change. Increased temperature and reduced pH had an additive negative effect on reducing larval size. The 30 °C treatment exceeded larval tolerance regardless of pH. As 30 °C sea surface temperatures may become the norm in low latitude tropical regions, poleward migration of A. planci may be expected as they follow optimal isotherms. In the absence of acclimation or adaptation, declines in low latitude populations may occur. Poleward migration will be facilitated by strong western boundary currents, with possible negative flow‐on effects on high latitude coral reefs. The contrasting responses of the larvae of A. planci and those of its coral prey to ocean acidification and warming are considered in context with potential future change in tropical reef ecosystems.  相似文献   

4.
5.
Marine heatwaves are extreme events that can have profound and lasting impacts on marine species. Field observations have shown seaweeds to be highly susceptible to marine heatwaves, but the physiological drivers of this susceptibility are poorly understood. Furthermore, the effects of marine heatwaves in conjunction with ocean warming and acidification are yet to be investigated. To address this knowledge gap, we conducted a laboratory culture experiment in which we tested the growth and physiological responses of Phyllospora comosa juveniles from the southern extent of its range (43–31°S) to marine heatwaves, ocean warming and acidification. We used a ‘collapsed factorial design’ in which marine heatwaves were superimposed on current (today's pH and temperature) and future (pH and temperature projected by 2100) ocean conditions. Responses were tested both during the heatwaves, and after a 7‐day recovery period. Heatwaves reduced net photosynthetic rates in both current and future conditions, while respiration rates were elevated under heatwaves in the current conditions only. Following the recovery period, there was little evidence of heatwaves having lasting negative effects on growth, photosynthesis or respiration. Exposure to heatwaves, future ocean conditions or both caused an increase in the degree of saturation of fatty acids. This adjustment may have counteracted negative effects of elevated temperatures by decreasing membrane fluidity, which increases at higher temperatures. Furthermore, P. comosa appeared to down‐regulate the energetically expensive carbon dioxide concentrating mechanism in the future conditions with a reduction in δ13C values detected in these treatments. Any saved energy arising from this down‐regulation was not invested in growth and was likely invested in the adjustment of fatty acid composition. This adjustment is a mechanism by which P. comosa and other seaweeds may tolerate the negative effects of ocean warming and marine heatwaves through benefits arising from ocean acidification.  相似文献   

6.
Ocean acidity has increased by 30% since preindustrial times due to the uptake of anthropogenic CO2 and is projected to rise by another 120% before 2100 if CO2 emissions continue at current rates. Ocean acidification is expected to have wide‐ranging impacts on marine life, including reduced growth and net erosion of coral reefs. Our present understanding of the impacts of ocean acidification on marine life, however, relies heavily on results from short‐term CO2 perturbation studies. Here, we present results from the first long‐term CO2 perturbation study on the dominant reef‐building cold‐water coral Lophelia pertusa and relate them to results from a short‐term study to compare the effect of exposure time on the coral's responses. Short‐term (1 week) high CO2 exposure resulted in a decline of calcification by 26–29% for a pH decrease of 0.1 units and net dissolution of calcium carbonate. In contrast, L. pertusa was capable to acclimate to acidified conditions in long‐term (6 months) incubations, leading to even slightly enhanced rates of calcification. Net growth is sustained even in waters sub‐saturated with respect to aragonite. Acclimation to seawater acidification did not cause a measurable increase in metabolic rates. This is the first evidence of successful acclimation in a coral species to ocean acidification, emphasizing the general need for long‐term incubations in ocean acidification research. To conclude on the sensitivity of cold‐water coral reefs to future ocean acidification further ecophysiological studies are necessary which should also encompass the role of food availability and rising temperatures.  相似文献   

7.
海洋酸化条件下Cd2+和Hg2+对斧文蛤幼贝急性毒性效应   总被引:1,自引:0,他引:1  
为研究在海洋酸化条件下重金属污染物对滩涂贝类的影响,采用半静态急性毒性实验的研究方法,利用海洋酸化人工模拟系统,分析了不同酸化条件下(对照组pH 8.20、酸化组pH分别为7.80、7.60和7.40)Cd2+和Hg2+对斧文蛤(Meretrix lamarckii)幼贝急性毒性效应的影响。实验结果表明:在实验设定的海洋酸化范围内,单一的海洋酸化对斧文蛤幼贝的存活没有显著性影响,但海洋酸化显著增强了Cd2+和Hg2+的急性毒性。与对照组相比,酸化组Cd2+和Hg2+的毒性随着酸化程度的加剧而呈现出逐渐增强的趋势; Cd2+和Hg2+均在pH 7.40时对斧文蛤的毒性最强,其96h半致死(96h LC50)浓度分别为4.068 mg/L(Cd2+)和10.332 mg/L(Hg2+),明显低于pH 8.20、7.80和7.60时其对斧文蛤幼贝的96h LC50浓度(其值分别为Cd2+ 6.458、5.947、4.728 mg/L和Hg2+ 12.027、11.169、10.595 mg/L)。研究有助于丰富海洋酸化与重金属毒理作用在海洋贝类中的研究内容,为斧文蛤资源恢复和海洋环境保护提供科学依据。  相似文献   

8.

Microorganisms have shown their ability to colonize extreme environments including deep subsurface petroleum reservoirs. Physicochemical parameters may vary greatly among petroleum reservoirs worldwide and so do the microbial communities inhabiting these different environments. The present work aimed at the characterization of the microbiota in biodegraded and non-degraded petroleum samples from three Brazilian reservoirs and the comparison of microbial community diversity across oil reservoirs at local and global scales using 16S rRNA clone libraries. The analysis of 620 16S rRNA bacterial and archaeal sequences obtained from Brazilian oil samples revealed 42 bacterial OTUs and 21 archaeal OTUs. The bacterial community from the degraded oil was more diverse than the non-degraded samples. Non-degraded oil samples were overwhelmingly dominated by gammaproteobacterial sequences with a predominance of the genera Marinobacter and Marinobacterium. Comparisons of microbial diversity among oil reservoirs worldwide suggested an apparent correlation of prokaryotic communities with reservoir temperature and depth and no influence of geographic distance among reservoirs. The detailed analysis of the phylogenetic diversity across reservoirs allowed us to define a core microbiome encompassing three bacterial classes (Gammaproteobacteria, Clostridia, and Bacteroidia) and one archaeal class (Methanomicrobia) ubiquitous in petroleum reservoirs and presumably owning the abilities to sustain life in these environments.

  相似文献   

9.
The microbial diversity in maritime meltwater pond sediments from Bratina Island, Ross Sea, Antarctica was investigated by 16S rDNA-dependent molecular phylogeny. Investigations of the vertical distribution, phylogenetic composition, and spatial variability of Bacteria and Archaea in the sediment were carried out. Results revealed the presence of a highly diverse bacterial population and a significantly depth-related composition. Assessment of 173 partial 16S rDNA clones analyzed by amplified rDNA restriction analysis (ARDRA) using tetrameric restriction enzymes (HinP1I 5'G/CGC3'and Msp I. 5'C/CGG3', BioLabs) revealed 153 different bacterial OTUs (operational taxonomic units). However, only seven archaeal OTUs were detected, indicating low archaeal diversity. Based on ARDRA results, 30 bacterial clones were selected for sequencing and the sequenced clones fell into seven major lineages of the domain Bacteria; the alpha, gamma, and delta subdivisions of Proteobacteria, the Cytophaga-Flavobacterium-Bacteroides, the Spirochaetaceae, and the Actinobacteria. All of the archaeal clones sequenced belonged to the group Crenarchaeota and phylogenetic analysis revealed close relationships with members of the deep-branching Group 1 Marine Archaea.  相似文献   

10.
Co‐occurring ocean warming, acidification and reduced carbonate mineral saturation have significant impacts on marine biota, especially calcifying organisms. The effects of these stressors on development and calcification in newly metamorphosed juveniles (ca. 0.5 mm test diameter) of the intertidal sea urchin Heliocidaris erythrogramma, an ecologically important species in temperate Australia, were investigated in context with present and projected future conditions. Habitat temperature and pH/pCO2 were documented to place experiments in a biologically and ecologically relevant context. These parameters fluctuated diurnally up to 10 °C and 0.45 pH units. The juveniles were exposed to three temperature (21, 23 and 25 °C) and four pH (8.1, 7.8, 7.6 and 7.4) treatments in all combinations, representing ambient sea surface conditions (21 °C, pH 8.1; pCO2 397; ΩCa 4.7; ΩAr 3.1), near‐future projected change (+2–4 °C, ?0.3–0.5 pH units; pCO2 400–1820; ΩCa 5.0–1.6; ΩAr 3.3–1.1), and extreme conditions experienced at low tide (+4 °C, ?0.3–0.7 pH units; pCO2 2850–2967; ΩCa 1.1–1.0; ΩAr 0.7–0.6). The lowest pH treatment (pH 7.4) was used to assess tolerance levels. Juvenile survival and test growth were resilient to current and near‐future warming and acidification. Spine development, however, was negatively affected by near‐future increased temperature (+2–4 °C) and extreme acidification (pH 7.4), with a complex interaction between stressors. Near‐future warming was the more significant stressor. Spine tips were dissolved in the pH 7.4 treatments. Adaptation to fluctuating temperature‐pH conditions in the intertidal may convey resilience to juvenile H. erythrogramma to changing ocean conditions, however, ocean warming and acidification may shift baseline intertidal temperature and pH/pCO2 to levels that exceed tolerance limits.  相似文献   

11.
Early life stages of marine organisms are predicted to be vulnerable to ocean acidification. For macroalgae, reproduction and population persistence rely on spores to settle, adhere and continue the algal life cycle, yet the effect of ocean acidification on this critical life stage has been largely overlooked. We explicitly tested the biomechanical impact of reduced pH on early spore adhesion. We developed a shear flume to examine the effect of reduced pH on spore attachment time and strength in two intertidal rhodophyte macroalgae, one calcified (Corallina vancouveriensis) and one noncalcified (Polyostea robusta). Reduced pH delayed spore attachment of both species by 40%–52% and weakened attachment strength in C. vancouveriensis, causing spores to dislodge at lower flow‐induced shear forces, but had no effect on the attachment strength of P. robusta. Results are consistent with our prediction that reduced pH disrupts proper curing and gel formation of spore adhesives (anionic polysaccharides and glycoproteins) via protonation and cation displacement, although experimental verification is needed. Our results demonstrate that ocean acidification negatively, and differentially, impacts spore adhesion in two macroalgae. If results hold in field conditions, reduced ocean pH has the potential to impact macroalgal communities via spore dysfunction, regardless of the physiological tolerance of mature thalli.  相似文献   

12.
Extremophilic archaeal communities living in serpentinized muds influenced by pH 12.5 deep-slab derived fluids were detected and their richness and relatedness assessed from across seven serpentinite mud volcanoes located along the Mariana forearc. In addition, samples from two near surface core sections (Holes D and E) at ODP Site 1200 from South Chamorro were subjected to SSU rDNA clone library and phylogenetic analysis resulting in the discovery of several novel operational taxonomic units (OTUs). Five dominant OTUs of Archaea from Hole 1200D and six dominant OTUs of Archaea from Hole 1200E were determined by groups having three or more clones. Terminal-restriction fragment length polymorphism (T-RFLP) analysis revealed all of the dominant OTUs were detected within both clone libraries. Cluster analysis of the T-RFLP data revealed archaeal community structures from sites on Big Blue and Blue Moon to be analogous to the South Chamorro Hole 1200E site. These unique archaeal community fingerprints resulted from an abundance of potential methane-oxidizing and sulfate-reducing phylotypes. This study used deep-sea sediment coring techniques across seven different mud volcanoes along the entire Mariana forearc system. The discovery and detection of both novel Euryarchaeota and Marine Benthic Group B Crenarcheaota phylotypes could be efficacious archaeal indicator populations involved with anaerobic methane oxidation (AMO) and sulfate reduction fueled by deep subsurface serpentinization reactions.  相似文献   

13.
The mean predicted decrease of 0.3–0.4 pH units in the global surface ocean by the end of the century has prompted urgent research to assess the potential effects of ocean acidification on the marine environment, with strong emphasis on calcifying organisms. Among them, the Mediterranean red coral (Corallium rubrum) is expected to be particularly susceptible to acidification effects, due to the elevated solubility of its Mg‐calcite skeleton. This, together with the large overexploitation of this species, depicts a bleak future for this organism over the next decades. In this study, we evaluated the effects of low pH on the species from aquaria experiments. Several colonies of C. rubrum were long‐term maintained for 314 days in aquaria at two different pH levels (8.10 and 7.81, pHT). Calcification rate, spicule morphology, major biochemical constituents (protein, carbohydrates and lipids) and fatty acids composition were measured periodically. Exposure to lower pH conditions caused a significant decrease in the skeletal growth rate in comparison with the control treatment. Similarly, the spicule morphology clearly differed between both treatments at the end of the experiment, with aberrant shapes being observed only under the acidified conditions. On the other hand, while total organic matter was significantly higher under low pH conditions, no significant differences were detected between treatments regarding total carbohydrate, lipid, protein and fatty acid composition. However, the lower variability found among samples maintained in acidified conditions relative to controls, suggests a possible effect of pH decrease on the metabolism of the colonies. Our results show, for the first time, evidence of detrimental ocean acidification effects on this valuable and endangered coral species.  相似文献   

14.

Bacterial and archaeal assemblages are one of the most important contributors to the recycling of nutrients and the decomposition of organic matter in aquatic sediments. However, their spatiotemporal variation and its driving factors remain unclear, especially for drinking reservoirs, which are strongly affected by human consumption. Using quantitative PCR and Illumina MiSeq sequencing, we investigated the bacterial and archaeal communities in the sediments of a drinking reservoir, the Miyun Reservoir, one of the most important drinking sources for Beijing City. The abundance of bacteria and archaea presented no spatiotemporal variation. With respect to community diversity, visible spatial and temporal differences were observed in archaea, whereas the bacterial community showed minor variation. The bacterial communities in the reservoir sediment mainly included Proteobacteria, Bacteroidetes, Nitrospirae, Acidobacteria, and Verrucomicrobia. The bacterial community structure showed obvious spatial variation. The composition of the bacterial operational taxonomic units (OTUs) and main phyla were dam-specific; the composition of samples in front of the dam were significantly different from the composition of the other samples. The archaeal communities were mainly represented by Woesearchaeota and Euryarchaeota. Distinctly spatial and seasonal variation was observed in the archaeal community structure. The sediment NH4 +–N, pH, and water depth were identified as the key driving factors of changes in the composition of the bacterial and archaeal communities. Water depth might have the greatest influence on the microbial community structure. The dam-specific community structure may be related to the greater water depth in front of the dam. This finding indicates that water depth might be the greatest contributor to the microbial community structure in the Miyun Reservoir.

  相似文献   

15.
Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity.  相似文献   

16.
Biogeochemical changes in marine sediments during coastal water hypoxia are well described, but less is known about underlying changes in microbial communities. Bacterial and archaeal communities in Louisiana continental shelf (LCS) hypoxic zone sediments were characterized by pyrosequencing 16S rRNA V4‐region gene fragments obtained by PCR amplification of community genomic DNA with bacterial‐ or archaeal‐specific primers. Duplicate LCS sediment cores collected during hypoxia had higher concentrations of Fe(II), and dissolved inorganic carbon, phosphate, and ammonium than cores collected when overlying water oxygen concentrations were normal. Pyrosequencing yielded 158 686 bacterial and 225 591 archaeal sequences from 20 sediment samples, representing five 2‐cm depth intervals in the duplicate cores. Bacterial communities grouped by sampling date and sediment depth in a neighbor‐joining analysis using Chao–Jaccard shared species values. Redundancy analysis indicated that variance in bacterial communities was mainly associated with differences in sediment chemistry between oxic and hypoxic water column conditions. Gammaproteobacteria (26.5%) were most prominent among bacterial sequences, followed by Firmicutes (9.6%), and Alphaproteobacteria (5.6%). Crenarchaeotal, thaumarchaeotal, and euryarchaeotal lineages accounted for 57%, 27%, and 16% of archaeal sequences, respectively. In Thaumarchaeota Marine Group I, sequences were 96–99% identical to the Nitrosopumilus maritimus SCM1 sequence, were highest in surficial sediments, and accounted for 31% of archaeal sequences when waters were normoxic vs. 13% of archaeal sequences when waters were hypoxic. Redundancy analysis showed Nitrosopumilus‐related sequence abundance was correlated with high solid‐phase Fe(III) concentrations, whereas most of the remaining archaeal clusters were not. In contrast, crenarchaeotal sequences were from phylogenetically diverse lineages, differed little in relative abundance between sampling times, and increased to high relative abundance with sediment depth. These results provide further evidence that marine sediment microbial community composition can be structured according to sediment chemistry and suggest the expansion of hypoxia in coastal waters may alter sediment microbial communities involved in carbon and nitrogen cycling.  相似文献   

17.
Ecotoxicology is primarily concerned with predicting the effects of toxic substances on the biological components of the ecosystem. In remote, high latitude environments such as Antarctica, where field work is logistically difficult and expensive, and where access to adequate numbers of soil invertebrates is limited and response times of biota are slow, appropriate modeling tools using microbial community responses can be valuable as an alternative to traditional single‐species toxicity tests. In this study, we apply a Bayesian nonparametric model to a soil microbial data set acquired across a hydrocarbon contamination gradient at the site of a fuel spill in Antarctica. We model community change in terms of OTUs (operational taxonomic units) in response to a range of total petroleum hydrocarbon (TPH) concentrations. The Shannon diversity of the microbial community, clustering of OTUs into groups with similar behavior with respect to TPH, and effective concentration values at level x, which represent the TPH concentration that causes x% change in the community, are presented. This model is broadly applicable to other complex data sets with similar data structure and inferential requirements on the response of communities to environmental parameters and stressors.  相似文献   

18.
Concurrent anthropogenic global climate change and ocean acidification are expected to have a negative impact on calcifying marine organisms. While knowledge of biological responses of organisms to oceanic stress has emerged from single‐species experiments, these do not capture ecologically relevant scenarios where the potential for multi‐organism physiological interactions is assessed. Marine algae provide an interesting case study, as their photosynthetic activity elevates pH in the surrounding microenvironment, potentially buffering more acidic conditions for associated epiphytes. We present findings that indicate increased tolerance of an important epiphytic foraminifera, Marginopora vertebralis, to the effects of increased temperature (±3°C) and pCO2 (~1,000 µatm) when associated with its common algal host, Laurencia intricata. Specimens of M. vertebralis were incubated for 15 days in flow‐through aquaria simulating current and end‐of‐century temperature and pH conditions. Physiological measures of growth (change in wet weight), calcification (measured change in total alkalinity in closed bottles), photochemical efficiency (Fv/Fm), total chlorophyll, photosynthesis (oxygen flux), and respiration were determined. When incubated in isolation, M. vertebralis exhibited reduced growth in end‐of‐century projections of ocean acidification conditions, while calcification rates were lowest in the high‐temperature, low‐pH treatment. Interestingly, association with L. intricata ameliorated these stress effects with the growth and calcification rates of M. vertebralis being similar to those observed in ambient conditions. Total chlorophyll levels in M. vertebralis decreased when in association with L. intricata, while maximum photochemical efficiency increased in ambient conditions. Net production estimates remained similar between M. vertebralis in isolation and in association with L. intricata, although both production and respiration rates of M. vertebralis were significantly higher when associated with L. intricata. These results indicate that the association with L. intricata increases the resilience of M. vertebralis to climate change stress, providing one of the first examples of physiological buffering by a marine alga that can ameliorate the negative effects of changing ocean conditions.  相似文献   

19.
Microbial community profile associated with acidic pond sediments (APS) (pH = 3·0–4·5) of freshwater finfish aquaculture ponds (n = 8) was investigated. Sediment DNA extracted from the eight APS were subjected to high-throughput sequencing of V3 and V4 regions which yielded 7236 operational taxonomic units (OTUs) at a similarity of 97%. Overall results showed higher proportion of bacterial OTUs than archaeal OTUs in all the APS. Euryarchaeota (23%), Proteobacteria (19%), Chloroflexi (17%), Crenarchaeota (5·3%), Bacteroidetes (4·8%), Nitrospirae (3·2%), Nanoarchaeaeota (3%) which together constituted 75% of the microbial diversity. At the genus level, there was high preponderance of methanogens namely Methanolinea (5·4%), Methanosaeta (4·5%) and methanotrops, Bathyarchaeota (5%) in APS. Moreover, the abundant phyla in the APS were not drastically affected by the administration of chicken slaughter waste (R-group ponds) and commercial fish feed (C-group ponds), since 67% of the OTUs generated remained common in the APS of both the groups of ponds. There was a minimal difference of 24–26% of OTUs between C-group and R-group ponds, suggesting the existence of a core microbial community in these ponds driven by acidic pH over the years. This study concludes that microbial diversity in pond sediment was influenced to a lesser extent by the addition of chicken slaughter waste but was majorly driven by acidic nature of the pond.  相似文献   

20.
Anthropogenic disturbance is currently altering the environment of terrestrial as well as aquatic organisms. Those changes affect a variety of animal behaviours, which in turn may cause changes in species interactions, population dynamics and evolutionary processes. In marine ecosystems, nutrient enrichment may elevate pH, while it is reduced by carbon dioxide‐induced ocean acidification. These two processes are not expected to balance one another but rather to affect the environment at different times and scales. We here show experimentally that an increase in water pH has a negative effect on mating propensity in the broad‐nosed pipefish Syngnathus typhle, whereas lowered pH did not elicit the same detrimental effect. This study provides, to our knowledge, the first evidence that mating propensity is impaired by an increase in pH, suggesting that anthropogenic nutrient enrichment in aquatic ecosystems may change the processes of sexual selection and population dynamics solely on the basis of altered water pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号