首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The speed at which species adapt depends partly on the rates of beneficial adaptation generation and how quickly they spread within and among populations. Natural rates of adaptation of corals may not be able to keep pace with climate warming. Several interventions have been proposed to fast‐track thermal adaptation, including the intentional translocation of warm‐adapted adults or their offspring (assisted gene flow, AGF) and the ex situ crossing of warm‐adapted corals with conspecifics from cooler reefs (hybridization or selective breeding) and field deployment of those offspring. The introgression of temperature tolerance loci into the genomic background of cooler‐environment corals aims to facilitate adaptation to warming while maintaining fitness under local conditions. Here we use research on selective sweeps and connectivity to understand the spread of adaptive variants as it applies to AGF on the Great Barrier Reef (GBR), focusing on the genus Acropora. Using larval biophysical dispersal modeling, we estimate levels of natural connectivity in warm‐adapted northern corals. We then model the spread of adaptive variants from single and multiple reefs and assess if the natural and assisted spread of adaptive variants will occur fast enough to prepare receiving central and southern populations given current rates of warming. We also estimate fixation rates and spatial extent of fixation under multiple release scenarios to inform intervention design. Our results suggest that thermal tolerance is unlikely to spread beyond northern reefs to the central and southern GBR without intervention, and if it does, 30+ generations are needed for adaptive gene variants to reach fixation even under multiple release scenarios. We argue that if translocation, breeding, and reseeding risks are managed, AGF using multiple release reefs can be beneficial for the restoration of coral populations. These interventions should be considered in addition to conventional management and accompanied by strong mitigation of CO2 emissions.  相似文献   

2.
Highly mobile species that thrive in a wide range of habitats are expected to show little genetic differentiation across their range. A limited but growing number of studies have revealed that patterns of broad‐scale genetic differentiation can and do emerge in vagile, continuously distributed species. However, these patterns are complex and often shaped by both historical and ecological factors. Comprehensive surveys of genetic variation at a broad scale and at high resolution are useful for detecting cryptic spatial genetic structure and for investigating the relative roles of historical and ecological processes in structuring widespread, highly mobile species. In this study, we analysed 10 microsatellite loci from over 1900 samples collected across the full range of mule deer (Odocoileus hemionus), one of the most widely distributed and abundant of all large mammal species in North America. Through both individual‐ and population‐based analyses, we found evidence for three main genetic lineages, one corresponding to the ‘mule deer’ morphological type and two to the ‘black‐tailed deer’ type. Historical biogeographic events likely are the primary drivers of genetic divergence in this species; boundaries of the three lineages correspond well with predictions based on Pleistocene glacial cycles, and substructure within each lineage demonstrates island vicariance. However, across large geographic areas, including the entire mule deer lineage, we found that genetic variation fit an isolation‐by‐distance pattern rather than discrete clusters. A lack of genetic structure across wide geographic areas of the continental west indicates that ecological processes have not resulted in restrictions to gene flow sufficient for spatial genetic structure to emerge. Our results have important implications for our understanding of evolutionary mechanisms of divergence, as well as for taxonomy, conservation and management.  相似文献   

3.
Adaptive evolution is often associated with speciation. In plants, however, ecotypic differentiation is common within widespread species, suggesting that climatic and edaphic specialization can outpace cladogenesis and the evolution of postzygotic reproductive isolation. We used cpDNA sequence (5 noncoding regions, 3.5 kb) and amplified fragment length polymorphisms (AFLPs: 4 primer pairs, 1,013 loci) to evaluate the history of ecological differentiation in the North American Achillea millefolium, an autopolyploid complex of "ecological races" exhibiting morphological, physiological, and life-history adaptations to diverse environments. Phylogenetic analyses reveal North American A. millefolium to be a monophyletic group distinct from its European and Asian relatives. Based on patterns of sequence divergence, as well as fossil and paleoecological data, colonization of North America appears to have occurred via the Bering Land Bridge during the Pleistocene (1.8 MYA to 11,500 years ago). Population genetic analyses indicate negligible structure within North American A. millefolium associated with varietal identity, geographic distribution, or ploidy level. North American populations, moreover, exhibit the signature of demographic expansion. These results affirm the "ecotype" concept of the North American Achillea advocated by classical research and demonstrate the rapid rate of ecological differentiation that sometimes occurs in plants.  相似文献   

4.
The phylogeography of coastal plant species is heavily influenced by past sealevel fluctuations, dispersal barriers, and life-history traits, such as long-distance dispersal ability of the propagules. Unlike the widely studied mangroves, phylogeographic patterns have remained mostly obscure for other coastal plant species. In this study, we sampled 42 populations of Scaevola taccada (Gaertn.) Roxb., a coastal shrub of the family Goodeniaceae, from 17 countries across its distribution range. We used five chloroplast DNA (cpDNA) and 14 nuclear microsatellite (simple sequence repeat [SSR]) markers to assess the influence of abiotic factors and population genetic processes on the phylogeographic pattern of the species. Geographical distribution of cpDNA haplotypes suggests that the species originated in Australia, followed by historical dispersal and expansion of its geographic range. Multiple abiotic factors, including the sealevel changes during the Pleistocene, the presence of landmasses like the Malay Peninsula, and contemporary oceanic circulation patterns, restricted gene flow between geographically distinct populations, thereby creating low haplotype diversity and a strong population structure. Population genetic processes acted on these isolated populations, leading to high nuclear genetic diversity and population differentiation, as revealed from analyzing the polymorphic SSR loci. Although genetic divergence was mostly concordant between cpDNA and SSR data, asymmetrical gene flow and ancestral polymorphism could explain the discordance in the detailed genetic structure. Overall, our findings indicate that abiotic factors and population genetic processes interactively influenced the evolutionary history and current phylogeographic pattern of S. taccada across its distribution range.  相似文献   

5.
In this paper, we address alternative hypotheses for the evolution of subspecies of rock ptarmigan (Lagopus mutus) endemic to the Aleutian Archipelago. To do this we examined patterns of genetic differentiation among populations of rock ptarmigan in the Aleutian Islands and parts of both Alaska and Siberia. Variation in mitochondrial control region sequences of 105 rock ptarmigan from 10 subspecies within the Bering region revealed three major phylogenetic lineages, two of which are endemic to the Aleutian Islands. Accordingly, haplotype and nucleotide diversities of rock ptarmigan within the archipelago are much higher than within mainland Alaska or Siberia. For Aleutian rock ptarmigan, analyses of molecular variance indicated significant genetic structuring and low estimates of gene flow among populations, despite small interisland distances within the archipelago. However, isolation by distance did not describe the pattern of gene flow or differentiation at this scale. Our estimates of divergence times of lineages suggest that Aleutian rock ptarmigan became isolated prior to the most recent Pleistocene glaciation event (late Wisconsin Stade) and that current patterns of genetic variation reflect the postglacial redistribution of divergent lineages and subsequent limited gene flow. In addition, genetic divergence among lineages was concordant with the distribution of plumage types among subspecies. The patterns of genetic variation described here for rock ptarmigan provide evidence for the role of glacial vicariance in contributing to genetic diversity within this and other Bering region species.  相似文献   

6.
The relative importance of factors that may promote genetic differentiation in marine organisms is largely unknown. Here, contributions to population structure from a biogeographic boundary, geographical distance and the distribution of suitable habitat were investigated in Axoclinus nigricaudus, a small subtidal rock-reef fish, throughout its range in the Gulf of California. A 408-bp fragment of the mitochondrial control region was sequenced from 105 individuals. Variation was significantly partitioned between 28 of 36 possible combinations of population pairs. Phylogenetic analyses, hierarchical analyses of variance and a modified Mantel test substantiated a major break between two putative biogeographic regions. This genetic discontinuity coincides with an abrupt change in ecological characteristics, including temperature and salinity, but does not coincide with known oceanographic circulation patterns or any known historic barriers. There was an overall relationship of increasing genetic distance with increasing geographical distance between population pairs, in a manner consistent with isolation-by-distance. A significant habitat-by-geographical-distance interaction term indicated that, for a given geographical distance, populations separated by discontinuous habitat (sand) are more distinct genetically than are populations separated by continuous habitat (rock). In addition, populations separated by deep open waters were more genetically distinct than populations separated by continuous habitat (rock). These results indicate that levels of genetic differentiation among populations of A. nigricaudus cannot be explained by a single factor, but are due to the combined influences of biogeography, geographical distance and availability of suitable habitat.  相似文献   

7.
Estuarine organisms grow in highly heterogeneous habitats, and their genetic differentiation is driven by selective and neutral processes as well as population colonization history. However, the relative importance of the processes that underlie genetic structure is still puzzling. Scirpus mariqueter is a perennial grass almost limited in the Changjiang River estuary and its adjacent Qiantang River estuary. Here, using amplified fragment length polymorphism (AFLP), a moderate‐high level of genetic differentiation among populations (range FST: 0.0310–0.3325) was showed despite large ongoing dispersal. FLOCK assigned all individuals to 13 clusters and revealed a complex genetic structure. Some genetic clusters were limited in peripheries compared with very mixing constitution in center populations, suggesting local adaptation was more likely to occur in peripheral populations. 21 candidate outliers under positive selection were detected, and further, the differentiation patterns correlated with geographic distance, salinity difference, and colonization history were analyzed with or without the outliers. Combined results of AMOVA and IBD based on different dataset, it was found that the effects of geographic distance and population colonization history on isolation seemed to be promoted by divergent selection. However, none‐liner IBE pattern indicates the effects of salinity were overwhelmed by spatial distance or other ecological processes in certain areas and also suggests that salinity was not the only selective factor driving population differentiation. These results together indicate that geographic distance, salinity difference, and colonization history co‐contributed in shaping the genetic structure of S. mariqueter and that their relative importance was correlated with spatial scale and environment gradient.  相似文献   

8.
9.
A checklist of the currently-known C4 species which occur in Europe was compiled, and the number of these found in European territories was ascertained. Their contribution to the local floras range from 4.35% in the Azores to 0% in Svalbard. Subsequently, a stepwise multiple regression analysis was used to correlate the relative abundances of four subdivisions of C4 species with climatic variables derived for each territory from meteorological tables. The four subdivisions were: (a) total number of C4 species; (b) number of native C4 species; (c) C4 monocots and (d) C4 dicots. These values were expressed as percentages of either the total flora, (a), or the native flora ((b), (c) and (d)) for the regressions. The abundance of each C4 subdivision was found to be strongly correlated with temperature, and to a lesser extent, negatively with precipitation. Habitat information about the European C4 species was also analysed and it was concluded that their apparent preference for maritime and ruderal habitats indicates some form of competitive advantage of the pathway under saline or disturbed conditions. A small number of European C4 species was identified whose distribution appears to be anomalous with respect to temperature and/or soil moisture content.Nomenclature follows Tutin et al. Flora Europaea.  相似文献   

10.
Interspecific hybridization provides the unique opportunity for species to tap into genetic variation present in a closely related species and potentially take advantage of beneficial alleles. It has become increasingly clear that when hybridization occurs, mitochondrial DNA (mtDNA) often crosses species boundaries, raising the possibility that it could serve as a recurrent target of natural selection and source of species' adaptations. Here we report the sequences of 46 complete mitochondrial genomes of Drosophila yakuba and Drosophila santomea, two sister species known to produce hybrids in nature (~3%). At least two independent events of mtDNA introgression are uncovered in this study, including an early invasion of the D. yakuba mitochondrial genome that fully replaced the D. santomea mtDNA native haplotypes and a more recent, ongoing event centred in the hybrid zone. Interestingly, this recent introgression event bears the signature of Darwinian natural selection, and the selective haplotype can be found at low frequency in Africa mainland populations of D. yakuba. We put forward the possibility that, because the effective population size of D. santomea is smaller than that of D. yakuba, the faster accumulation of mildly deleterious mutations associated with Muller's ratchet in the former species may have facilitated the replacement of the mutationally loaded mitochondrial genome of Dsantomea by that of D. yakuba.  相似文献   

11.
Background and Aims Local climatic adaptation can influence species' response to climate change. If populations within a species are adapted to local climate, directional change away from mean climatic conditions may negatively affect fitness of populations throughout the species' range. Methods Adaptive differentiation to temperature was tested for in American ginseng (Panax quinquefolius) by reciprocally transplanting individuals from two populations, originating at different elevations, among temperature treatments in a controlled growth chamber environment. Fitness-related traits were measured in order to test for a population × temperature treatment interaction, and key physiological and phenological traits were measured to explain population differences in response to temperature. Key Results Response to temperature treatments differed between populations, suggesting genetic differentiation of populations. However, the pattern of response of fitness-related variables generally did not suggest 'home temperature' advantage, as would be expected if populations were locally adapted to temperature alone. Conclusions Failure consistently to detect a 'home temperature' advantage response suggests that adaptation to temperature is complex, and environmental and biotic factors that naturally covary with temperature in the field may be critical to understanding the nature of adaptation to temperature.  相似文献   

12.
Comparative ecophysiology of C3 and C4 plants   总被引:2,自引:3,他引:2  
Abstract. In this review we relate the physiological significance of C4 photosynthesis to plant performance in nature. We begin with an examination of the physiological consequences of the C4 pathway on photosynthesis, then discuss the ecophysiological performance of C4 plants in contrasting environments. We then compare the performance of C3 and C4 plants when they occur together in similar habitats, and finally discuss the distribution of C4 photosynthesis with respect to the physical environment, phylogeny, and life form.  相似文献   

13.
14.
A major goal in evolutionary biology is to uncover the genetic basis of adaptation. Divergent selection exerted on ecological traits may result in adaptive population differentiation and reproductive isolation and affect differentially the level of genetic divergence along the genome. Genome‐wide scan of large sets of individuals from multiple populations is a powerful approach to identify loci or genomic regions under ecologically divergent selection. Here, we focused on the pea aphid, a species complex of divergent host races, to explore the organization of the genomic divergence associated with host plant adaptation and ecological speciation. We analysed 390 microsatellite markers located at variable distances from predicted genes in replicate samples of sympatric populations of the pea aphid collected on alfalfa, red clover and pea, which correspond to three common host‐adapted races reported in this species complex. Using a method that accounts for the hierarchical structure of our data set, we found a set of 11 outlier loci that show higher genetic differentiation between host races than expected under the null hypothesis of neutral evolution. Two of the outliers are close to olfactory receptor genes and three other nearby genes encoding salivary proteins. The remaining outliers are located in regions with genes of unknown functions, or which functions are unlikely to be involved in interactions with the host plant. This study reveals genetic signatures of divergent selection across the genome and provides an inventory of candidate genes responsible for plant specialization in the pea aphid, thereby setting the stage for future functional studies.  相似文献   

15.
16.
Animal coloration is key in natural and sexual selection, playing significant roles in intra- and interspecific communication because of its linkage to individual behaviour, genetics and physiology. Simple animal traits such as the area or the colour intensity of homogeneous patches have been profusely studied. More complex patterns are widespread in nature, but they escape our understanding because their variation is difficult to capture effectively by standard, simple measures. Here, we used fractal geometry to quantify inter-individual variation in the expression of a complex plumage trait, the heterogeneous black bib of the red-legged partridge (Alectoris rufa). We show that a higher bib fractal dimension (FD) predicted better individual body condition, as well as immune responsiveness, which is condition-dependent in our study species. Moreover, when food intake was experimentally reduced during moult as a means to reduce body condition, the bib''s FD significantly decreased. Fractal geometry therefore provides new opportunities for the study of complex animal colour patterns and their roles in animal communication.  相似文献   

17.
Sex‐biased dispersal is expected to homogenize nuclear genetic variation relative to variation in genetic material inherited through the philopatric sex. When site fidelity occurs across a heterogeneous environment, local selective regimes may alter this pattern. We assessed spatial patterns of variation in nuclear‐encoded, single nucleotide polymorphisms (SNPs) and sequences of the mitochondrial control region in bonnethead sharks (Sphyrna tiburo), a species thought to exhibit female philopatry, collected from summer habitats used for gestation. Geographic patterns of mtDNA haplotypes and putatively neutral SNPs confirmed female philopatry and male‐mediated gene flow along the northeastern coast of the Gulf of Mexico. A total of 30 outlier SNP loci were identified; alleles at over half of these loci exhibited signatures of latitude‐associated selection. Our results indicate that in species with sex‐biased dispersal, philopatry can facilitate sorting of locally adaptive variation, with the dispersing sex facilitating movement of potentially adaptive variation among locations and environments.  相似文献   

18.
19.
20.
Adaptation to changing environments often requires novel traits, but how such traits directly affect the ecological niche remains poorly understood. Multiple plant lineages have evolved C4 photosynthesis, a combination of anatomical and biochemical novelties predicted to increase productivity in warm and arid conditions. Here, we infer the dispersal history across geographical and environmental space in the only known species with both C4 and non‐C4 genotypes, the grass Alloteropsis semialata. While non‐C4 individuals remained confined to a limited geographic area and restricted ecological conditions, C4 individuals dispersed across three continents and into an expanded range of environments, encompassing the ancestral one. This first intraspecific investigation of C4 evolutionary ecology shows that, in otherwise similar plants, C4 photosynthesis does not shift the ecological niche, but broadens it, allowing dispersal into diverse conditions and over long distances. Over macroevolutionary timescales, this immediate effect can be blurred by subsequent specialisation towards more extreme niches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号