首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emplacement of subaqueous gravity‐driven sediment flows imposes a significant physical and geochemical impact on underlying sediment and microbial communities. Although previous studies have established lasting mineralogical and biological signatures of turbidite deposition, the response of bacteria and archaea within and beneath debris flows remains poorly constrained. Both bacterial cells associated with the underlying sediment and those attached to allochthonous material must respond to substantially altered environmental conditions and selective pressures. As a consequence, turbidites and underlying sediments provide an exceptional opportunity to examine (i) the microbial community response to rapid sedimentation and (ii) the preservation and identification of displaced micro‐organisms. We collected Illumina MiSeq sequence libraries across turbidite boundaries at ~26 cm sediment depth in La Jolla Canyon off the coast of California, and at ~50 cm depth in meromictic Twin Lake, Hennepin County, MN. 16S rRNA gene signatures of relict and active bacterial populations exhibit persistent differences attributable to turbidite deposition. In particular, both the marine and lacustrine turbidite boundaries are sharply demarcated by the abundance and diversity of Chloroflexi, suggesting a characteristic sensitivity to sediment disturbance history or to differences in organic substrates across turbidite profiles. Variations in the abundance of putative dissimilatory sulfate‐reducing Deltaproteobacteria across the buried La Jolla Canyon sediment–water interface reflect turbidite‐induced changes to the geochemical environment. Species‐level distinctions within the Deltaproteobacteria clearly conform to the sedimentological boundary, suggesting a continuing impact of genetic inheritance distinguishable from broader trends attributable to selective pressure. Abrupt, <1‐cm scale changes in bacterial diversity across the Twin Lake turbidite contact are consistent with previous studies showing that relict DNA signatures attributable to sediment transport may be more easily preserved in low‐energy, anoxic environments. This work raises the possibility that deep subsurface microbial communities may inherit variations in microbial diversity from sediment flow and deformation events.  相似文献   

2.
The diversity of small eukaryotes (0.2 to 5 mum) in a mesotrophic lake (Lake Bourget) was investigated using 18S rRNA gene library construction and fluorescent in situ hybridization coupled with tyramide signal amplification (TSA-FISH). Samples collected from the epilimnion on two dates were used to extend a data set previously obtained using similar approaches for lakes with a range of trophic types. A high level of diversity was recorded for this system with intermediate trophic status, and the main sequences from Lake Bourget were affiliated with ciliates (maximum, 19% of the operational taxonomic units [OTUs]), cryptophytes (33%), stramenopiles (13.2%), and cercozoa (9%). Although the comparison of TSA-FISH results and clone libraries suggested that the level of Chlorophyceae may have been underestimated using PCR with 18S rRNA primers, heterotrophic organisms dominated the small-eukaryote assemblage. We found that a large fraction of the sequences belonged to potential parasites of freshwater phytoplankton, including sequences affiliated with fungi and Perkinsozoa. On average, these sequences represented 30% of the OTUs (40% of the clones) obtained for each of two dates for Lake Bourget. Our results provide information on lacustrine small-eukaryote diversity and structure, adding to the phylogenetic data available for lakes with various trophic types.  相似文献   

3.
4.
5.
Tropical soils contain huge carbon stocks, which climate warming is projected to reduce by stimulating organic matter decomposition, creating a positive feedback that will promote further warming. Models predict that the loss of carbon from warming soils will be mediated by microbial physiology, but no empirical data are available on the response of soil carbon and microbial physiology to warming in tropical forests, which dominate the terrestrial carbon cycle. Here we show that warming caused a considerable loss of soil carbon that was enhanced by associated changes in microbial physiology. By translocating soils across a 3000 m elevation gradient in tropical forest, equivalent to a temperature change of ± 15 °C, we found that soil carbon declined over 5 years by 4% in response to each 1 °C increase in temperature. The total loss of carbon was related to its original quantity and lability, and was enhanced by changes in microbial physiology including increased microbial carbon‐use‐efficiency, shifts in community composition towards microbial taxa associated with warmer temperatures, and increased activity of hydrolytic enzymes. These findings suggest that microbial feedbacks will cause considerable loss of carbon from tropical forest soils in response to predicted climatic warming this century.  相似文献   

6.
Bacterioplankton plays a central role in the microbial functioning of lacustrine ecosystems; however, factors that constrain its structural variation are still poorly understood. Here we evaluated the driving forces exerted by a large set of environmental and biological parameters on the temporal and spatial dynamics of free-living bacterial community structures (BCS) in two neighboring perialpine lakes, Lake Bourget and Lake Annecy, which differ in trophic status. We analyzed monthly data from a 1-year sampling period at two depths situated in the epi- and hypolimnia for each lake. Overall, denaturing gradient gel electrophoresis (DGGE) revealed significant differences in the BCS in the two lakes, characterized by a higher number of bands in the oligotrophic ecosystem (i.e., Lake Annecy). The temporal dynamics of BCS differed greatly between depths and lakes, with temporal scale patterns being much longer in the mesotrophic Lake Bourget. Direct-gradient multivariate ordination analyses showed that a complex array of biogeochemical parameters was the driving force behind BCS shifts in both lakes. Our results indicated that 60 to 80% of the variance was explained only by the bottom-up factors in both lakes, indicating the importance of nutrients and organic matter from autotrophic origin in controlling the BCS. Top-down regulation by flagellates together with ciliates or viruses was found only in the hypolimnion and not in the epilimnion for both lakes and explained less than 18% of the bacterial community changes during the year. Our study suggests that the temporal dynamics of the free-living bacterial community structure in deep perialpine lakes are dependent mainly on bottom-up factors and to a lesser extent on top-down factors, whatever the specific environmental conditions of these lakes.  相似文献   

7.
Biodiversity is a key measure of environmental quality in lake ecosystems. Lake biodiversity can be assessed using modern survey data, but typically these data only provide a ‘snap-shot’ measure and in most cases it is not possible to reconstruct temporal trends in biodiversity, so that human impacts can be detected. Palaeoecological techniques offer an alternative means of identifying changes in biodiversity over the period of historical records and far beyond, but there are problems associated with this approach. This is because only a select set of organisms leave a trace in the sediment record such that it is not usually possible to make reliable assessments of diversity changes within an entire taxonomic order (e.g. the algae). Moreover these organisms are typically from the lower levels of the trophic hierarchy (i.e. plants and insects). The problems of identifying changes in biodiversity from the palaeolimnological record are addressed with reference to Groby Pool, a shallow, eutrophic, medieval lake in the English Midlands, which has been subjected to eutrophication over the last 150 years. 210Pb and 137Cs-dated sediment cores have been used to estimate short-term alterations in the composition and diversity of three groups of indicators, representing different levels in the trophic cascade, namely diatoms, aquatic pollen and chironomids. By exploring relationships, both between these indicators and with archival macrophyte records, an assessment is made of eutrophication-related changes in overall habitat diversity at the ecosystem level. These data suggest that the lake has undergone considerable nutrient enrichment, resulting in the loss of a diverse, mesotrophic macrophyte flora from at least the turn of the century onwards and its replacement by a few highly competitive species tolerant of high nutrient concentrations. Reductions in macrophyte diversity seem to be reflected palaeoecologically by a decline in the diversity of fossil chironomid assemblages, related to the breakdown of particular host-plant relationships amongst the phytophagic species. However, diatom assemblages generally exhibit the opposite trend, which may be related to increases in macrophyte cover and increasing opportunities for the colonization of diverse epiphyte communities. The different fossil indicators have different limitations and merits, and for this reason a ‘multi-proxy’ approach is essential if meaningful inferences are to be made of changes in lake biodiversity using palaeoecological data.  相似文献   

8.
Madagascar is a biodiversity hotspot with a unique fauna and flora largely endemic at the species level and highly threatened by habitat destruction. The processes underlying population‐level differentiation in Madagascar's biota are poorly understood and have been proposed to be related to Pleistocene climatic cycles, yet the levels of genetic divergence observed are often suggestive of ancient events. We combined molecular markers of different variability to assess the phylogeography of Madagascar's emblematic tomato frogs (Dyscophus guineti and D. antongilii) and interpret the observed pattern as resulting from ancient and recent processes. Our results suggest that the initial divergence between these taxa is probably old as reflected by protein‐coding nuclear genes and by a strong mitochondrial differentiation of the southernmost population. Dramatic changes in their demography appear to have been triggered by the end of the last glacial period and possibly by the short return of glacial conditions known as the 8K event. This dramatic change resulted in an approximately 50‐fold reduction of the effective population size in various populations of both species. We hypothesize these species' current mitochondrial DNA diversity distribution reflects a swamping of the mitochondrial genetic diversity of D. guineti by that of D. antongilii previous to the populations' bottlenecks during the Holocene, and probably as a consequence of D. antongilii demographic expansion approximately 1 million years ago. Our data support the continued recognition of D. antongilii and D. guineti as separate species and flag D. guineti as the more vulnerable species to past and probably also future environmental changes.  相似文献   

9.
10.
Despite the considerable attention that has been paid to bacterioplankton over recent decades, the dynamic of aquatic bacterial community structure is still poorly understood, and long-term studies are particularly lacking. Moreover, how the environment governs diversity patterns remains a key issue in aquatic microbial ecology. In this study, we used denaturing gradient gel electrophoresis of PCR-amplified partial 16S rRNA gene fragments and multivariable statistical approaches to explore the patterns of change in the free-living bacterial community in the mesotrophic and mono-meromictic Lake Bourget (France). A monthly sampling was conducted over two consecutive years (2007 and 2008) and at two different depths characterizing the epi- and hypolimnion of the lake (2 and 50 m, respectively). Temporal shifts in the bacterial community structure followed different patterns according to depth, and no seasonal reproducibility was recorded from 1 year to the next. Our results showed that the bacterial community structure displayed lower diversity at 2 m (22 bands) compared to 50 m (32 bands) and that bacterial community structure dynamics followed dissimilar trends between the two depths. At 2 m, five shifts in the bacterial community structure occurred, with the temporal scale varying between 2 and 8 months whereas, at 50 m, four shifts in the bacterial community structure took place at 50 m, with the temporal scale fluctuating between 3 and 13 months. More than 60% of the bacterial community structure variance was explained by seven variables at 2 m against eight at 50 m. Nutrients (PO4-P, NH4-N and NO3-N) and temperature were responsible for 49.6% of the variance at 2 m whereas these nutrients, with dissolved oxygen and chlorophyll a accounting for 59.6% of the variance at 50 m. Grazing by ciliates played also a critical role on the bacterial community structure at both depths. Our results suggest that the free-living bacterial community structure in the epi- and hypolimnion of Lake Bourget is mainly driven by combined, but differently weighted, top-down and bottom-up factors at 2 and 50 m.  相似文献   

11.
Ecological restoration is a globally important and well‐financed management intervention used to combat biodiversity declines and land degradation. Most restoration aims to increase biodiversity towards a reference state, but there are concerns that intended outcomes are not reached due to unsuccessful interventions and land‐use legacy issues. Monitoring biodiversity recovery is essential to measure success; however, most projects remain insufficiently monitored. Current field‐based methods are hard to standardize and are limited in their ability to assess important components of ecosystems, such as bacteria. High‐throughput amplicon sequencing of environmental DNA (metabarcoding of eDNA) has been proposed as a cost‐effective, scalable and uniform ecological monitoring solution, but its application in restoration remains largely untested. Here we show that metabarcoding of soil eDNA is effective at demonstrating the return of the native bacterial community in an old field following native plant revegetation. Bacterial composition shifted significantly after 8 years of revegetation, where younger sites were more similar to cleared sites and older sites were more similar to remnant stands. Revegetation of the native plant community strongly impacted on the belowground bacterial community, despite the revegetated sites having a long and dramatically altered land‐use history (i.e. >100 years grazing). We demonstrate that metabarcoding of eDNA provides an effective way of monitoring changes in bacterial communities that would otherwise go unchecked with conventional monitoring of restoration projects. With further development, awareness of microbial diversity in restoration has significant scope for improving the efficacy of restoration interventions more broadly.  相似文献   

12.
The diversity of phenotypically different and often reproductively isolated lacustrine forms of charrs of the genus Salvelinus represents a substantial problem for taxonomists and evolutionary biologists. Based on the analysis of variability of ten microsatellite loci and two fragments of mitochondrial DNA (control region and cyt‐b gene), the evolutionary history of three charr species from Lake El'gygytgyn was reconstructed, and phylogenetic relationships between the main representatives of the genus were revealed. Three species from Lake El'gygytgyn were strongly reproductively isolated. Long‐finned charr described previously as Salvethymus svetovidovi, an ancient endemic form in the lake, originated 3.5 Mya (95% Bayesian credible intervals: 1.7, 6.1). Placement of this species in the phylogenetic tree of Salvelinus was not determined strictly, but it should be located in the basal part of the clade Salvelinus alpinus – S. malma species complex. The origin of small‐mouth charr S. elgyticus and Boganida charr S. boganidae in Lake El'gygytgyn was related to allopatric speciation. Their ancestors were represented by two glacial lineages of Taranets charr S. alpinus taranetzi from Asia. In Lake El'gygytgyn, these lineages entered into secondary contact postglacially. A revision of the main phylogenetic groups within the Salvelinus alpinus – S. malma complex is conducted. The Boganida charrs from Lakes El'gygytgyn and Lama (Taimyr) belong to different phylogenetic groups of Arctic charr and should not be regarded as a single species S. boganidae. Using the charrs from Lakes El'gygytgyn and Lama as a case study, we show that a model of sympatric speciation, which seemed more probable based on previous empirical evidence, was rejected by other data.  相似文献   

13.
Current monitoring methods to assess benthic impacts of marine finfish aquaculture are based on complex biological indices and/or geochemistry data. The former requires benthic macrofauna morpho‐taxonomic characterization that is time‐ and cost‐intensive, while the latter provides rapid assessment of the organic enrichment status of sediments but does not directly measure biotic impacts. In this study, sediment samples were collected from seven stations at six salmon farms in British Columbia, Canada, and analyzed for geochemical parameters and by eDNA metabarcoding to investigate linkages between geochemistry and foraminifera. Sediment texture across farm sites ranged from sand to silty loam, while the maximum sediment pore‐water sulphide concentration at each site ranged from 1,000 to 13,000 μM. Foraminifera alpha diversity generally increased with distance from cage edge. Adonis analyses revealed that farm site explained the most variation in foraminifera community, followed by sediment type, enrichment status, and distance from cage edge. Farm‐specific responses were observed in diversity analyses, taxonomic difference analyses, and correlation analyses. Results demonstrated that species diversity and composition of foraminifera characterized by eDNA metabarcoding generated signals consistent with benthic biodiversity being impacted by finfish farming activities. This substantiates the validity of eDNA metabarcoding for augmenting current approaches to benthic impact assessments by providing more cost‐effective and practicable biotic measures than traditional morpho‐taxonomy. To capitalize on this potential, further work is needed to design a new nomogram that combines eDNA metabarcoding data and geochemistry data to enable accurate monitoring of benthic impacts of fish farming in a time‐ and cost‐efficient way.  相似文献   

14.
The nature of population structure in microbial eukaryotes has long been debated. Competing models have argued that microbial species are either ubiquitous, with high dispersal and low rates of speciation, or that for many species gene flow between populations is limited, resulting in evolutionary histories similar to those of macroorganisms. However, population genomic approaches have seldom been applied to this question. Here, we analyse whole‐genome resequencing data for all 36 confirmed field isolates of the green alga Chlamydomonas reinhardtii. At a continental scale, we report evidence for putative allopatric divergence, between both North American and Japanese isolates, and two highly differentiated lineages within N. America. Conversely, at a local scale within the most densely sampled lineage, we find little evidence for either spatial or temporal structure. Taken together with evidence for ongoing admixture between the two N. American lineages, this lack of structure supports a role for substantial dispersal in C. reinhardtii and implies that between‐lineage differentiation may be maintained by reproductive isolation and/or local adaptation. Our results therefore support a role for allopatric divergence in microbial eukaryotes, while also indicating that species may be ubiquitous at local scales. Despite the high genetic diversity observed within the most well‐sampled lineage, we find that pairs of isolates share on average ~9% of their genomes in long haplotypes, even when isolates were sampled decades apart and from different locations. This proportion is several orders of magnitude higher than the Wright–Fisher expectation, raising many further questions concerning the evolutionary genetics of C. reinhardtii and microbial eukaryotes generally.  相似文献   

15.
16.
In climate change ecology, simplistic research approaches may yield unrealistically simplistic answers to often more complicated problems. In particular, the complexity of vegetation responses to global climate change begs a better understanding of the impacts of concomitant changes in several climatic drivers, how these impacts vary across different climatic contexts, and of the demographic processes underlying population changes. Using a replicated, factorial, whole‐community transplant experiment, we investigated regional variation in demographic responses of plant populations to increased temperature and/or precipitation. Across four perennial forb species and 12 sites, we found strong responses to both temperature and precipitation change. Changes in population growth rates were mainly due to changes in survival and clonality. In three of the four study species, the combined increase in temperature and precipitation reflected nonadditive, antagonistic interactions of the single climatic changes for population growth rate and survival, while the interactions were additive and synergistic for clonality. This disparity affects the persistence of genotypes, but also suggests that the mechanisms behind the responses of the vital rates differ. In addition, survival effects varied systematically with climatic context, with wetter and warmer + wetter transplants showing less positive or more negative responses at warmer sites. The detailed demographic approach yields important mechanistic insights into how concomitant changes in temperature and precipitation affect plants, which makes our results generalizable beyond the four study species. Our comprehensive study design illustrates the power of replicated field experiments in disentangling the complex relationships and patterns that govern climate change impacts across real‐world species and landscapes.  相似文献   

17.
Micro‐organisms account for most of the Earth's biodiversity and yet remain largely unknown. The complexity and diversity of microbial communities present in clinical and environmental samples can now be robustly investigated in record times and prices thanks to recent advances in high‐throughput DNA sequencing (HTS). Here, we develop metaBIT, an open‐source computational pipeline automatizing routine microbial profiling of shotgun HTS data. Customizable by the user at different stringency levels, it performs robust taxonomy‐based assignment and relative abundance calculation of microbial taxa, as well as cross‐sample statistical analyses of microbial diversity distributions. We demonstrate the versatility of metaBIT within a range of published HTS data sets sampled from the environment (soil and seawater) and the human body (skin and gut), but also from archaeological specimens. We present the diversity of outputs provided by the pipeline for the visualization of microbial profiles (barplots, heatmaps) and for their characterization and comparison (diversity indices, hierarchical clustering and principal coordinates analyses). We show that metaBIT allows an automatic, fast and user‐friendly profiling of the microbial DNA present in HTS shotgun data sets. The applications of metaBIT are vast, from monitoring of laboratory errors and contaminations, to the reconstruction of past and present microbiota, and the detection of candidate species, including pathogens.  相似文献   

18.
Reticulitermes flavipes (Isoptera: Rhinotermitidae) is a highly eusocial insect that thrives on recalcitrant lignocellulosic diets through nutritional symbioses with gut‐dwelling prokaryotes and eukaryotes. In the R. flavipes hindgut, there are up to 12 eukaryotic protozoan symbionts; the number of prokaryotic symbionts has been estimated in the hundreds. Despite its biological relevance, this diverse community, to date, has been investigated only by culture‐ and cloning‐dependent methods. Moreover, it is unclear how termite gut microbiomes respond to diet changes and what roles they play in lignocellulose digestion. This study utilized high‐throughput 454 pyrosequencing of 16S V5‐V6 amplicons to sample the hindgut lumen prokaryotic microbiota of R. flavipes and to examine compositional changes in response to lignin‐rich and lignin‐poor cellulose diets after a 7‐day feeding period. Of the ~475 000 high‐quality reads that were obtained, 99.9% were annotated as bacteria and 0.11% as archaea. Major bacterial phyla included Spirochaetes (24.9%), Elusimicrobia (19.8%), Firmicutes (17.8%), Bacteroidetes (14.1%), Proteobacteria (11.4%), Fibrobacteres (5.8%), Verrucomicrobia (2.0%), Actinobacteria (1.4%) and Tenericutes (1.3%). The R. flavipes hindgut lumen prokaryotic microbiota was found to contain over 4761 species‐level phylotypes. However, diet‐dependent shifts were not statistically significant or uniform across colonies, suggesting significant environmental and/or host genetic impacts on colony‐level microbiome composition. These results provide insights into termite gut microbiome diversity and suggest that (i) the prokaryotic gut microbiota is much more complex than previously estimated, and (ii) environment, founding reproductive pair effects and/or host genetics influence microbiome composition.  相似文献   

19.
Microbial eukaryotes hold a key role in aquatic ecosystem functioning. Yet, their diversity in freshwater lakes, particularly in high‐mountain lakes, is relatively unknown compared with the marine environment. Low nutrient availability, low water temperature and high ultraviolet radiation make most high‐mountain lakes extremely challenging habitats for life and require specific molecular and physiological adaptations. We therefore expected that these ecosystems support a plankton diversity that differs notably from other freshwater lakes. In addition, we hypothesized that the communities under study exhibit geographic structuring. Our rationale was that geographic dispersal of small‐sized eukaryotes in high‐mountain lakes over continental distances seems difficult. We analysed hypervariable V4 fragments of the SSU rRNA gene to compare the genetic microbial eukaryote diversity in high‐mountain lakes located in the European Alps, the Chilean Altiplano and the Ethiopian Bale Mountains. Microbial eukaryotes were not globally distributed corroborating patterns found for bacteria, multicellular animals and plants. Instead, the plankton community composition emerged as a highly specific fingerprint of a geographic region even on higher taxonomic levels. The intraregional heterogeneity of the investigated lakes was mirrored in shifts in microbial eukaryote community structure, which, however, was much less pronounced compared with interregional beta‐diversity. Statistical analyses revealed that on a regional scale, environmental factors are strong predictors for plankton community structures in high‐mountain lakes. While on long‐distance scales (>10 000 km), isolation by distance is the most plausible scenario, on intermediate scales (up to 6000 km), both contemporary environmental factors and historical contingencies interact to shift plankton community structures.  相似文献   

20.
Tailings ponds in the Athabasca oil sands (Canada) contain fluid wastes, generated by the extraction of bitumen from oil sands ores. Although the autochthonous prokaryotic communities have been relatively well characterized, almost nothing is known about microbial eukaryotes living in the anoxic soft sediments of tailings ponds or in the thin oxic layer of water that covers them. We carried out the first next‐generation sequencing study of microbial eukaryotic diversity in oil sands tailings ponds. In metagenomes prepared from tailings sediment and surface water, we detected very low numbers of sequences encoding eukaryotic small subunit ribosomal RNA representing seven major taxonomic groups of protists. We also produced and analysed three amplicon‐based 18S rRNA libraries prepared from sediment samples. These revealed a more diverse set of taxa, 169 different OTUs encompassing up to eleven higher order groups of eukaryotes, according to detailed classification using homology searching and phylogenetic methods. The 10 most abundant OTUs accounted for > 90% of the total of reads, vs. large numbers of rare OTUs (< 1% abundance). Despite the anoxic and hydrocarbon‐enriched nature of the environment, the tailings ponds harbour complex communities of microbial eukaryotes indicating that these organisms should be taken into account when studying the microbiology of the oil sands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号