首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of roasted and unroasted seeds of C. cajan on serum glucose levels of normal and alloxan diabetic mice were studied. Single doses of unroasted seeds (60% and 80%) on administration to normal as well as alloxanized mice showed significant reduction in the serum glucose levels after 1-2 hr and a significant rise at 3 hr. In case of roasted seeds, on other hand there was a significant increase in serum glucose levels during 3 hr experimental period. It is therefore concluded that roasting of seeds at high temperature for an half hour period resulted in the total loss of hypoglycemic principle but not the hyperglycemic principle present in the seeds.  相似文献   

2.
The polyphenolic dimers, epicatechin-4beta-8-catechin (B1), epicatechin-4beta-8-epicatechin (B2), catechin-4beta-8-catechin (B3), catechin-4beta-8-epicatechin (B4), and the gallate ester epicatechin-4beta-8-epicatechin gallate (B'2G) were isolated from grape seeds, and theaflavins and theafulvins from black tea brews. The ability of these naturally-occurring polyphenols to afford protection against the genotoxicity of the heterocyclic amine 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) was compared with that of the monomeric tea flavanols, (+)-catechin (C), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG). Genotoxic activity was evaluated in human peripheral lymphocytes using the Comet assay. At the concentration range of 1-100 microM, neither the monomeric nor the dimeric flavanols prevented the lymphocyte DNA damage induced by Trp-P-2. In contrast, both of the black tea polyphenols, theafulvins and theaflavins, at a dose range of 0.1-0.5 mg/ml, prevented, in a concentration-dependent manner, the DNA damage elicited by Trp-P-2. Finally, neither the monomeric and dimeric polyphenols (100 microM) nor the theafulvins and theaflavins (0.5mg/ml) caused any DNA damage in the human lymphocytes. These studies illustrate that black tea theafulvins and theaflavins, if absorbed intact, may contribute to the anticarcinogenic potential associated with black tea intake.  相似文献   

3.
The binding of mutagenic pyrolyzates to cell fractions from some gram-negative intestinal bacteria and to thermally treated bacterial cells was investigated. 3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) were effectively bound by several of the bacterial cells. The cell wall skeletons of all bacteria effectively bound Trp-P-1 and Trp-P-2. Their cytoplasmic fractions retained Trp-P-1 and Trp-P-2, but to a lesser extent than the cell wall skeletons. 2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) was not found in their cytoplasmic fractions. These cell wall skeletons also bound 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1), 2-amino-5-phenylpyridine (Phe-P-1), IQ, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQX). The amount of each mutagen bound differed with the type of mutagen and the bacterial strain used. The outer membrane of Escherichia coli IFO 14249 showed binding of about 123.7 micrograms/mg of Trp-P-2, and its cytoplasmic membrane bound 57.14 micrograms/mg. Trp-P-2 bound to the bacterial cells was extracted with ammonia (5%), methanol, and ethanol but not with water.  相似文献   

4.
We used a modification of the alkaline single cell gel electrophoresis (SCG) (Comet) assay to test the in vivo genotoxicity of 6 heterocyclic amines, Trp-P-1 (25 mg/kg), Trp-P-2 (13 mg/kg), IQ (13 mg/kg), MeIQ (13 mg/kg), MeIQx (13 mg/kg) and PhIP (40 mg/kg), in mouse liver, lung, kidney, brain, spleen, bone marrow and stomach mucosa. Mice were sacrificed 1, 3, and 24 h after intraperitoneal injection. Trp-P-2, IQ, MeIQ, and MeIQx yielded statistically significant DNA damage in the stomach, liver, kidney, lung and brain; Trp-P-1 in the stomach, liver and lung; and PhIP in the liver, kidney and brain. None of the heterocyclic amines induced DNA damage in the spleen and bone marrow. Our results suggest that the alkaline SCG assay applied to multiple organs is a good way to detect organ-specific genotoxicity of heterocyclic amines in mammals.  相似文献   

5.
Harman and norharman, known as comutagens of many chemicals, were tested for their effect on the binding to DNA of 3-amino-1-methyl-5H-pyrido(4,3-b)indole, (Trp-P-2), a potent mutagen found with harman and norharman in the pyrolysate of tryptophan (1). We demonstrated that the alteration of the DNA helix by intercalation of these comutagens to DNA does not affect the affinity of this potent mutagen for DNA. Covalent binding, however, was inhibited by the comutagens.  相似文献   

6.
The analysis of DNA damage by mean of Comet or single cell gel electrophoresis (SCGE) assay has been commonly used to assess genotoxic impact in aquatic animals being able to detect exposure to low concentrations of contaminants in a wide range of species. The aims of this work were 1) to evaluate the usefulness of the Comet to detect DNA strand breakage in dolphin leukocytes, 2) to use the DNA diffusion assay to determine the amount of DNA strand breakage associated with apoptosis or necrosis, and 3) to determine the proportion of DNA strand breakage that was unrelated to apoptosis and necrosis. Significant intra-individual variation was observed in all of the estimates of DNA damage. DNA strand breakage was overestimated because a considerable amount (~29%) of the DNA damage was derived from apoptosis and necrosis. The remaining DNA damage in dolphin leukocytes was caused by factors unrelated to apoptosis and necrosis. These results indicate that the DNA diffusion assay is a complementary tool that can be used together with the Comet assay to assess DNA damage in bottlenose dolphins.  相似文献   

7.
Xeroderma pigmentosum patients, in addition to ultraviolet-induced skin cancers, have an increased prevalence of neoplasms occurring in sites shielded from ultraviolet radiation. We postulated that these internal neoplasms might be related to ingestion of dietary carcinogens. As model dietary carcinogens, we studied the tryptophan pyrolysis products, 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2). These dietary compounds bind to DNA and are highly mutagenic and carcinogenic. Cytotoxicity of these compounds was examined in cultured lymphoblastoid cell lines from xeroderma pigmentosum patients in complementation groups A, B, C, D and E and the variant form and from normal donors. All xeroderma pigmentosum lymphoblastoid cell lines showed a greater reduction in viable cell concentration than the 2 normal lymphoblastoid cell lines following addition of Trp-P-1 or Trp-P-2 (5 micrograms/ml) to the culture medium. Possible differences in cellular activation of these compounds were overcome by treating the cells with rat-liver microsome-activated Trp-P-2. There was a greater reduction in viable cell concentration in the xeroderma pigmentosum group A and D cells than in the normal lymphoblastoid cell lines after treatment with activated Trp-P-2. These data suggest that the xeroderma pigmentosum DNA-repair system is defective in repairing Trp-P-1 and Trp-P-2 induced DNA damage in addition to being defective in repairing ultraviolet-induced DNA damage. Thus xeroderma pigmentosum patients may be at increased risk of toxicity from some dietary carcinogens.  相似文献   

8.
Developmental changes in hepatic activation of dietary mutagens by mice   总被引:1,自引:0,他引:1  
Metabolic activation of the food mutagens 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) and aflatoxin B1 by female BALB/c mice of different ages (2-24 weeks) was investigated in vivo and in vitro using Salmonella typhimurium TA98 as the indicator organism. The in vivo activation of the three mutagens was investigated in 4- and 24-week-old mice using an intrasanguineous host-mediated assay. All three compounds showed reduced levels of activation with the older hosts. Hepatic S9 fractions from female mice of varying ages between 2 and 24 weeks were used in the in vitro mutagenicity assay. To achieve optimal activation to bacterial mutagens, 5% S9 was required for aflatoxin B1 and Trp-P-2 and 10% S9 for MeIQ; age of donor generally had little effect on the profile of these protein activation curves. Under these optimal conditions MeIQ and Trp-P-2 both exhibited, as before, age-dependent decreases in activation over a wide range of mutagen concentrations, however the in vitro activation of aflatoxin showed no consistent change with age. Spectrophotometric measurements of S9 cytochrome P-450 content showed a decrease in concentration with increasing age, but this was not sufficient to account for changes observed in hepatic mutagen activation. However, changes in the activities of certain cytochrome P-450 isoenzymes and cytosolic GSH-transferases, which in turn result in changes in the activation and detoxification capacity of the liver, would appear to explain age-dependent changes in the activity of mutagens in vivo.  相似文献   

9.
Three anthraquinones, named anthrasesamones A, B and C, were isolated from the roots of Sesamum indicum, and their respective structures were determined to be 1-hydroxy-2-(4-methylpent-3-enyl)anthraquinone, 1,4-dihydroxy-2-(4-methylpent-3-enyl)anthraquinone and 2-chloro-1,4-dihydroxy-3-(4-methylpent-3-enyl)anthraquinone on the basis of spectroscopic evidence. Two known anthraquinones were also isolated for the first time from S. indicum roots and characterized as 2-(4-methylpent-3-enyl)anthraquinone and (E)-2-(4-methylpenta-1,3-dienyl)anthraquinone. Anthrasesamone C is a rare chlorinated anthraquinone in higher plants.  相似文献   

10.
The aim of this study was to use the Comet assay to assess genetic damage in the direct-developing frog Eleutherodactylus johnstonei. A DNA diffusion assay was used to evaluate the effectiveness of alkaline, enzymatic and alkaline/enzymatic treatments for lysing E. johnstonei blood cells and to determine the amount of DNA strand breakage associated with apoptosis and necrosis. Cell sensitivity to the mutagens bleomycin (BLM) and 4-nitro-quinoline-1-oxide (4NQO) was also assessed using the Comet assay, as was the assay reproducibility. Alkaline treatment did not lyse the cytoplasmic and nuclear membranes of E. johnstonei blood cells, whereas enzymatic digestion with proteinase K (40 μg/mL) yielded naked nuclei. The contribution of apoptosis and necrosis (assessed by the DNA diffusion assay) to DNA damage was estimated to range from 0% to 8%. BLM and 4NQO induced DNA damage in E. johnstonei blood cells at different concentrations and exposure times. Dose-effect curves with both mutagens were highly reproducible and showed consistently low coefficients of variation (CV ≤ 10%). The results are discussed with regard to the potential use of the modified Comet assay for assessing the exposure of E. johnstonei to herbicides in ecotoxicological studies.  相似文献   

11.
Purpurin (1,2,4-trihydroxy-9,10-anthraquinone) is a naturally occurring anthraquinone pigment found in species of madder root. We have found that the presence of purpurin in bacterial mutagenicity assays is responsible for a marked inhibition of mutagenicity induced by food-derived heterocyclic amines. Purpurin was found to be a better inhibitor of Trp-P-2-dependent mutagenicity than either epigallocatechin gallate or chlorophyllin both of which are well-established anti-mutagenic components of diet. Inhibition of Trp-P-2(NHOH) mutagenicity by purpurin was dependent upon pH. It was a better inhibitor in neutral than acidic conditions. Purpurin was protective against the direct mutagen Trp-P-2(NHOH) in both the presence and the absence of hepatic S9 but required pre-incubation. Finally, purpurin was responsible for the inhibition of human CYP1A2 and human NADPH-cytochrome P450 reductase and a decrease in the bioactivation of Trp-P-2 by these enzymes when they were expressed in Salmonella typhimurium TA1538ARO. However, inhibition of Trp-P-2(NHOH)-dependent mutations suggests purpurin also has a direct effect on this mutagen in addition to inhibiting its formation by CYP1A2.  相似文献   

12.
Genotoxicity evaluation of heat shock in gold fish (Carassius auratus)   总被引:1,自引:0,他引:1  
Genotoxicity evaluation of heat shock was carried out in Carassius auratus. The genotoxicity end points studied were nuclear anomalies (micronucleus assay), chromosomal aberrations, DNA damage (comet assay) and cell proliferation. The heat shock temperatures used were 34 degrees C, 36 degrees C and 38 degrees C. The results demonstrated that heat shock causes the induction of micronucleus at all the three temperature studied. Heat shock also inhibited cell proliferation at 38 degrees C and caused aberrations in the metaphase chromosomes at 34 degrees C and 36 degrees C. Comet assay demonstrated single strand DNA damage at all the three temperatures. The results obtained indicate that heat shock is a genotoxicant.  相似文献   

13.
A potent mutagen, 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), isolated from a tryptophan pyrolysate, was activated metabolically by rat liver microsomes and bound to DNA. An active metabolite formed by rat liver microsomes was identified as 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (N-OH-Trp-P-2). Synthetic N-OH-Trp-P-2 reacted with DNA efficiently after O-acetylation or to a lesser extent under acidic conditions (pH 5.5), but did not react appreciably under neutral conditions. Acid hydrolysis of DNA modified by O-acetylated N-OH-Trp-P-2 (N-OAc-Trp-P-2) gave 3-(8-guanyl)amino-1-methyl-5H-pyrido[4,3-b]indole (Gua-Trp-P-2), which is the main modified base of DNA formed by Trp-P-2 in the presence of microsomes. The glycoside bond of the modified base was found to be cleaved by heating at 100° for 1 hr at pH 7.0. In this way, the modified base was liberated from DNA modified by N-OAc-Trp-P-2 in good yield. N-OAc-Trp-P-2 bound to guanyl cytidine more effectively than to guanylic acid, suggesting that covalent binding with guanyl moiety of DNA involves intercalation of the ultimate mutagen into a base pair.  相似文献   

14.
Alkylhydroperoxides in oxidized oil are undesirable components because they become alkylperoxyl radicals (ROO*) in the presence of heme, hemoglobin, or myoglobin in red meat. ROO* are biochemically reactive and damage nucleic acids and proteins, thereby harming living cells. We isolated a component, a highly potent ROO* scavenger, from crude canola oil (rapeseed), which we designated canolol, and identified its chemical structure, 4-vinyl-2,6-dimethoxyphenol. The canolol content of crude canola oil greatly increased after the seed was roasted as compared with that from unroasted seed, but it decreased in highly purified oil. This anti-ROO* activity was highest in crude oil, deceased after each refining step, and was lowest in highly purified refined oil. Canolol was thus generated during roasting. As shown previously, canolol is one of the most potent anti-ROO* components in crude canola oil and its potency is much greater than that of well-known antioxidants, including alpha-tocopherol, vitamin C, beta-carotene, rutin, and quercetin.  相似文献   

15.
The Chaga mushroom (Inonotus obliquus) is claimed to have beneficial properties for human health, such as anti-bacterial, anti-allergic, anti-inflammatory and antioxidant activities. The antioxidant effects of the mushroom may be partly explained by protection of cell components against free radicals. We evaluated the effect of aqueous Chaga mushroom extracts for their potential for protecting against oxidative damage to DNA in human lymphocytes. Cells were pretreated with various concentrations (10, 50, 100 and 500 microg/mL) of the extract for 1 h at 37 degrees C. Cells were then treated with 100 microM of H2O2 for 5 min as an oxidative stress. Evaluation of oxidative damage was performed using single-cell gel electrophoresis for DNA fragmentation (Comet assay). Using image analysis, the degree of DNA damage was evaluated as the DNA tail moment. Cells pretreated with Chaga extract showed over 40% reduction in DNA fragmentation compared with the positive control (100 micromol H2O2 treatment). Thus, Chaga mushroom treatment affords cellular protection against endogenous DNA damage produced by H2O2.  相似文献   

16.
β-Glucans (BGs) are polysaccharides that are found in the cell walls of organisms such as bacteria, fungi, and some cereals. The objective of the present study was to investigate the genotoxic and antigenotoxic effects of BG extracted from the mushroom Agaricus brasiliensis (= Agaricus blazei Murrill ss. Heinemann). The mutagenic activity of BG was tested in single-cell gel electrophoresis assays with human peripheral lymphocytes. In addition, the protective effects against the cooked food mutagen 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) and (+/−)-anti-B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), which is the main metabolite of B[a]P, and against ROS (H2O2)-induced DNA damage, were studied. The results showed that the compound itself was devoid of mutagenic activity, and that a significant dose-dependent protective effect against damage induced by hydrogen peroxide and Trp-P-2 occurred in the dose range 20–80 μg/ml. To investigate the prevention of Trp-P-2-induced DNA damage, a binding assay was carried out to determine whether BG inactivates the amine via direct binding. Since no such interactions were observed, it is likely that BG interacts with enzymes involved in the metabolism of the amine.  相似文献   

17.
The relationship between DNA-adduct formation and mutagenicity of two heterocyclic aromatic amines associated with cooked foods was determined in a CHO cell strain lacking nucleotide excision repair. Cells were exposed to tritiated IQ (2-amino-3-methylimidazo[4,5-f]quinoline) or Trp-P-2 (3-amino-1-methyl-5H-pyrido[4,3-b]indole) supplemented with hamster S9 microsomal fraction for metabolic activation. DNA from nuclei was isolated by DNAase-mediated elution from polycarbonate filters after RNAase and proteinase treatment. The presumed metabolites of both compounds bound to DNA in a dose-dependent fashion. Although the dose required to produce 50% cell killing was 15 times higher for IQ than Trp-P-2, the amount of radioactive material bound to DNA at that dose was about 10-fold lower with IQ. When mutations at the hprt and aprt loci were compared with the estimated levels of adducts, the calculated mutagenic efficiency of the adducts was about 4 mutations per 1000 adducts for both compounds, assuming a target sequence of 1000 base pairs for either locus. We conclude that IQ is acting as a weak mutagen in this system because its extracellular metabolites either do not reach or do not react efficiently with the DNA of the CHO cells.  相似文献   

18.
As part of a major study to evaluate the mutagenicity of chemicals produced during the cooking of foods, we examined the responses of bacteria and cultured Chinese hamster cells to the compounds Trp-P-2 (3-amino-1-methyl-5H-pyrido[4,3-b]indole) and IQ (2-amino-3-methylimidazo[4,5-f]quinoline), constituents identified in cooked beef and fish. In the Ames/Salmonella tester strain TA1538, both compounds were confirmed to be extremely potent mutagens that were active at levels below 1 ng/plate in the presence of hamster-liver S9 microsomal fraction. 50-fold higher doses of both compounds were required for mutagenicity in the uvr+ tester strain TA1978. Trp-P-2 also behaved as a strong mutagen in CHO cells using the standard exogenous activation with hamster-liver S9 fraction. At concentrations below 1 microgram/ml it produced dose-dependent increases in cell killing, mutations at the hprt and aprt loci, sister-chromatid exchanges, and chromosomal aberrations. An excision-repair-deficient strain was about 2-fold more sensitive than the normal CHO cells with respect to these genotoxic effects of Trp-P-2. IQ had unexpectedly weak activity for all genetic endpoints in the CHO cells, and it produced clear-cut responses only in the repair-deficient cells and only above a concentration of 10 micrograms/ml. The toxicity that was observed with IQ was not affected by the repair capacity of the cells and was not associated with chromosomal aberrations, indicating that damage to cellular structures other than nuclear DNA was likely the predominant pathway for cell killing. Because the culture conditions normally used for CHO cell exposure were shown to be competent in producing bacterial mutagenicity with IQ, it was concluded that the active metabolite of IQ was present in the medium but was somehow ineffective in reaching the DNA of CHO cells and/or reacting with it. These results suggest that the relative mutagenic potency of compounds in Salmonella may bear no direct relationship to relative mutagenicity in CHO cells, emphasizing precaution in attempting to extrapolate microbial data to mammalian somatic cells. This study illustrates the use and merits of a multi-endpoint assay for genetic damage in CHO cells, the utility of using CHO cells that are defective in excision repair of DNA, and the importance of comparative testing between bacterial and mammalian systems.  相似文献   

19.
Sulforaphane, a constituent of broccoli was investigated for its antimutagenic potential against different classes of cooked food mutagens (heterocyclic amines). These include imidazoazaarenes such as 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP); pyridoindole derivatives such as 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2); and, dipyridoimidazole derivative such as 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1). Tests were carried out by Ames Salmonella/reversion assay using Salmonella typhimurium TA98 (frame shift mutation sensitive) and TA100 (base pair mutation sensitive) bacterial strains in the presence of Aroclor 1254-induced rat liver S9. Results of these in vitro antimutagenicity studies strongly suggest that sulforaphane is a potent inhibitor of the mutagenicity induced by imidazoazaarenes such as IQ, MeIQ and MeIQx (approximately 60% inhibition) and moderately active against pyridoindole derivatives such as Trp-P-1 and Trp-P-2 (32-48% inhibition), but ineffective against dipyridoimidazole derivative (Glu-P-1) in TA 100.  相似文献   

20.
It was evidenced that mutagenic principles in tryptophan pyrolysate, 3-amino-1,4-dimethyl-5H pyrido(4,3-b) indole and 3-amino-1-methyl-5H pyrido(4,3-b) indole (abbreviated as Trp-P-1 and Trp-P-2, respectively) bind to DNA without activation by rat liver microsomes. The bindings of Trp-P-1 and Trp-P-2 were not random and did not introduce strand scissions into DNA. Trp-P-1 bound more easily than Trp-P-2. The bindings of these mutagenic principles to DNA were concluded by using negatively superhelical simian virus 40 (SV40) DNA from following experimental data. (1) The intensity of ethidium bromide (EtBr)-DNA fluorescence by illumination with UV light and the electrophoretic mobility of superhelical DNA in agarose gel decreased as a function of the amounts of Trp-P-1 and Trp-P-2. (2) In vitro RNA synthesis catalyzed by Escherichia coli DNA-dependent RNA polymerase and nick-translation catalyzed by Escherichia coli DNA polymerase I (Kornberg enzyme) were inhibited significantly on DNA treated with Trp-P-1 and Trp-P-2. (3) The negative superhelicity of SV40 DNA introduces unpaired regions into DNA. These regions can be cleaved by single-strand-specific S1 endonuclease to generate unit length linear duplex molecules. It was found that this S1-sensitivity of DNA decreased by treatment with Trp-P-1. (4) The cleavage patterns of Trp-P-1 treated DNA with five restriction endonucleases were investigated. The protection of the cleavage site by the drug was observed against HincII, HindIII and EcoRII, whereas not against HaeIII and HinfI. These results show that the binding of Trp-P-1 to DNA is not random. Identical results were also obtained in Trp-P-2.

However, the bindings of Trp-P-1 and Trp-P-2 were not so tight, and phenol extraction of the complex dissociated these drugs from DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号