首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensitivity of the available methods of apoptosis detection in lymphocyte cultures was tested. Cells were preincubated with genotoxic agents: hydrogen peroxide (0.2 mM; 20 min.) and benzo[a]pyrene (40 microM; 90min.), and then cultured for 36h in the presence of a lectin (PHA-M; 1% v/v) and one of the following potentially antimutagenic agents: alkylresorcinols, anthocyanins, todralazine and fluphenazine. It was established that staining with a mixture of fluorochromes (ethidium bromide and acridine orange) provided the highest amount of detected apoptotic cells, and the best repeatability of the results in subsequent experiments. Calculation of the Spearman's rank correlation coefficients proved that there was a high correlation between the results obtained by the ethidium bromide/acridine orange method and those obtained by identifying genomic DNA fragmentation by means of FIGE-electrophoresis. Therefore, these two methods were chosen for further studies of the tested antimutagens' impact on apoptosis in genotoxically-damaged lymphocytes.  相似文献   

2.
We assessed four antimutagenic compounds' influences on DNA repair in human lymphocytes exposed in vitro to hydrogen peroxide (20 microM, 5 min, at 4 degrees C). DNA damage and repair were estimated by means of alkaline single cell gel electrophoresis (comet assay). It was noticed that the enhancement of DNA repair was relatively strongest when fluphenazine was present in the cell culture medium. In the cases of anthocyanins and alkylresorcinols, the effects were almost 6-9 times weaker than that of FPh. The effect of todralazine on DNA repair was relatively weakest. Further study should be done on fluphenazine as a potential DNA repair-enhancing compound.  相似文献   

3.
Fluphenazine (FPh) exhibited antimutagenic activity in lymphocyte cultures, markedly decreasing genotoxic effects of standard mutagenic agents present in cell cultures. However, the strong pharmacological activity of this neuroleptic drug, together with its serious side effects on the central nervous system, limits its use as an antimutagenic compound. In this paper we describe a route of chemical synthesis of FPh analogues that are more hydrophilic than the model compound, thus probably penetrate more weakly through the blood-brain barrier. These new analogues were tested for their antimutagenic and pro-apoptotic activities in human lymphocyte cultures, genotoxically damaged in vitro with benzo[a]pyrene [40 microM, 30 min] and subsequently cultured for 48 h in the presence of the tested compounds. The fluphenazine analogues enhanced apoptosis in genotoxically damaged lymphocytes more strongly than the model compound did. The increase of apoptotic cell frequency was the highest with compound 4a [2-(trifluoromethyl)-10-[3-(diethanolamino)-2-hydroxypropyl] phenothiazine]--a 35% higher effect than that of fluphenazine. The cytotoxicity of derivative 4a was the lowest among the tested compounds; it was 60% lower than that of fluphenazine. The antimutagenic effect of 4a was about 10% stronger than that of fluphenazine. Compound 4a also had the highest hydrophilicity of the new FPh analogues. Compound 4a was chosen for further study as a potentially usable antimutagen that would only weakly penetrate the central nervous system.  相似文献   

4.
Mutagenicity refers to the induction of permanent changes in the DNA sequence of an organism, which may result in a heritable change in the characteristics of living systems. Antimutagenic agents are able to counteract the effects of mutagens. This group of agents includes both natural and synthetic compounds. Based on their mechanism of action among antimutagens, several classes of compounds may be distinguished. These are compounds with antioxidant activity; compounds that inhibit the activation of mutagens; blocking agents; as well as compounds characterized with several modes of action. It was reported previously that several antitumor compounds act through the antimutagenic mechanism. Hence, searching for antimutagenic compounds represents a rapidly expanding field of cancer research. It may be observed that, in recent years, many publications were focused on the screening of both natural and synthetic compounds for their beneficial muta/antimutagenicity profile. Thus, the present review attempts to give a brief outline on substances presenting antimutagenic potency and their possible mechanism of action. Additionally, in the present paper, a screening strategy for mutagenicity testing was presented and the characteristics of the most widely used antimutagenicity assays were described.  相似文献   

5.
Vanillin (VAN) and cinnamaldehyde (CIN) are dietary antimutagens that effectively inhibit both induced and spontaneous mutations. We have shown previously that VAN and CIN reduced the spontaneous mutant frequency in Salmonella TA104 (hisG428, rfa, ΔuvrB, pKM101) by approximately 50% and that both compounds significantly reduced mutations at GC sites but not at AT sites. Previous studies have suggested that VAN and CIN may reduce mutations in bacterial model systems by modulating DNA repair pathways, particularly by enhancing recombinational repair. To further explore the basis for inhibition of spontaneous mutation by VAN and CIN, we have determined the effects of these compounds on survival and mutant frequency in five Escherichia coli strains derived from the wild-type strain NR9102 with different DNA repair backgrounds. At nontoxic doses, both VAN and CIN significantly reduced mutant frequency in the wild-type strain NR9102, in the nucleotide excision repair-deficient strain NR11634 (uvrB), and in the recombination-proficient but SOS-deficient strain NR11475 (recA430). In contrast, in the recombination-deficient and SOS-deficient strain NR11317 (recA56), both VAN and CIN not only failed to inhibit the spontaneous mutant frequency but actually increased the mutant frequency. In the mismatch repair-defective strain NR9319 (mutL), only CIN was antimutagenic. Our results show that the antimutagenicity of VAN and CIN against spontaneous mutation required the RecA recombination function but was independent of the SOS and nucleotide excision repair pathways. Thus, we propose the counterintuitive notion that these antimutagens actually produce a type of DNA damage that elicits recombinational repair (but not mismatch, SOS, or nucleotide excision repair), which then repairs not only the damage induced by VAN and CIN but also other DNA damage—resulting in an antimutagenic effect on spontaneous mutation.  相似文献   

6.
In this study the role of antioxidant enzymes on the antimutagenic actions of riboflavin and reduced glutathione against mutagenic potentials of 4-nitroquinoline 1-oxide and mitomycin C have been investigated. For this purpose the activities of catalase and superoxide dismutase enzymes have been determined in Salmonella typhimurium TA102 and TA100 strains preincubated with different combinations of 4-nitroquinoline 1-oxide, mitomycin C, riboflavin and reduced glutathione for thirty minutes. Also in part of the same samples, the mutagenicity has been determined for each combination of chemicals by using Salmonella preincubation test. The correlation between the levels of antioxidant enzymes and mutagenicity and antimutagenicity has been investigated.While riboflavin displayed a weakly antimutagenic effect on 4-nitroquinoline 1-oxide mutagenicity in TA102 and TA100 (0.25, 0.35 inhibition respectively), it did not have any effect on the strong mutagenicity of mitomycin C in both strains. Reduced glutathione, a well known antioxidant, had no antimutagenic effect against the mutagenicity of both compounds in TA102 and TA100 strains. The antioxidant enzymes, catalase and superoxide dismutase, seemed to have no direct effect on the antimutagenic action of riboflavin and mutagenic action of 4-nitroquinoline 1-oxide and mitomycin C because no change in the activities of catalase and superoxide dismutase was detected in relation to antimutagenicity of riboflavin and mutagenicity of 4-nitroquinoline 1-oxide and mitomycin C in both strains. It should be noted that many antimutagens have more than one mechanism of action and their effect depends on the mutagens being tested.  相似文献   

7.
Higher plants contain both mutagens and antimutagens and are susceptible to mutagenesis but screening programs for detection of antimutagenesis rarely employ higher plant systems. Short-term bacterial and mammalian tissue culture systems are the norm. Using modified screening tests for detecting antimutagenic agents, higher plants have been shown to contain a variety of structurally novel antimutagenic agents. Systematic bioassay-directed methodology resulted in the isolation in pure form and biological and chemical characterization of the responsible individual active components from various plants. The methodology in use is illustrated by the isolation of cinnamic acid, cinnamyl cinnamate and cinnamyl ricinoleate as the active constituents of the classic medicinal plant product, Styrax asiatica. The methods which may be used to reveal structure-activity relationships and to explore putative molecular modes of action are illustrated with excerpts from the same study.  相似文献   

8.
Several antipsychotic drugs reverse the dopamine-induced inhibition of prolactin release by rat pituitary cell cultures. Paradoxically, at high doses and without dopamine, antipsychotic drugs can also inhibit prolactin secretion. The mechanism underlying this phenomenon is unclear. Some evidence suggests that these drugs have an agonistic action. We sought to verify whether clozapine and fluphenazine, at doses higher than those reversing dopamine-induced inhibition of prolactin secretion in vitro, show this paradoxical effect and eventually a partial agonistic action. Both antipsychotics inhibited prolactin secretion, clozapine at doses starting from 10(-6) M and fluphenazine from 10(-7) M. Haloperidol reversed clozapine-induced prolactin inhibition but left fluphenazine-induced inhibition unchanged. These in vitro findings suggest that clozapine has a partial agonistic action on dopaminergic receptors but fluphenazine does not.  相似文献   

9.
Anthocyanins are flavonoids present in a variety of pigmented food and, like other flavonoids, seem to play a role in preventing human pathologies related to oxidative stress. In fact, anthocyanins have been shown to exert antiproliferative effects in cell cultures and exhibit antiinflammatory and vasoprotective activities in animal models. Although these biological activities have been related to their antioxidant properties, little is known on the molecular mechanism of action of anthocyanins. The effects of pretreatment with the anthocyanins delphinidin, cyanidin, and their glycoside and rutinoside derivatives against induction of DNA damage induced by tert-butyl-hydroperoxide (TBHP) were evaluated in rat smooth muscle and in rat hepatoma cell lines using alkaline single cell gel electrophoresis (Comet test). In addition, a possible protection exerted by anthocyanins on cell killing, lipid peroxidation, and redox state alterations induced by TBHP was also investigated. It was found that the treatment with TBHP induces the formation of DNA single strand breaks (SSB) and oxidised bases, along with cell killing, lipid peroxidation and redox state alteration. Our data demonstrate that anthocyanins are effective against cytotoxicity, DNA SSB formation and lipid peroxidation induced by TBHP, but they do not have any detectable effect against impairment by TBHP of cellular redox state and on protection against DNA bases oxidation. The presence of a sugar moiety in anthocyanin derivatives reduced this protective effect, mainly in rat hepatoma cells. The different activity of anthocyanins and their derivatives may be explained taking into account a structure/function relationship that could also influence anthocyanin intracellular localisation.  相似文献   

10.
H W Renner 《Mutation research》1990,244(2):185-188
The food components chlorophyllin, beta-carotene and alpha-linolenic acid (in its methyl ester form) were tested in Chinese hamsters for antimutagenic activity on the powerful mutagen thio-tepa. Each of these natural protective compounds inhibited by 70-85% the clastogenic effects induced by the mutagen. When 2 or 3 of these antimutagens were administered simultaneously no additive effects were observed. alpha-Linolenic acid methyl ester was the most effective antimutagen under the experimental conditions.  相似文献   

11.
Grape skins from a grape pomace were subject to extraction with superheated ethanol-water mixtures for quantitative extraction of anthocyans and other phenolic compounds. The variables affecting dynamic extraction of these compounds were studied and identification and quantification of the extracted compounds were performed by both direct spectrophotometry or after HPLC separation using UV or MS detectors. The optimal working conditions for total extraction of anthocyans were: 1:1 (v/v) ethanol-water acidified with 0.8% (v/v) HCl, 120 degrees C, 30 min, 1.2 ml/min and 80 bar. The yields of anthocyanins, total phenolics and flavanols thus obtained were much higher (3 times for anthocyanins, 7 times for total phenolics and 11 times for flavanols) than those provided by dynamic conventional solid-liquid extraction. Several sample preparation procedures for skins as alternatives to free-drying were also investigated and drying at 40 degrees C for 24h provided the best results. Extraction with acidified water provides similar composition and poorer efficiency than 1:1 ethanol-water; also similar to two commercial grape skin extracts used as natural colorants.  相似文献   

12.
Since it is not always possible to reduce human exposure to mutagens, attempts have been directed to identify potential antimutagens and anticarcinogens for use in protecting the population against environmental disease. The purpose of this paper is to provide the reader with information about the antimutagenic and anticarcinogenic potentials of some dietary constituents and foods widely consumed in Brazil, and to reinforce diet as a key factor in determining genomic stability and preventing human diseases. In this report, we have summarized data that show interactive effects between some dietary components and specific chemical mutagens or carcinogens using in vitro and in vivo short- or medium-term assays. The summary indicates that certain dietary compounds may be useful agents for disease prevention.  相似文献   

13.
Changes in unscheduled DNA synthesis (UDS) in lymphocytes and lipid peroxidation (LPO) in the rat brain regions cortex, hippocampus and hypothalamus were studied after 12 months of treatment with the neuroleptic fluphenazine (5 mg/kg b.w.), lithium (0.05% in drinking water), alpha-tocopherol (alpha-TP, 0.01% in drinking water) and the anticholinergic drug 7-methoxytacrine (0.1 and 1.0 g/kg in the diet). Fluphenazine and lithium suppressed UDS and increased LPO in cortex and hypothalamus. 7-Methoxy-tacrine at the lower dose stimulated UDS, at the higher dose it suppressed UDS after 6 months of exposure. Simultaneous administration of alpha-TP with fluphenazine suppressed the increase in LPO and the decrease in UDS produced by the neuroleptic alone. alpha-TP plasma levels were increased in groups administered alpha-TP as well as the levels in the hippocampus. Results indicate that the damage of biomembranes and the DNA repair enzymatic system as a consequence of fluphenazine action may be eliminated by the simultaneous administration of alpha-TP.  相似文献   

14.
陈琦  李少伟  贾宇臣  王利 《遗传》2014,36(6):566-573
文章从内蒙古野生蓝莓(Vaccinium uliginosum Lim)中提取花青素, 观察其对口腔癌细胞株KB的增殖及凋亡的作用, 探讨其作用机制与p53基因甲基化的相关性。利用含0.1%盐酸的甲醇提取花青素, 用高效液相色谱-质谱(High performance liquid chromatography-mass spectrometry, HPLC-MS )鉴定花青素的成分。利用四甲基偶氮唑蓝(Methylthiazolyl-tetrazolium, MTT)比色法、流式细胞术、免疫荧光法、免疫细胞化学法和Western blot法分析蓝莓花青素对KB细胞增殖、细胞周期、细胞凋亡和p53蛋白表达的影响; 利用甲基化特异性PCR法(Methylation-specific PCR, MSP)分析蓝莓花青素诱导细胞凋亡与p53基因甲基化的关系。结果显示, 内蒙古自治区的野生蓝莓中至少存在14种花青素成分; 蓝莓花青素呈剂量依赖的方式抑制KB细胞增殖, 诱导细胞周期阻滞在G2/M期, 而且能诱导细胞凋亡; 蓝莓花青素处理后Caspase-9蛋白和细胞色素C的表达明显增加; Western blot结果表明蓝莓花青素可以诱导KB细胞中p53蛋白表达上调; MSP结果表明随蓝莓花青素浓度增加, 未甲基化的p53的比例增加, 说明p53的甲基化状态有所下调。  相似文献   

15.
H Lee  J Y Lin 《Mutation research》1988,204(2):229-234
The antimutagenic activities of extracts of 36 commonly used anticancer crude drugs from Chinese herbs were studied by using the Salmonella/microsomal system in the presence of picrolonic acid or benzo[a]pyrene to test whether they contain direct or indirect antimutagens. Each crude drug was extracted with boiling water for 2 h, the method which is commonly used by Chinese people to prepare the drug for oral intake. The extracts of Pteris multifida P. showed the highest antimutagenic activity against picrolonic acid-induced mutation. The extracts of 6 other different kinds of Chinese herbs were shown to have a moderate antimutagenic activity against picrolonic acid-induced mutation, and they are: Actinidia chinensis P., Artemisia lavendulaefolia DC. and Crotalaria sessiflora L., Prunella vulgaris L., Paris polyphylla S. and Ampelopsis brevipedunculata T. The extracts of Smilax china L., Prunella vulgaris L. and Actinidia chinensis P. were demonstrated to inhibit the mutagenicity of benzo[a]pyrene completely. The 12 other kinds of extracts of Chinese herbs which had a moderate antimutagenic activity against benzo[a]pyrene were: Pteris polyphylla S., Ampelopsis brevipedunculata T., Duchesnea indica F., Gossypium herbaceum L., Lithospermum erythrorrhizon SZ., Artemisia lavendulaefolia DC., Selaginella doederleinii H., Dianthus superbus L., Centipeda minima ABA., Curcuma zedoaria R., Marsdenia tenacissima WA. and Kalopanax septemlobus K. Among them, there were 5 kinds of crude drugs, Actinidia chinensis P., Artemisia lavendulaefolia DC., Prunella vulgaris L., Paris polyphylla S. and Ampelopsis brevipedunculata T., containing antimutagenic factors against both picrolonic acid- and benzo[a]pyrene-induced mutation.  相似文献   

16.
Summary The mutation frequency of DNA polymerase mutants of phage T4 treated with ethyl methanesulfonate (EMS) then incubated in the presence and absence of caffeine was studied using an rII reversion system. The DNA polymerase mutation is shown to be antimutagenic for EMS induction of reversions which occur by a GC to AT transition. Caffeine acts as a comutagen for the induction by EMS of mutant phages and produces a significant increase in the frequency of reversions from rII to r+. Caffeine is slightly mutagenic for the phage strain carrying the wild type polymerase and inhibits the action of the 35 exonuclease function of T4 DNA polymerase as measured in vitro. These findings suggest that caffeine acts by directly influencing nucleotide selection or the editing function of the DNA polymerase.  相似文献   

17.
Antioxidative and antimutagenic effect of yeast cell wall mannans, in particular, extracellular glucomannan (EC-GM) and glucomannan (GM-C.u.) both from Candida utilis, mannan from Saccharomyces cerevisiae (M-S.c.) and mannan from Candida albicans (M-C.a.) was evaluated. Luminol-dependent photochemical method using trolox as a standard showed that EC-GM, GM-C.u., M-S.c. and M-C.a. have relatively good antioxidative properties. EC-GM exhibited the highest antioxidative activity, followed by GM-C.u. and M-S.c. M-C.a. showed the least antioxidative activity. These mannans were experimentally confirmed to exhibit different, statistically significant antimutagenic activity in reducing damage of chloroplast DNA of the flagellate Euglena gracilis induced by ofloxacin and acridine orange (AO). We suggest that the antimutagenic effect of EC-GM, GM-C.u., M-S.c. and M-C.a. against ofloxacin is based on their ability to scavenge reactive oxygen radicals. With AO, the reduction of the chloroplast DNA lession could be a result of the absorptive capacity of the mannans. The important characteristics of mannans isolated from the yeast cell walls, such as good water solubility, relatively small molecular weight (15-30kDa), and antimutagenic effect exerted through different mode of action, appear to be a promising features for their prospective use as a natural protective (antimutagenic) agents.  相似文献   

18.
《Mutation Research Letters》1994,323(4):167-171
The genotoxic effect of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and furadantine (Fu) was significantly decreased by standard antimutagens (ascorbic acid, α-tocopherol, chlorophyllin and sodium selenite) in the unicellular flagellate Euglena gracilis. The effects of these compounds were verified also by a bacterial test in which three strains of Salmonella typhimurium, TA97, TA100 and TA102, were used. The above compounds were antimutagenic in strains of bacteria used, except for chlorophyllin which had no effect on strain TA102.  相似文献   

19.
Ginseng has been reported to exhibit antioxidant and antimutagenic activity. The present study was undertaken with a view to confirm whether the antioxidant activity of Ginseng is responsible for its antimutagenic action. The concentrated root extract of Panax ginseng (Ginseng extract I) and its lyophilized powder (Ginseng extract II) obtained from two different manufacturing houses, were tested against mutagenesis using the well-standardized Ames microsomal test system. The extracts exhibited antimutagenic effect against hydrogen peroxide induced mutagenesis in TA100 strain, and against mutagenesis produced by 4-nitroquinoline-N-oxide in both TA98 and TA100 strains of Salmonella typhimurium. Both the extracts failed to show any antimutagenic potential against tert-butyl hydroperoxide (an oxidative mutagen) in TA102 strain, a strain highly sensitive to active oxygen species. The extracts also indicated a weak antioxidant activity in a series of in vitro test systems viz., 1,1-diphenyl picryl hydrazyl (DPPH) assay, hydrogen peroxide scavenging and superoxide anion scavenging. The results indicate that the protective effects shown by ginseng extract(s) against 4-nitroquinoline-n-oxide and hydrogen peroxide induced mutagenesis in TA98 and TA100 could mainly be due to its property to initiate and promote DNA repair rather than free radical scavenging action.  相似文献   

20.
The antimutagenic potential of Vitamin E due to its antioxidative properties was studied. The new Escherichia coli K12 assay-system designed in our laboratory was employed in order to detect the antimutagenic potential of Vitamin E and to determine its molecular mechanisms of action. The assay is composed of three tests. In Test A, we examine the influence of the antioxidant on induced oxidative mutagenesis in a repair-proficient strain. Spontaneous mutagenesis is monitored in Test B, which is performed with two mutator strains, one mismatch repair-deficient (mutS) and another deficient in 8-oxo-dGTP-ase activity (mutT). In Test M, a repair-proficient strain and its mismatch repair-deficient counterpart (mutH), both carrying a plasmid with microsatellite sequences, are used to measure the level of microsatellite instability. To examine the antimutagenic potential of Vitamin E we also used the WP2 antimutagenicity test. Protective properties of Vitamin E against oxidative mutagenesis were detected in all tests with the E. coli K12 assay-system as well as in the WP2 antimutagenicity test. This study confirms that mismatch repair is essential for repair of oxidative DNA damage. The results obtained indicate that Vitamin E prevents the formation of DNA adducts by lipid peroxidation products rather than those formed by direct oxidation of DNA bases. Moreover, it can reduce microsatellite instability. After further validation, the new E. coli K12 assay-system can be used to test the antimutagenic potential of antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号