首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hypothesis (CI=57.3%) on the evolutionary relationships of families comprising the class Monogenoidea is proposed based on 141 character states in 47 homologous series and employing phylogenetic systematics. Based on the analysis, three subclasses, the Polyonchoinea, Polystomatoinea and Oligonchoinea, are recognised. The analysis supports independent origins of the Montchadskyellidae within the Polyonchoinea and of the Neodactylodiscidae and Amphibdellatidae within the order Dactylogyridea (Polyonchoinea); the suborder Montchadskyellinea is raised to ordinal status and new suborders Neodactylodiscinea and Amphibdellatinea are proposed to reflect these origins. The Gyrodactylidea (Polyonchoinea) is supported by three synapomorphies and comprises the Gyrodactylidae, Anoplodiscidae, Tetraonchoididae and Bothitrematidae. The analysis supports recognition of the Polystomatoinea comprising Polystomatidae and Sphyranuridae. Evolutionary relationships within the Oligonchoinea indicate independent origins of three ordinal taxa, the Chimaericolidea (monotypic), Diclybothriidea (including Diclybothriidae and Hexabothriidae) and Mazocraeidea (with five suborders). The suborder Mazocraeinea comprises the Plectanocotylidae, Mazocraeidae and Mazoplectidae, and is characterised by two synapomorphies. The suborder Gastrocotylinea, characterised by presence of accessory sclerites in the haptoral sucker, is divided into two infraorders, the monotypic Anthocotylina infraorder novum and Gastrocotylina. Two superfamilies of the Gastrocotylina are recognised, the Protomicrocotyloidea and Gastrocotyloidea; the Pseudodiclidophoridae is considered incertae sedis within the Gastrocotylina. The suborder Discocotylinea comprises the Discocotylidae, Octomacridae and Diplozoidae and is supported by four synapomorphies. The monotypic Hexostomatinea suborder novum is proposed to reflect an independent origin of the Hexostomatidae within the Mazocraeidea. The terminal suborder Microcotylinea comprises four superfamilies, the Microcotyloidea, Allopyragraphoroidea, Diclidophoroidea and Pyragraphoroidea. The analysis supports incorporation of the Pterinotrematidae in the Pyragraphoroidea and rejection of the monotypic order Pterinotrematidea. The following taxa are also rejected for reasons of paraphyly and/or polyphyly: Articulonchoinea, Bothriocotylea, Eucotylea, Monoaxonematidea, Tetraonchidea, Gotocotyloidea, Anchorophoridae and Macrovalvitrematidae. The Sundanonchidae, Iagotrematidae and Microbothriidae were not included in the analysis because of lack of pertinent information regarding character states.  相似文献   

2.
This study focuses on the phylogenetic relationships within the Polyopisthocotylea and Monopisthocotylea, two groups that are often grouped within the monogeneans, a group of disputed paraphyly. Phylogenetic analyses were conducted with multiple outgroups chosen according to two hypotheses, a paraphyletic Monogenea or a monophyletic Monogenea, and with three methods, namely maximum parsimony, neighbour joining and maximum likelihood. Sequences used were from the partial domain C1, full domain D1, and partial domain C2 (550 nucleotides, 209 unambiguously aligned sites) from the 28S ribosomal RNA gene for 16 species of monopisthocotyleans, 26 polyopisthocotyleans including six polystomatids, and other Platyhelminthes (61 species in total, 27 new sequences). Results were similar with outgroups corresponding to the two hypotheses. Within the Monopisthocotylea, relationships were: ?[(Udonella, capsalids), monocotylids], (diplectanids, ancyrocephalids)?; each of these families was found to be monophyletic and their monophyly was supported by high bootstrap values in neighbour joining and maximum parsimony. Within the Polyopisthocotylea, the polystomatids were the sister-group of all others. Among the latter, Hexabothrium, parasite of chondrichthyans, was the most basal, and the mazocraeids, mainly parasites of clupeomorph teleosts, were the sister-groups of all other studied polyopisthocotyleans, these, mainly parasites of euteleosts, being polytomous.  相似文献   

3.
The Polystomatidae is the only family within the Monogenea to parasitize sarcopterygians such as the Australian lungfish Neoceratodus poisteri and freshwater tetrapods (lissamphibians and chelonians). We present a phylogeny based on partial 18S rDNA sequences of 26 species of Polystomatidae and three taxon from the infrasubclass Oligonchoinea (= Polyopisthocotylea) obtained from the gills of teleost fishes. The basal position of the polystome from lungfish within the Polystomatidae suggests that the family arose during the evolutionary transition between actinopterygians and sarcopterygians, ca. 425 million years (Myr) ago. The monophyly of the polystomatid lineages from chelonian and lissamphibian hosts, in addition to estimates of the divergence times, indicate that polystomatids from turtles radiated ca. 191 Myr ago, following a switch from an aquatic amniote presumed to be extinct to turtles, which diversified in the Upper Triassic. Within polystomatids from lissamphibians, we observe a polytomy of four lineages, namely caudatan, neobatrachian, pelobatid and pipid polystomatid lineages, which occurred ca. 246 Myr ago according to molecular divergence-time estimates. This suggests that the first polystomatids of amphibians originated during the evolution and diversification of lissamphibian orders and suborders ca. 250 Myr ago. Finally, we report a vicariance event between two major groups of neobatrachian polystomes, which is probably linked to the separation of South America from Africa ca. 100 Myr ago.  相似文献   

4.
We produced a molecular phylogeny of species within the order Strongylida (bursate nematodes) using the D1 and D2 domains of 28S rDNA, with 23 new sequences for each domain. A first analysis using Caenorhabditis elegans as an outgroup produced a tree with low resolution in which three taxa (Dictyocaulus filaria, Dictyocaulus noerneri, and Metastrongylus pudendotectus) showed highly divergent sequences. In a second analysis, these three species and C. elegans were removed and an Ancylostomatina, Bunostomum trigonocephalum, was chosen (on the basis of previous morphological analyses) as the outgroup for an analysis of the phylogenetic relationships between and within the Strongylina (strongyles) and Trichostrongylina (trichostrongyles). A very robust tree was obtained. The Trichostrongylina were monophyletic, but the Strongylina were paraphyletic, though this requires confirmation. Within the Trichostrongylina, the three superfamilies defined from morphological characters are confirmed, with the Trichostrongyloidea sister group to a clade including the Molineoidea and Heligmosomoidea. Within the Trichostrongyloidea, the Cooperiidae, Trichostrongylidae, and Haemonchidae were polytomous, the Haemonchinae were monophyletic, but the Ostertagiinae were paraphyletic. The sister-group relationships between Molineoidea and Heligmosomoidea were unsuspected from previous morphological analysis. No unequivocal morphological synapomorphy could be found for the grouping Molineoidea + Heligmosomoidea, but none was found which contradicted it.  相似文献   

5.
The Monogenea, which is divided into two clades, namely the Monopisthocotylea and Polyopisthocotylea, is a highly diversified group of platyhelminth parasites that infest mainly actinopterygian and chondrichthyan fishes but also, to a lesser extent, freshwater sarcopterygian hosts. Euzetrema knoepffleri Combes, 1965 (Monogenea: Iagotrematidae), which is specific to the salamander Euproctus montanus Savi, 1838 is among the rare monopisthocotylean parasites infesting tetrapod hosts. We sequenced the complete 18S rRNA gene of this parasite to infer its phylogenetic position within the Monopisthocotylea. Our results provide a new insight for coevolutionary scenarios between monopisthocotyleans and gnathostomatan hosts. Indeed, the basal position of E. knoepffleri within a subgroup of the Monopisthocotylea which comprises two clusters that both include parasites of the Actinopterygii and Chondrichthyes, suggests a very old association between the Iagotrematidae and tetrapods. Furthermore, if we take into account a recent view of Gnathostomata evolution where bony and cartilaginous fishes are regarded as a monophyletic group, it could be argued that the Iagotrematidae arose very early, during the fish–tetrapod transition, as did the Polystomatidae, the only monogenean family of the Polyopisthocotylea that infests sarcopterygian hosts.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 727–734.  相似文献   

6.
The phylogenetic relationships of some angiosperm families have remained enigmatic despite broad phylogenetic analyses of rbcL sequences. One example is the aquatic family Podostemaceae, the relationships of which have long been controversial because of major morphological modifications associated with their aquatic habit. Podostemaceae have variously been associated with Piperaceae, Nepenthaceae, Polygonaceae, Caryophyllaceae, Scrophulariaceae, Rosaceae, Crassulaceae, and Saxifragaceae. Two recent analyses of rbcL sequences suggest a possible sister-group relationship of Podostemaceae to Crassulaceae (Saxifragales). However, the branch leading to Podostemaceae was long, and use of different outgroups resulted in alternative placements. We explored the phylogenetic relationships of Podostemaceae using 18S rDNA sequences and a combined rbcL + 18S rDNA matrix representing over 250 angiosperms. In analyses based on 18S rDNA data, Podostemaceae are not characterized by a long branch; the family consistently appears as part of a Malpighiales clade that also includes Malpighiaceae, Turneraceae, Passifloraceae, Salicaceae, Euphorbiaceae, Violaceae, Linaceae, Chrysobalanaceae, Trigoniaceae, Humiriaceae, and Ochnaceae. Phylogenetic analyses based on a combined 18S rDNA + rbcL data set (223 ingroup taxa) with basal angiosperms as the outgroup also suggest that Podostemaceae are part of a Malpighiales clade. These searches swapped to completion, and the shortest trees showed enhanced resolution and increased internal support compared to those based on 18S rDNA or rbcL alone. However, when Gnetales are used as the outgroup, Podostemaceae appear with members of the nitrogen fixing clade (e.g., Elaeagnaceae, Ulmaceae, Rhamnaceae, Cannabaceae, Moraceae, and Urticaceae). None of the relationships suggested here for Podostemaceae receives strong bootstrap support. Our analyses indicate that Podostemaceae are not closely allied with Crassulaceae or with other members of the Saxifragales clade; their closest relatives, although still uncertain, appear to lie elsewhere in the rosids.  相似文献   

7.
18S rDNA phylogeny of Clitellata (Annelida)   总被引:8,自引:0,他引:8  
The phylogeny of Clitellata was analysed using 18S rDNA sequences of a selection of species representing Hirudinida, Acanthobdellida, Branchiobdellida and 10 oligochaetous families. Eleven new 18S sequences of Capilloventridae (one), Haplotaxidae (one), Propappidae (one), Enchytraeidae (two), Lumbricidae (one), Almidae (one), Megascolecidae (two), Lumbriculidae (one), and Phreodrilidae (one) are reported and aligned together with corresponding sequences of 28 previously studied clitellate taxa. Twelve polychaete species were used as an outgroup. The analysis supports an earlier hypothesis based on morphological features that Capilloventridae represents a basal clade of Clitellata; in the 18S tree it shows a sister-group relationship to all other clitellates. The remaining clitellate taxa form a basal dichotomy, one clade containing Tubificidae (including the former 'Naididae'), Phreodrilidae, Haplotaxidae, and Propappidae, the other clade with two subgroups: (1) Lumbriculidae together with all leech-like taxa (Acanthobdellida, Branchiobdellida and Hirudinida), and (2) Enchytraeidae together with a monophyletic group of all earthworms included in the study (Lumbricidae, Almidae and Megascolecidae). These earthworms are members of the taxon Crassiclitellata, the monophyly of which is thus supported by the data. The tree also shows support for the hypothesis that the first clitellates were aquatic. The position of the single species representing Haplotaxidae is not as basal as could have been expected from earlier morphology-based conclusions about the ancestral status of this family. However, if Haplotaxidae is indeed a paraphyletic assemblage of relict taxa, a higher number of representatives will be needed to resolve its exact relationships with the other clitellates.  相似文献   

8.
连香树科及其近缘植物matK序列分析和系统学意义   总被引:4,自引:1,他引:4  
测定和分析了连香树科(Cercidiphyllaeeae)、交让木科(Daplmiphyllaceac)、金缕梅科(Hamamelidaceae)代表植物的叶绿体marK序列(5′端31bps除外),以木兰属作为外类群,应用邻接法构建分子系统树,结果表明:连香树科与水青树科的亲缘关系较远。连香树科、交让木科和金缕梅科形成了一个自展数据支持率(bootstrap)为100%的单系类群,其中金缕梅科枫香属(Liquidambar)、红花荷属(Rhodoleia)和金缕梅属(Hamamelis)虽构成了一个单系类群,但自展数据支持率仅为68%;连香树科与交让木科构成的单系分支自展数据支持率仅为53%。由于连香树科、交让木科、金缕梅科之间的进化距离相当短,表明这3个科之间亲缘关系密切,内部分支的自展数据支持率不高,表明它们之间准确的亲缘关系有待进一步研究。本研究结果与rbcL、aptB、18S rDNA序列分析结果相似,但自展数据支持率更高,表明marK序列分析可应用于较高等级分类群系统发育关系的研究。  相似文献   

9.
Hox genes form a multigenic family that play a fundamental role during the early stages of development. They are organised in a single cluster and share a 60 amino acid conserved sequence that corresponds to the DNA binding domain, i.e. the homeodomain. Sequence conservation in this region has allowed investigators to explore Hox diversity in the metazoan lineages. Within parasitic flatworms only homeobox sequences of parasite species from the Cestoda and Digenea have been reported. In the present study we surveyed species of the Polyopisthocotylea (Monogenea) in order to clarify Hox identification and diversification processes in the neodermatan lineage. From cloning of degenerative PCR products of the central region of the homeobox, we report one ParaHox and 25 new Hox sequences from 10 species of the Polystomatidae and one species of the Diclidophoridae, which extend Hox gene diversity from 46 to 72 within Neodermata. Hox sequences from the Polyopisthocotylea were annotated and classified from sequence alignments and Bayesian inferences of 178 Hox, ParaHox and related gene families recovered from all available parasitic platyhelminths and other bilaterian taxa. Our results are discussed in the light of the recent Hox evolutionary schemes. They may provide new perspectives to study the transition from turbellarians to parasitic flatworms with complex life-cycles and outline the first steps for evolutionary developmental biological approaches within platyhelminth parasites.  相似文献   

10.
Entomopathogenic nematodes in Steinernema, together with their symbiont bacteria Xenorhabdus, are obligate and lethal parasites of insects that can provide effective biological control of some important lepidopteran, dipteran, and coleopteran pests of commercial crops. Phylogenetic relationships among 21 Steinernema species were estimated using 28S ribosomal DNA (rDNA) sequences and morphological characters. Sequences of the rDNA internal transcribed spacers were obtained to provide additional molecular characters to resolve relationships among Steinernema carpocapsae, Steinernema scapterisci, Steinernema siamkavai, and Steinernema monticolum. Four equally parsimonious trees resulted from combined analysis of 28S sequences and 22 morphological characters. Clades inferred from analyses of molecular sequences and combined datasets were primarily reliably supported as assessed by bootstrap resampling, whereas those inferred from morphological data alone were not. Although partially consistent with some traditional expectations and previous phylogenetic studies, the hypotheses inferred from molecular evidence, and those from combined analysis of morphological and molecular data, provide a new and comprehensive framework for evaluating character evolution of steinernematids. Interpretation of morphological character evolution on 6 trees inferred from sequence data and combined evidence suggests that many structural features of these nematodes are highly homoplastic, and that some structures previously used to hypothesize relationships represent ancestral character states.  相似文献   

11.
Phylogeny of the Platyhelminthes and the evolution of parasitism   总被引:4,自引:0,他引:4  
Robust phylogenies provide the basis for interpreting biological variation in the light of evolution. Homologous features provide phylogenetically informative characters whereas homoplasious characters provide phylogenetic noise. Both provide evolutionary signal. We have constructed molecular and morphologically based phylogenies of the phylum Platyhelminthes using a recently revised morphological character matrix and complete 18S and two partial 28S rRNA gene sequences in order to evaluate the emergence and subsequent divergence of parasitic forms. In total we examine 65 morphological characters, 97 18S rDNA, 41 Dl domain 28S rDNA, and 49 D3-D6 domain 28S rDNA sequences. For the molecular data there were 748, 132 and 249 phylogenetically informative sites for the 18S, Dl and D3-D6 28S rDNA data sets respectively. Morphological and molecular phylogenetic solutions are incongruent but not incompatible, and using the principles of conditional combination (18S rDNA + morphology passing Templeton's test) they demonstrate: a single and relatively early origin for the parasitic Neodermata (including the cestodes, trematodes and monogeneans); sister-group status between the cestodes and monogeneans, and between these taxa and the trematodes (digeneans and aspidogastreans). The sister-group to the Neodermata is likely to be a large clade of neoophoran turbellarians, based on combined evidence, or a clade consisting of the Fecampiid + Urastomid turbellarians, based on morphological evidence alone. The combined evidence solution for the phylogeny of fiatworms based on 18S rDNA and morphology is used to interpret morphological and life-history data and to support a model for the evolution and radiation of neodermatan parasites in the group.  相似文献   

12.
Synopsis A subgenomic library created from genomic DNA of Latimeria chalumnae was screened for 28S ribosomal RNA (rRNA) clones. The resulting clone was subcloned into a plasmid vector, and over 2 kb of the 28S rRNA region was sequenced. Sequences of 28S rRNA genes were also obtained for Rhineura floridana (Squamata), Cyprinella lutrensis (Actinopterygii), and Lampetra aepyptera (Petromyzontiformes) by cloning and/or amplification by the polymerase chain reaction. The 28S rDNA sequences were aligned for all the above species as well as for the previously published 28S rDNA sequences of the genera Mus, Rattus, and Homo (Mammalia), Xenopus (Amphibia), and Drosophila (Insecta). Phylogenetic analysis of these species (using both the insect and lamprey sequences for outgroup comparison, or using only the lamprey sequence in the outgroup) produced a single optimal solution: (Outgroup(Cyprinella(Latimeria(Xenopus(Rhineura(Homo(Rattus(Mus)))))))). Bootstrap analysis indicated that the placement of L. chalumnae on this tree was significant at p < 0.01. Previously published alternative hypotheses of relationships of Latimeria require at least 19 additional steps compared to the optimal solution; the rDNA data are sufficient to reject the hypotheses that place Latimeria in groups other than the sarcopterygians.  相似文献   

13.
Mishima M  Ohmido N  Fukui K  Yahara T 《Chromosoma》2002,110(8):550-558
To elucidate the evolutionary dynamics of rDNA site number in polyploid plants, we determined 5S and 18S-5.8S-26S rDNA sites for ten species of Sanguisorba (2n=14, 28, 56) and a single species of each of three outgroup genera, Agrimonia (2n=28), Rosa (2n=14), and Rubus (2n=14) by the fluorescence in situ hybridization (FISH) method. We also estimated phylogenetic relationships among these species using matK chloroplast DNA (cpDNA) sequences, and reconstructed the evolutionary history of rDNA site number based on the maximum parsimony method. The 2n=14 and 2n=28 plants of all genera except Rosa carried two 5S rDNA sites, whereas Rosa and 2n=56 plants carried four sites. The 2n=14 plants had two 18S-5.8S-26S rDNA sites, whereas Sanguisorba annua and 2n=28 plants had four or six sites. Phylogenetic analysis showed that polyploidization from 2n=14 to 2n=28 has occurred once or three times in Sanguisorba and Agrimonia. The 5S rDNA sites duplicated during each ancestral polyploidization were evidently lost after each polyploidization. However, the duplicated 18S-5.8S-26S rDNA sites were all conserved after each polyploidization. Thus, the duplicated 5S rDNA sites tend to have been eliminated, whereas those of 18S-5.8S-26S rDNA tend to have been conserved in Sanguisorba. In the most parsimonious hypothesis, 2n=14 in S. annua is a secondary, putatively dysploid state, reduced from 2n=28.  相似文献   

14.
Parergodrilidae and Hrabeiella periglandulata are Annelida showing different combinations of clitellate-like and aclitellate characters. Similarities between both of these taxa and Clitellata have widely been regarded as the result of convergent evolution due to similar selection pressures. The position of the three taxa in the phylogenetic system of Annelida is still in debate. However, in analyses based on 18S rDNA sequences a close relationship of Parergodrilidae with Orbiniidae and Questidae was suggested. To infer their phylogeny the sequences of the 28S rDNA and of the cytochrome oxidase I (COI) gene of Stygocapitella subterranea , Parergodrilus heideri and H. periglandulata were determined. The data were extended by sequences of various species including species from Clitellata and Orbiniidae. Prior to tree reconstruction the dataset was analysed in detail for phylogenetic content by applying a sliding window analysis, a likelihood mapping and Modeltest V.3.04. Subsequently, generalized parsimony and maximum likelihood methods were employed. Clade robustness was estimated by bootstrapping. In addition, combined analyses of the sequences of 18S rDNA and 28S rDNA as well as of 18S rDNA, 28S rDNA and COI were performed. The combination of the data of the two structure genes and a mitochondrial gene improved the resolution obtained with the single datasets slightly. These analyses support a close relationship of Parergodrilidae and Orbiniidae but cannot resolve the position of H. periglandulata . In every analysis Clitellata cluster within 'Polychaeta', confirming previous investigations.  相似文献   

15.
A molecular phylogeny was inferred from newly obtained partial 28S rRNA gene sequences of Sundanonchus micropeltis (Sundanonchidae), Thaparocleidus siamensis and Cichlidogyrus sp. (Ancyrocephalidae), and other already available sequences. Although sequences are lacking for several families, the following phylogenetic relationships could be inferred. The Diplectanidae were the sister-group to a clade including Sundanonchus and the Ancyrocephalidae; Sundanonchus was the sister-group to the Ancyrocephalidae, therefore suggesting validity of the Sundanonchidae, which include this single genus; within the Ancyrocephalidae, Thaparocleidus (Ancylodiscoidinae) was the sister-group to the four other taxa, though with relatively low support, suggesting that the Ancylodiscoidinae are the sister-group to the Ancyrocephalinae.  相似文献   

16.
乔枫  陈振宁  陈志  谢惠春  尚军  柯君 《昆虫知识》2014,51(1):127-138
【目的】为了探讨粉蝶科Pieridae 7属的系统进化关系。【方法】基于线粒体COⅠ(609 bp)和Cytb(393 bp)基因部分序列,以眼蝶科的2个物种为外类群,运用UPGMA和ME法重建分子系统树。【结果】联合基因构建的分子系统树显示:外群牧女珍眼蝶Coenonympha amaryllis(Cramer)和阿芬眼蝶Aphantopus hyperantu(Linnaeus)构成一独立支系,可以作为外群;云粉蝶属和粉蝶属姊妹关系构成一分支,亲缘关系较近;襟粉蝶属与钩粉蝶属形成姐妹关系,亲缘关系较近。【结论】成功重建了粉蝶科7属的系统进化关系。  相似文献   

17.
The phylogenetic relationships of the families Polystomatidae and Sphyranuridae (subclass Polystomatoinea) within tetrapod monogenean parasites were investigated using partial 18S rDNA sequences. About 600 nucleotides of 11 species were sequenced, including 7 species of the most common subfamilies of Polystomatidae found in anurans and turtles, 1 species of the family Sphyranuridae parasitizing exclusively urodelans, and 3 species of the subclass Oligonchoinea infesting teleostean fishes. The phylogenetic analyses were performed using three reconstruction methods: neighbor-joining, maximum-parsimony, and maximum-likelihood. Polystomatoineans but not polystomatids were shown to be monophyletic. Within the polystomatoineans there are two clades: one includes the amphibian monogeneans (anuran polystomatids and urodelan sphyranurids) and the other includes the turtle polystomatids. Polystomatoineans may have coevolved with amphibian hosts, and an ancestral "polystome" dispersed at least 200 million years ago, either from the basal stem of lissamphibians or from an anuran ancestral stock, to freshwater turtles. Furthermore, the urodelan genus Sphyranura, initially assigned to the family Sphyranuridae on the basis of morphological and ontogenetic evidence, is clearly nested within polystomatids, suggesting that its systematic status must be revised. This supports recent findings which argue that species of the family Sphyranuridae may be paedomorphic parasites exclusively infesting neotenic mudpuppies.  相似文献   

18.
The genus Diplozoon (Platyhelminth) exhibits one of the most striking modes of reproduction. Adults reproduce after the permanent fusion of two larval hermaphrodites, which play a symmetrical role. The Diplozoidae are also exceptional among the Monogenea Polyopisthocotylea for two other reasons. They represent the only group really diversified on continental freshwater fishes; however, this diversification is difficult to evaluate since few morphoanatomical criteria are available to distinguish species and their host specificity is atypically variable among the Monogenea. For the first time in the Diplozoidae, the problems of species definition and of host specificity are examined using molecular tools. Two ribosomal markers (ITS2 and 28S rDNA (D1)) have been sequenced in five Diplozoidae, interacting with five Cyprinidae host species: the corresponding parasite-host systems have been well characterised, revealing some contrasting situations in the relations between Diplozoidae and Cyprinidae. Some species are effectively strictly host specific, but Diplozoon scardinii initially considered as a specific species on Scardinius erythrophtalmus and D. homoion on Rutilus rutilus are proposed to be a single species on the basis of their identical ITS2 and 28S rDNA sequences. On the same basis we proposed that D. paradoxum is able to parasitize two fish species, Abramis brama and Blicca bjoerkna, despite the morphological differences observed between the two xenopopulations. Phylogenetic relationships among Diplozoidae species were estimated with ITS2 sequences while cytochrome b sequences were used for their fish hosts. Finally, the comparison between these two molecular phylogenies seems to exhibit the phenomenon of cospeciation.  相似文献   

19.
The notothenioids are an Antarctic suborder of perciform fishes to which increasing interest is being devoted. To investigate their origin, one must address two questions. First, are Bovichtidae (Bovichtus, Cottoperca, Pseudaphritis), the sister-group of the rest of the suborder, monophyletic ? Secondly, what is the sister-group of the Notothenioidei ? These questions were addressed by determining the complete nucleotide sequence of the D2 and D8 domains of 28S rDNA (759 sites, among which 158 informative for parsimony), for 6 notothenioids and a collection of 6 outgroup taxa including the Trachinoidei and Zoarcoidei. Different outgroups (or combinations of outgroups) and different weighting schemes support the inference that Pseudaphritis is closer to the rest of the Notothenioidei than Cottoperca and Bovichtus are. Relationships of Cottoperca and Bovichtus remain unclear with respect to outgroups. Our molecular data therefore clearly show that the Bovichtidae are paraphyletic, but their relationships are not those suggested by Balushkin in 1992. Our data provide no indication of the monophyly of the Notothenioidei in its classical sense. Most of the homoplasy is due to outgroup sequences and interrelationships of outgroups are unresolved. Some morphological synapomorphies shared by Pseudaphritis and the rest of the non-bovichtid Notothenioidei are proposed, including some that were identified by Voskoboynikova in 1993.  相似文献   

20.
The species diversity of the phylum Rotifera has been largely studied on the basis of morphological characters. However, cladistic relationships within this group are poorly resolved due to extensive homoplasy in morphological traits, substantial phenotypic plasticity and a poor fossil record. We undertook this study to determine if a phylogeny based on partial 18S rDNA, which included the helix E23 of 18S rDNA sequence, was concordant with established taxonomic relationships within the order Ploimida (class: Monogononta). We also estimated the level of polymorphism within clones and populations of Ploimida 'species'. Finally, we included the Cycliophora Symbion pandora as outgroup and the variable helix E23 region to examine the influence of their signal on the evolutionary relationships among Acanthocephala, Bdelloidea and Ploimida. Phylogenetic reconstruction was performed using maximum parsimony, neighbour joining and maximum likelihood methods. We found 1) that morphologically similar Ploimida 'species' show vastly different 18S E23 rDNA sequences; 2) inclusion of the helix E23 of 18S rDNA and its secondary structure analysis results in better resolution of family level relationships within the Ploimida; 3) an impact of Symbion pandora as an outgroup with inclusion of the helix E23 on the relationships between the Rotifera and the Acanthocephala; and 4) partial incongruence and differential substitution rate between conserved region and helix E23 region of the 18S rDNA gene depending on the taxomic group studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号