首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rat heart plasma membrane preparation isolated in a sucrose medium and some of its enzymatic properties have been investigated.It has been shown that a rat heart plasma membrane fraction contains high creatine phosphokinase activity which can not be diminished by repeated washing with sucrose solution. Creatine phosphokinase extracted from a plasma membrane fraction with potassium chloride and 0.01% deoxycholate solution is electrophoretically identical to MM isoenzyme of creatine phosphokinase. Under the conditions where (Na+,K+)-ATPase is activated by addition of Na+,K+ and MgATP, creatine phosphokinase of plasma membrane fraction is able to maintain a low ADP concentration in the medium if creatine phosphate is present. The rate of creatine release is dependent upon MgATP concentration in accordance with the kinetic parameters of the (Na+,K+)-ATPase and is significantly inhibited by ouabain (0.5 mM). The rate of creatine release is also dependent on creatine phosphate concentration in conformance with the kinetic parameters of MM isozyme of creatine phosphokinase,It is concluded that in intact heart cells the plasma membrane creatine phosphokinase may ensure effective utilization of creatine phosphate for immediate rephosphorylation of ADP produced in the (Na+,K+)-ATPase reaction.  相似文献   

2.
The functional role of particulate MM isozyme of creatine phosphokinase (CPK) bound to heart myofibrils has been studied. It has been shown that in the presence of heart myofibrils and MgATP creatine phosphate can be used to rephosphorylate ADP formed in the MgATPase reaction. The rate of creatine phosphate splitting is determined by the kinetic properties of myofibrillar MgATPase and by the kinetic parameters of myofibrillar CPK. It has been found that a purified heart plasma membrane preparation contains high CPK activity. CPK isozyme bound to plasma membrane of heart cells is identical to MM isozyme of CPK and is able to rephosphorylate effectively ADP, formed in the (Na K)ATPase reaction. The rate of creatine phosphate splitting in these coupled reactions is sensitive to ouabain and is determined by the kinetic parameters both of the (Na, K)ATPase and plasma membrane CPK. The results obtained indicate the important role of myofibrillar and plasma membrane CPK in the intracellular energy transport processes.  相似文献   

3.
An investigation of isolated and purified heart sarcoplasmic reticulum performed in the current study indicates the presence of significant creatine phosphokinase (CPK) activity in this preparation. The localization of CPK on the membrane of sarcoplasmic reticulum has been revealed also by an electron microscopic histochemical method. Under the conditions of the Ca(2+)-ATPase reaction in the presence of creatine phosphate, the release of creatine into the reaction medium is observed, the rate of the latter process being dependent on the MgATP concentration in accordance with the kinetic parameters of the Ca2+-ATPase reaction. CPK localized on the reticular membrane is able to maintain the high rate of calcium consumption by the sarcoplasmic reticulum vesicles. The results obtained demonstrate the close functional coupling between CPK and Ca2+-ATPase in the membrane of sarcoplasmic reticulum and indicate the important functional role of CPK in supplying energy for the Ca(2+)-ATPase reaction and ion transport across the membrane of heart sarcoplasmic reticulum.  相似文献   

4.
The functional role of creatine phosphokinase (CPK) in the process of energy supply for the Ca2+-ATPase reaction and ion transport across the membrane of heart sarcoplasmic reticulum (SR) has been studied. It has been shown that isolated and purified preparations of heart SR contain significant activity of CPK. The localization of CPK on the membrane of SR has been revealed also by an electron microscopic histochemical method. Under conditions of the Ca+-ATPase reaction in the presence of creatine phosphate the release of creatine into the reaction medium is observed, the rate of the latter process being dependent upon the MgATP concentration in accordance with the kinetic parameters of the Ca2+-ATPase reaction. CPK localized on the SR membrane is able to maintain higher rate of calcium uptake by SR vesicles, as compared to that with added ATP-regenerating system. The results obtained demonstrate the close functional coupling between CPK and Ca2+-ATPase in the membrane of SR.  相似文献   

5.
Plasma membranes were isolated from rat liver mainly under isotonic conditions. As marker enzymes for the plasma membrane, 5'-nucleotidase and (Na+ + K+)-ATPase were used. The yield of plasma membrane was 0.6-0.9 mg protein per g wet weight of liver. The recovery of 5'-nucleotidase and (Na+ +K+)-ATPase activity was 18 and 48% of the total activity of the whole-liver homogenate, respectively. Judged from the activity of glucose-6-phosphatase and succinate dehydrogenase in the plasma membrane, and from the electron microscopic observation of it, the contamination by microsomes and mitochondria was very low. A further homogenization of the plasma membrane yielded two fractions, the light and heavy fractions, in a discontinuous sucrose gradient centrifugation. The light fraction showed higher specific activities of 5'-nucleotidase, alkaline phosphatase, (Na+ +K+)-ATPase and Mg2+-ATPase, whereas the heavy one showed a higher specific activity of adenylate cyclase. Ligation of the bile duct for 48 h decreased the specific activities of (Na2+ +K+)-ATPase and Mg2+-ATPase in the light fraction, whereas it had no significant influence on the activities of these enzymes in the heavy fraction. The specific activity of alkaline phosphate was elevated in both fractions by the obstruction of the bile flow. Electron microscopy on sections of the plasma membrane subfractions showed that the light fraction consisted of vesicles of various sizes and that the heavy fractions contained membrane sheets and paired membrane strips connected by junctional complexes, as well as vesicles. The origin of these two fractions is discussed and it is suggested that the light fraction was derived from the bile front of the liver cell surface and the heavy one contained the blood front and the lateral surface of it.  相似文献   

6.
In simple epithelia, the distribution of ion transporting proteins between the apical or basal-lateral domains of the plasma membrane is important for determining directions of vectorial ion transport across the epithelium. In the choroid plexus, Na+,K(+)-ATPase is localized to the apical plasma membrane domain where it regulates sodium secretion and production of cerebrospinal fluid; in contrast, Na+,K(+)-ATPase is localized to the basal-lateral membrane of cells in the kidney nephron where it regulates ion and solute reabsorption. The mechanisms involved in restricting Na+,K(+)-ATPase distribution to different membrane domains in these simple epithelia are poorly understood. Previous studies have indicated a role for E-cadherin mediated cell-cell adhesion and membrane-cytoskeleton (ankyrin and fodrin) assembly in regulating Na+,K(+)-ATPase distribution in absorptive kidney epithelial cells. Confocal immunofluorescence microscopy reveals that in chicken and rat choroid plexus epithelium, fodrin, and ankyrin colocalize with Na+,K(+)-ATPase at the apical plasma membrane, but fodrin, ankyrin, and adducin also localize at the lateral plasma membrane where Na+,K(+)- ATPase is absent. Biochemical analysis shows that fodrin, ankyrin, and Na+,K(+)-ATPase are relatively resistant to extraction from cells in buffers containing Triton X-100. The fractions of Na+,K(+)-ATPase, fodrin, and ankyrin that are extracted from cells cosediment in sucrose gradients at approximately 10.5 S. Further separation of the 10.5 S peak of proteins by electrophoresis in nondenaturing polyacrylamide gels revealed that fodrin, ankyrin, and Na+,K(+)-ATPase comigrate, indicating that these proteins are in a high molecular weight complex similar to that found previously in kidney epithelial cells. In contrast, the anion exchanger (AE2), a marker protein of the basal- lateral plasma membrane in the choroid plexus, did not cosediment in sucrose gradients or comigrate in nondenaturing polyacrylamide gels with the complex of Na+,K(+)-ATPase, ankyrin, and fodrin. Ca(++)- dependent cell adhesion molecules (cadherins) were detected at lateral membranes of the choroid plexus epithelium and colocalized with a distinct fraction of ankyrin, fodrin, and adducin. Cadherins did not colocalize with Na+,K(+)-ATPase and were absent from the apical membrane. The fraction of cadherins that was extracted with buffers containing Triton X-100 cosedimented with ankyrin and fodrin in sucrose gradients and comigrated in nondenaturing gels with ankyrin and fodrin in a high molecular weight complex. Since a previous study showed that E-cadherin is an instructive inducer of Na+,K(+)-ATPase distribution, we examined protein distributions in fibroblasts transfected with B- cadherin, a prominent cadherin expressed in the choroid plexus epithelium.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The aim of this work was to determine if the total (Na+ + K+)-ATPase of the plasma membrane of a cell population could be assayed without cell homogenization and partial purification of the enzyme. Several types of intact cells that were placed in an assay medium containing MgATP, Na+, and K+ hydrolyzed little or none of the added ATP. When the cells were pretreated with the ionophore alamethicin and then placed in the assay medium, they exhibited an ouabain-sensitive (Na+ + K+)-ATPase activity that increased and reached a limiting value with increasing alamethicin concentration. Since alamethicin did not increase the activity of the purified membrane-bound (Na+ + K+)-ATPase, its effects on the intact cells are probably due to the formation of large channels within the plasma membrane that allow the free access of the components of the assay medium to the intracellular domains of (Na+ + K+)-ATPase. Utilizing whole cells treated with alamethicin, total (Na+ + K+)-ATPase activity was determined in clonal pheochromocytoma cells (PC12), neuroblastoma x glioma hybrid cells (NG108-15), and myocytes isolated from adult and neonatal rat hearts. With the use of this whole-cell assay, the ouabain sensitivities of the enzymes in adult and neonatal rat heart myocytes were determined and found to be the same as those that have been determined with the use of partially purified enzymes.  相似文献   

8.
Kinetics and inhibition of Na(+)/K(+)-ATPase and Mg(2+)-ATPase activity from rat synaptic plasma membrane (SPM), by separate and simultaneous exposure to transition (Cu(2+), Zn(2+), Fe(2+) and Co(2+)) and heavy metals (Hg(2+) and Pb(2+)) ions were studied. All investigated metals produced a larger maximum inhibition of Na(+)/K(+)-ATPase than Mg(2+)-ATPase activity. The free concentrations of the key species (inhibitor, MgATP(2-), MeATP(2-)) in the medium assay were calculated and discussed. Simultaneous exposure to the combinations Cu(2+)/Fe(2+) or Hg(2+)/Pb(2+) caused additive inhibition, while Cu(2+)/Zn(2+) or Fe(2+)/Zn(2+) inhibited Na(+)/K(+)-ATPase activity synergistically (i.e., greater than the sum metal-induced inhibition assayed separately). Simultaneous exposure to Cu(2+)/Fe(2+) or Cu(2+)/Zn(2+) inhibited Mg(2+)-ATPase activity synergistically, while Hg(2+)/Pb(2+) or Fe(2+)/Zn(2+) induced antagonistic inhibition of this enzyme. Kinetic analysis showed that all investigated metals inhibited Na(+)/K(+)-ATPase activity by reducing the maximum velocities (V(max)) rather than the apparent affinity (Km) for substrate MgATP(2-), implying the noncompetitive nature of the inhibition. The incomplete inhibition of Mg(2+)-ATPase activity by Zn(2+), Fe(2+) and Co(2+) as well as kinetic analysis indicated two distinct Mg(2+)-ATPase subtypes activated in the presence of low and high MgATP(2-) concentration. EDTA, L-cysteine and gluthathione (GSH) prevented metal ion-induced inhibition of Na(+)/K(+)-ATPase with various potencies. Furthermore, these ligands also reversed Na(+)/K(+)-ATPase activity inhibited by transition metals in a concentration-dependent manner, but a recovery effect by any ligand on Hg(2+)-induced inhibition was not obtained.  相似文献   

9.
Platelet aggregation was decreased under action of ADP and collagen in patients with myelodysplastic syndrome. The decrease in aggregation started from 3-rd minutes and decreased in 4 and 5 minutes after action of ADP. The study of Ca(2+)-ATPase and Na+, K(+)-ATPase membrane activities showed the decrease in Ca(2+)-ATPase and increase in Na+, K(+)-ATPase activity in the patients with myelodysplastic syndrome.  相似文献   

10.
1. The kinetic properties of mitochondrial creatine phosphokinase (Km for all substrates and maximal rates of the forward and reverse reaction) have been studied. Since (a) Km value for MgADP- (0.05 mM) and creatine phosphate (0.5 mM) are significantly lower than Km for MgATP2- (0.7 mM) and creatine (5.0 mM) and (b) maximal rate of the reverse reaction (creatine phosphate + ADP leads to ATP + creatine) equal to 3.5 mumol times min-1 times mg-1 is essentially higher than maximal rate of the forward reaction (0.8 mumol times min-1 times mg-1), ATP synthesis from ADP and creatine phosphate is kinetically preferable over the forward reaction. 2. A possible regulatory role of Mg2+ ions in the creatine phosphokinase reaction has been tested. It has been shown that in the presence of all substrates and products of the reaction the ratio of the rates of forward and reverse reactions can be effectively regulated by the concentration of Mg2+ ions. At limited Mg2+ concentrations creatine phosphate is preferably synthesized while at high Mg2+ concentrations (more ATP in the reaction medium) ATP synthesis takes place. 3. The kinetic (mathematical) model of the mitochondrial creatine phosphokinase reaction has been developed. This model accounts for the existence of a variety of molecular forms of adenine nucleotides in solution and the formation of their complexes with magnesium. It is based on the assumption that the mitochondrial creatine phosphokinase reactions mechanism is analogous to that for soluble isoenzymes. 4. The dependence of the overall rate of the creatine phosphokinase reaction on the concentration of total Mg2+ ions calculated from the kinetic model quantitatively correlates with the experimentally determined dependence through a wide range of substrates (ATP, ADP, creatine and creatine phosphate) concentration. The analysis of the kinetic model demonstrates that the observed regulatory effect of Mg2+ on the overall reaction rate can be expained by (a) the sigmoidal variation in the concentration of the MgADP- complex resulting from the competition between ATP AND ADP for Mg2+ and (b) the high affinity of the enzyme to MgADP-. 5. The results predicted by the model for the behavior of mitochondrial creatine phosphokinase under conditions of oxidative phosphorylation point to an intimate functional interaction of mitochondrial creatine phosphokinase and ATP-ADP translocase.  相似文献   

11.
Acetyl phosphate, as a substrate of (Na+ + K+)-ATPase, was further characterized by comparing its effects with those of ATP on some total and partial reactions carried out by the enzyme. In the absence of Mg2+ acetyl phosphate could not induce disocclusion (release) of Rb+ from E2(Rb); nor did it affect the acceleration of Rb+ release by non-limiting concentrations of ADP. In K+-free solutions and at pH 7.4 sodium ions were essential for ATP hydrolysis by (Na+ + K+)-ATPase; when acetyl phosphate was the substrate a hydrolysis (inhibited by ouabain) was observed in the presence and absence of Na+. In liposomes with (Na+ + K+)-ATPase incorporated and exposed to extravesicular (intracellular) Na+, acetyl phosphate could sustain a ouabain-sensitive Rb+ efflux; the levels of that flux were similar to those obtained with micromolar concentrations of ATP. When the liposomes were incubated in the absence of extravesicular Na+ a ouabain-sensitive Rb+ efflux could not be detected with either substrate. Native (Na+ + K+)-ATPase was phosphorylated at 0 degrees C in the presence of NaCl (50 mM for ATP and 10 mM for acetyl phosphate); after phosphorylation had been stopped by simultaneous addition of excess trans-1,2-diaminocyclohexane-N,N,N',N' tetraacetic acid and 1 M NaCl net synthesis of ATP by addition of ADP was obtained with both phosphoenzymes. The present results show that acetyl phosphate can fuel the overall cycle of cation translocation by (Na+ + K+)-ATPase acting only at the catalytic substrate site; this takes place via the formation of phosphorylated intermediates which can lead to ATP synthesis in a way which is indistinguishable from that obtained with ATP.  相似文献   

12.
Mitochondria from Vigna sinensis (L.) Savi cv. Pitiuba contain the polyamines spermine, spermidine, and putrescine. The membrane-bound F1-ATPase from mitochondria of Vigna sinensis is activated by these polyamines at physiological concentrations. The effect of polyamines on the membrane-bound of F1-ATPase is dependent on the concentrations of Na+, K+, MgATP, and Mg2+. Excess Na+ or K+ prevents the activation of the membrane-bound F1-ATPase by spermine and spermidine, but not by putrescine. The most pronounced effects were observed at low MgATP concentrations in the absence of Na+ and K+. At [MgATP] = 0.08 mM, spermine activation of the membrane-bound F1-ATPase was 130%. The membrane-bound F1-ATPase is slightly activated by Mg2+ at lower concentrations and strongly inhibited by Mg2+ at higher concentrations. Activation as well as inhibition is dependent on the substrate MgATP concentration. Although there is competition between Mg2+ and MgATP, the binding sites for these two ligands are different (pseudocompetitive inhibition). The inhibition of the membrane-bound F1-ATPase can be reversed by polyamines. There is evidence that the binding sites for Mg2+ and polyamines are identical. The F1-ATPase detached from the membrane is neither activated by polyamines nor inhibited by Mg2+. Therefore, the binding sites for Mg2+ and polyamines seem to be localized on the membrane.  相似文献   

13.
The ontogenetic development of the rat brain cortex Na+, K(+)-ATPase and Mg(2+)-ATPase activities under female ethanol (20% v/v) consumption in the third trimester of gestation or in postpartum period was studied. The weight characteristics (body, whole brain and cortex weight) of viable rats on the first day after birth were not affected critically by prenatal alcohol exposure. It is revealed that the delay of postnatal rat growth 10 days after birth under translactational ethanol consumption is accompanied by reliable decrease of plasma membrane Na+, K(+)-ATPase activity in comparison with control animals. The comparable decrease in activities was observed for the ouabain-sensitive and ouabain-resistant Na+, K(+)-ATPase components (isoform species). From the 20th day the differences in enzyme activity were not revealed. Mg(2+)-ATPase increases in postnatal period independent of Na+, K(+)-ATPase activity and it remains insensitive to postnatal maternal alcohol intake. It is suggested, the first ten day period of lactation is critical for ethanol effect on the developmental control of the brain Na+, K(+)-ATPase functional expression and the course of adaptive processes in the rat organism.  相似文献   

14.
GM1 ganglioside binding to the crude mitochondrial fraction of rat brain and its effect on (Na+, K+)-ATPase were studied, the following results being obtained: (a) the binding process followed a biphasic kinetics with a break at 50 nM-GM1; GM1 at concentrations below the break was stably associated, while over the break it was loosely associated; (b) stably bound GM1 activated (Na+, K+)-ATPase up to a maximum of 43%; (c) the activation was dependent upon the amount of bound GM1 and was highest at the critical concentration of 20 pmol bound GM1 X mg protein-1; (d) loosely bound GM1 suppressed the activating effect on (Na+, K+)-ATPase elicited by firmly bound GM1; (e) GM1-activated (Na+, K+)-ATPase had the same pH optimum and apparent Km (for ATP) as normal (Na+, K+)-ATPase but a greater apparent Vmax; (f) under identical binding conditions (2 h, 37 degrees C, with 40 nM substance) all tested gangliosides (GM1, GD1a, GD1b, GT1b) activated (Na+, K+)-ATPase (from 26-43%); NeuNAc, sodium dodecylsulphate, sulphatide and cerebroside had only a very slight effect. It is suggested that the ganglioside activation of (Na+-K+)-ATPase is a specific phenomenon not related to the amphiphilic and ionic properties of gangliosides, but due to modifications of the membrane lipid environment surrounding the enzyme.  相似文献   

15.
The involvement of membrane (Na+ + K+)-ATPase (Mg2+-dependent, (Na+ + K+)-activated ATP phosphohydrolase, E.C. 3.6.1.3) in the oxygen consumption of rat brain cortical slices was studied in order to determine whether (Na+ + K+)-ATPase activity in intact cells can be estimated from oxygen consumption. The stimulation of brain slice respiration with K+ required the simultaneous presence of Na+. Ouabain, a specific inhibitor of (Na+ + K+)-ATPase, significantly inhibited the (Na+ + K+)-stimulation of respiration. These observations suggest that the (Na+ + K+)-stimulation of brain slice respiration is related to ADP production as a result of (Na+ + K+)-ATPase activity. However, ouabain also inhibited non-K+ -stimulated respiration. Additionally, ouabain markedly reduced the stimulation of respiration by 2,4-dinitrophenol in a high (Na+ + K+)-medium. Thus, ouabain depresses brain slice respiration by reducing the availability of ADP through (Na+ + K+)-ATPase inhibition and acts additionally by increasing the intracellular Na+ concentration. These studies indicate that the use of ouabain results in an over-estimation of the respiration related to (Na+ + K+)-ATPase activity. This fraction of the respiration can be estimated more precisely from the difference between slice respiration in high Na+ and K+ media and that in choline, K+ media. Studies were performed with two (Na+ + K+)-ATPase inhibitors to determine whether administration of these agents to intact rats would produce changes in brain respiration and (Na+ + K+)-ATPase activity. The intraperitoneal injection of digitoxin in rats caused an inhibition of brain (Na+ + K+)-ATPase and related respiration, but chlorpromazine failed to alter either (Na+ + K+)-ATPase activity or related respiration.  相似文献   

16.
Sarcolemmal and sarcoplasmic reticulum membrane vesicle fractions were isolated from cardiac microsomes. Separation of sarcolemmal and sarcoplasmic reticulum membrane markers was documented by a combination of correlative assay and centrifugation techniques. To facilitate the separation, the crude microsomes were incubated in the presence of ATP, Ca2+, and oxalate to increase the density of the sarcoplasmic reticulum vesicles. After sucrose gradient centrifugation, the densest subfraction (sarcoplasmic reticulum) contained the highest (K+,Ca2+)-ATPase activity and virtually no (Na2+,K+)-ATPase activity, even when latent (Na+,K+)-ATPase activity was unmasked. In addition, the sarcoplasmic reticulum fraction contained no significant sialic acid, beta receptor binding activity, or adenylate cyclase activity. Sarcolemmal membrane fractions were of low buoyant density. Preparations most enriched in sarcolemmal vesicles contained the highest level of all the other parameters and only about 10% of the (K+,Ca2+)-ATPase activity of the sarcoplasmic reticulum fraction. The results suggest that (Na+,K+)-ATPase, sialic acid, beta-adrenergic receptors, and adenylate cyclase can be entirely accounted for by the sarcolemmal content of cardiac microsomes. Gel electrophoresis of the sarcolemmal and sarcoplasmic reticulum membrane fractions showed distinct bands. Membrane proteins exclusive to each of the fractions were also demonstrated by phosphorylation. Cyclic AMP stimulated phosphorylation by [gamma-32P]ATP of two proteins of apparent Mr = 20,000 and 7,000 that were concentrated in sarcoplasmic reticulum, but the stimulation was markedly dependent on the presence of added soluble cyclic AMP-dependent protein kinase. Cyclic AMP also stimulated phosphorylation of membrane proteins in sarcolemma, but this phosphorylation was mediated by an endogenous protein kinase activity. The apparent molecular weights of these phosphorylated proteins were 165,000, 90,000, 56,000, 24,000, and 11,000. The results suggest that sarcolemma may contain an integral enzyme complex, not present in sarcoplasmic reticulum, that contains beta-adrenergic receptors, adenylate cyclase, cyclic AMP-dependent protein kinase, and several substrates of the protein kinase.  相似文献   

17.
1. Sea bass kidney microsomal preparations contain two Mg2+ dependent ATPase activities: the ouabain-sensitive (Na+ + K+)-ATPase and an ouabain-insensitive Na+-ATPase, requiring different assay conditions. The (Na+ + K+)-ATPase under the optimal conditions of pH 7.0, 100 mM Na+, 25 mM K+, 10 mM Mg2+, 5 mM ATP exhibits an average specific activity (S.A.) of 59 mumol Pi/mg protein per hr whereas the Na+-ATPase under the conditions of pH 6.0, 40 mM Na+, 1.5 mM MgATP, 1 mM ouabain has a maximal S.A. of 13.9 mumol Pi/mg protein per hr. 2. The (Na+ + K+)-ATPase is specifically inhibited by ouabain and vanadate; the Na+-ATPase specifically by ethacrynic acid and preferentially by frusemide; both activities are similarly inhibited by Ca2+. 3. The (Na+ + K+)-ATPase is specific for ATP and Na+, whereas the Na+-ATPase hydrolyzes other substrates in the efficiency order ATP greater than GTP greater than CTP greater than UTP and can be activated also by K+, NH4+ or Li+. 4. Minor differences between the two activities lie in the affinity for Na+, Mg2+, ATP and in the thermosensitivity. 5. The comparison between the two activities and with what has been reported in the literature only partly agree with our findings. It tentatively suggests that on the one hand two separate enzymes exist which are related to Na+ transport and, on the other, a distinct modulation in vivo in different tissues.  相似文献   

18.
Extracellular ATP rendered the plasma membrane of transformed mouse fibroblasts permeable to normally impermeant molecules. This permeability change was prevented by increasing the ionic strength of the isotonic medium with NaCl. Conversely, the cells exhibited increased sensitivity to ATP when the NaCl concentration was decreased below isotonicity, when the KCl concentration was increased above 5 mM while maintaining isotonicity, and when the pH of the medium was raised above 7.0. These conditions as well as the addition of ATP itself caused cell swelling. However, the effect of ATP was independent of cell volume and dependent upon the ionic strength and not the osmolarity of the medium since 1) addition of sucrose to isotonic medium did not prevent permeabilization although media made hypertonic with either sucrose or NaCl caused a decrease in cell volume; and 2) addition of sucrose or NaCl to hypotonic media caused a decrease in cell volume, but only NaCl addition decreased the response to ATP. Conditions that have been shown to inhibit plasma membrane proteins that play a reciprocal role in cell volume regulation had reciprocal effects on the permeabilization process, even though the effect of ATP was independent of cell volume. For example, inhibition of the Na+,K+-ATPase by ouabain increased sensitivity of cells to ATP while conditions which inhibit Na+,K+,Cl- -cotransporter activity, such as treatment of the cells with the diuretics furosemide or bumetanide or replacement of sodium chloride in the medium with sodium nitrate or thiocyanate, inhibited permeabilization. The furosemide concentration that inhibited permeabilization was greater than the concentration that inhibited Na+,K+,Cl- -cotransporter-mediated 86Rb+ (K+) uptake, suggesting that the effect of furosemide on the permeabilization process may not be specific for the Na+,K+,Cl- -cotransporter.  相似文献   

19.
Little is known concerning the effects of Na+-coupled solute transport on (Na+,K+)-ATPase mediated cation pumping in the intact cell. We investigated the effect of amino acid transport and growth factor addition on the short term regulation of (Na+,K+)-ATPase cation transport in HeLa cells. The level of pump activity in the presence of amino acids or growth factors was compared to the level measured in phosphate buffered saline. These rates were further related to the maximal pump capacity, operationally defined as ouabain inhibitable 86Rb+ influx in the presence of 15 microM monensin. Of the growth factors tested, only insulin was found to moderately (22%) increase (Na+,K+)-ATPase cation transport. The major determinant of pump activity was found to be the transport of amino acids. Minimal essential medium (MEM) amino acids increased ouabain inhibitable 86Rb+ influx to a level close to that obtained with monensin, indicating that the (Na+,K+)-ATPase is operating near maximal capacity during amino acid transport. This situation may apply to tissue culture conditions and consequently measurements of (Na+,K+)-ATPase activity in buffer solutions alone may yield little information about cation pumping under culture conditions. This finding applies especially to cells having high rates of amino acid transport. Furthermore, rates of amino acid transport may be directly or indirectly involved in the long-term regulation of the number of (Na+,K+)-ATPase molecules in the plasma membrane.  相似文献   

20.
In astrocytes the activity of the Na+,K(+)-ATPase pump maintains an inwardly directed electrochemical sodium gradient used by the Na+-dependent transporters and regulates the extracellular K+ concentration essential for neuronal excitability. We show here that incubation of cultured rat astrocytes with angiotensin II (Ang II) modulates Na+,K(+)-ATPase activity, in a dose- and time-dependent manner. Na+,K(+)-ATPase activation was mediated by binding of Ang II to AT1 receptors as it was completely blocked by DuP 753, a specific AT1 receptor subtype antagonist. Stimulation of Na+,K(+)-ATPase activity by Ang II was dependent on protein kinase C (PKC) activation because PKC antagonists abolished the inducing effect of Ang II and the PKC activator phorbol 12-myristate 13-acetate enhanced transporter activity. Ang II stimulated translocation of PKC-delta but not that of other PKC isoforms from the cytosol to the plasma membrane. These results indicate that the activity of Na+,K(+)-ATPase in astrocytes is increased by physiological concentrations of Ang II and that the AT1 receptor subtype mediates the Na+,K(+)-ATPase response to Ang II via PKC-delta activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号