首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutral sphingomyelinases (N-SMases) are major candidates for stress-induced ceramide production. However, there is little information on the physiological regulation and roles of the cloned N-SMase enzyme, nSMase2. In this study, nSMase2 was found to translocate acutely to the plasma membrane of A549 epithelial cells in response to tumor necrosis factor alpha (TNF-alpha) in a time- and dose-dependent manner. Additionally, TNF-alpha increased N-SMase activity rapidly and transiently both endogenously and in cells overexpressing nSMase2. Furthermore, the translocation of nSMase2 was regulated by p38-alpha MAPK, but not ERK or JNK, and the increase in endogenous N-SMase activity was abrogated by p38 MAPK inhibition. In addition, both p38-alpha MAPK and nSMase2 were implicated in the TNF-alpha-stimulated up-regulation of the adhesion proteins vascular cell adhesion molecule-1 (VCAM) and intercellular adhesion molecule-1 (ICAM), but this was largely independent of NF-kappaB activation. These data reveal p38 MAPK as an upstream regulator of nSMase2 and indicate a role for nSMase2 in pro-inflammatory responses induced by TNF-alpha as a regulator of adhesion proteins.  相似文献   

2.
3.
Recently, we reported that neutral sphingomyelinase 2 (nSMase2) functions as a bona fide neutral sphingomyelinase and that overexpression of nSMase2 in MCF7 breast cancer cells caused a decrease in cell growth (Marchesini, N., Luberto, C., and Hannun, Y. A. (2003) J. Biol. Chem. 278, 13775-13783). In this study, the role of endogenous nSMase2 in regulating growth arrest was investigated. The results show that endogenous nSMase2 mRNA was up-regulated approximately 5-fold when MCF7 cells became growth-arrested at confluence, and total neutral SMase activity was increased by 119 +/- 41% with respect to control. Cell cycle analysis showed that up-regulation of endogenous nSMase2 correlated with G(0)/G(1) cell cycle arrest and an increase in total ceramide levels (2.4-fold). Analysis of ceramide species showed that confluence caused selective increases in very long chain ceramide C(24:1) (370 +/- 54%) and C(24:0) (266 +/- 81%) during arrest. The role of endogenous nSMase2 in growth regulation and ceramide metabolism was investigated using short interfering RNA (siRNA)-mediated loss-of-function analysis. Down-regulation of nSMase2 with specific siRNA increased the cell population of cells in S phase of the cell cycle by 59 +/- 14% and selectively reverted the effects of growth arrest on the increase in levels of very long chain ceramides. Mechanistically, confluence arrest also induced hypophosphorylation of the retinoblastoma protein (6-fold) and induction of p21(WAF1) (3-fold). Down-regulation of nSMase2 with siRNA largely prevented the dephosphorylation of the retinoblastoma protein and the induction of p21(WAF1), providing a link between the action of nSMase2 and key regulators of cell cycle progression. Moreover, studies on nSMase2 localization in MCF7 cells showed that nSMase2 distributed throughout the cells in subconfluent, proliferating cultures. In contrast, nSMase2 became nearly exclusively located at the plasma membrane in confluent, contact-inhibited cells. Hence, we demonstrate for the first time that nSMase2 functions as a growth suppressor in MCF7 cells, linking confluence to the G(0)/G(1) cell cycle check point.  相似文献   

4.
There is strong evidence indicating a role for ceramide as a second messenger in processes such as apoptosis, cell growth and differentiation, and cellular responses to stress. Ceramide formation from the hydrolysis of sphingomyelin is considered to be a major pathway of stress-induced ceramide production with magnesium-dependent neutral sphingomyelinase (N-SMase) identified as a prime candidate in this pathway. The recent cloning of a mammalian N-SMase-nSMase2- and generation of nSMase2 knockout/mutant mice have now provided vital tools with which to further study the regulation and roles of this enzyme in both a physiological and pathological context. In the present review, we summarize current knowledge on N-SMase relating this to what is known about nSMase2. We also discuss the future areas of nSMase2 research important for molecular understanding of this enzyme and its physiological roles.  相似文献   

5.
There is strong evidence indicating a role for ceramide as a second messenger in processes such as apoptosis, cell growth and differentiation, and cellular responses to stress. Ceramide formation from the hydrolysis of sphingomyelin is considered to be a major pathway of stress-induced ceramide production with magnesium-dependent neutral sphingomyelinase (N-SMase) identified as a prime candidate in this pathway. The recent cloning of a mammalian N-SMase-nSMase2- and generation of nSMase2 knockout/mutant mice have now provided vital tools with which to further study the regulation and roles of this enzyme in both a physiological and pathological context. In the present review, we summarize current knowledge on N-SMase relating this to what is known about nSMase2. We also discuss the future areas of nSMase2 research important for molecular understanding of this enzyme and its physiological roles.  相似文献   

6.
Sphingolipids such as ceramide and sphingosine have been regarded as novel signal mediators in cells. However, the mechanisms of generation of these lipids upon various stimulation remain to be elucidated. Neutral sphingomyelinase (N-SMase) is one of the key enzymes in the generation of ceramide, and recently the cloning of a putative N-SMase was reported. Because the function of the protein was unclear in the previous report, we investigated the role it plays in cells. N-SMase activity in cells overexpressing the protein with hexa-histidine tag was immunoprecipitated with anti-hexa-histidine antibody. The metabolism of ceramide and SM was not apparently affected in overexpressing cells. Radiolabeling experiments using [(3)H]palmitic acid or [(3)H]hexadecanol demonstrated an accumulation of 1-O-alkyl-sn-glycerol and a corresponding decrease of 1-alkyl-2-acyl-sn-glycero-3-phosphocholine in overexpressing cells. In vitro studies showed that both 1-acyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PC) and 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (lyso-platelet activating factor (lyso-PAF)) are good substrates of the protein. In further radiolabeling experiments, 1-acyl-lyso-PC was predominantly and equally metabolized into diacyl-PC in both vector and overexpressing cells. On the other hand, 1-O-alkyl-lyso-PC (lyso-PAF) was metabolized into both diradyl-PC and 1-O-alkyl-glycerol in overexpressing cells but only into diradyl-PC in vector cells. These results suggest that the protein acts as lyso-PAF-PLC rather than lyso-PC-PLC or N-SMase in cells.  相似文献   

7.
Sphingolipids play important roles in regulating cellular responses. Although mitochondria contain sphingolipids, direct regulation of their levels in mitochondria or mitochondria-associated membranes is mostly unclear. Neutral SMase (N-SMase) isoforms, which catalyze hydrolysis of sphingomyelin (SM) to ceramide and phosphocholine, have been found in the mitochondria of yeast and zebrafish, yet their existence in mammalian mitochondria remains unknown. Here, we have identified and cloned a cDNA based on nSMase homologous sequences. This cDNA encodes a novel protein of 483 amino acids that displays significant homology to nSMase2 and possesses the same catalytic core residues as members of the extended N-SMase family. A transiently expressed V5-tagged protein co-localized with both mitochondria and endoplasmic reticulum markers in MCF-7 and HEK293 cells; accordingly, the enzyme is referred to as mitochondria-associated nSMase (MA-nSMase). MA-nSMase was highly expressed in testis, pancreas, epididymis, and brain. MA-nSMase had an absolute requirement for cations such as Mg2+ and Mn2+ and activation by the anionic phospholipids, especially phosphatidylserine and the mitochondrial cardiolipin. Importantly, overexpression of MA-nSMase in HEK293 cells significantly increased in vitro N-SMase activity and also modulated the levels of SM and ceramide, indicating that the identified cDNA encodes a functional SMase. Thus, these studies identify and characterize, for the first time, a mammalian MA-nSMase. The characterization of MA-nSMase described here will contribute to our understanding of pathways regulated by sphingolipid metabolites, particularly with reference to the mitochondria and associated organelles.  相似文献   

8.
Okamoto Y  Obeid LM  Hannun YA 《FEBS letters》2002,530(1-3):104-108
Recent studies demonstrate a role for intracellular oxidation in the regulation of neutral sphingomyelinase (N-SMase). Glutathione (GSH) has been shown to regulate N-SMase in vitro and in cells. However, it has not been established whether the effects of GSH in cells are due to direct action on N-SMase. In this study, treatment of human mammary carcinoma MCF-7 cells with diamide, a thiol-depleting agent, caused a decrease in intracellular GSH and degradation of sphingomyelin (SM) to ceramide. The SM pool hydrolyzed in response to diamide belonged to the bacterial SMase-resistant pool of SM. Importantly, pretreatment of MCF-7 cells with GSH, N-acetylcysteine, an antioxidant, or GW69A, a specific N-SMase inhibitor, prevented diamide-induced degradation of SM to ceramide, suggesting that intracellular levels of GSH regulate the extent to which SM is degraded to ceramide and that this probably involves a GW69A-sensitive N-SMase. Unexpectedly, expression of Bcl-xL prevented tumor necrosis factor--induced SM hydrolysis and ceramide accumulation but not the decrease in intracellular GSH. Furthermore, Bcl-xL inhibited diamide-induced SM hydrolysis and ceramide accumulation but not the decrease in intracellular GSH. These results suggest that the site of action of Bcl-xL is downstream of GSH depletion and upstream of ceramide accumulation, and that GSH probably does not exert direct physiologic effects on N-SMase.  相似文献   

9.
A high throughput screen for neutral, magnesium-dependent sphingomyelinase (SMase) was performed. One inhibitor discovered in the screen, GW4869, functioned as a noncompetitive inhibitor of the enzyme in vitro with an IC(50) of 1 microm. It did not inhibit acid SMase at up to at least 150 microm. The compound was then evaluated for its ability to inhibit tumor necrosis factor (TNF)-induced activation of neutral SMase (N-SMase) in MCF7 cells. GW4869 (10 microm) partially inhibited TNF-induced sphingomyelin (SM) hydrolysis, and 20 microm of the compound was protected completely from the loss of SM. The addition of 10-20 microm GW4869 completely inhibited the initial accumulation of ceramide, whereas this effect was partially lost at later time points (24 h). These data therefore support the inhibitory action of GW4869 on N-SMase not only in vitro but also in a cellular model. The addition of GW4869 at both 10 and 20 microm did not modify cellular glutathione levels in response to TNF, suggesting that the action of GW4869 occurred downstream of the drop in glutathione, which was shown previously to occur upstream of the activation of N-SMase. Further, whereas TNF treatment also caused a 75% increase of de novo synthesized ceramide after 20 h of incubation, GW4869, at either 10 or 20 microm, had no effect on this pathway of ceramide generation. In addition, GW4869 did not significantly impair TNF-induced NF-kappaB translocation to nuclei. Therefore, GW4869 does not interfere with other key TNF-mediated signaling effects. GW4869 was able, in a dose-dependent manner, to significantly protect from cell death as measured by nuclear condensation, caspase activation, PARP degradation, and trypan blue uptake. These protective effects were accompanied by significant inhibition of cytochrome c release from mitochondria and caspase 9 activation, therefore localizing N-SMase activation upstream of mitochondrial dysfunction. In conclusion, our results indicate that N-SMase activation is a necessary step for the full development of the cytotoxic program induced by TNF.  相似文献   

10.
Activation of sphingomyelinase (SMase) by extracellular stimuli is the major pathway for cellular production of ceramide, a bioactive lipid mediator acting through sphingomyelin (SM) hydrolysis. Previously, we reported the existence of six forms of neutral pH–optimum and Mg2+-dependent SMase (N-SMase) in the membrane fractions of bovine brain. Here, we focus on N-SMase ε from salt-extracted membranes. After extensive purification by 12,780-fold with a yield of 1.3%, this enzyme was eventually characterized as N-SMase2. The major single band of 60-kDa molecular mass in the active fractions of the final purification step was identified as heat shock protein 60 (Hsp60) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. Proximity ligation assay and immunoprecipitation study showed that Hsp60 interacted with N-SMase2, prompting us to examine the effect of Hsp60 on N-SMase2 and ceramide production. Interestingly, Hsp60 siRNA treatment significantly increased the protein level of N-SMase2 in N-SMase2-overexpressed HEK293 cells. Furthermore, transfection of Hsp60 siRNA into PC12 cells effectively increased both N-SMase activity and ceramide production and increased dopamine re-uptake with paralleled increase. Taken together, these results show that Hsp60 may serve as a negative regulator in N-SMase2-induced dopamine re-uptake by decreasing the protein level of N-SMase2.  相似文献   

11.
We previously showed that ceramide (Cer) formed during the execution phase of apoptosis is derived from plasma membrane sphingomyelin (SM), most likely by a neutral sphingomyelinase activity (Tepper et al., J. Cell Biol. 150, 2000, 155-164). In this study, we investigated the involvement of a cloned putative human neutral sphingomyelinase (nSMase1) in this process. Site-directed mutagenesis of predicted catalytic residues (Glu(49), Asn(180), and His(272)) to Ala residues abolished the catalytic activity of nSMase1. Jurkat cells were retrovirally transduced with either wildtype or inactive (with all three point mutations) Myc-tagged nSMase1. Cells overexpressing wildtype nSMase1 showed dramatically elevated in vitro nSMase activity. However, nSMase1 gene transduction (wildtype or mutant) did not alter steady-state levels of SM, Cer, or glucosylceramide. Moreover, the Cer response and apoptosis sensitivity to ligation of the CD95/Fas receptor in cells overexpressing wildtype or mutant nSMase1 were identical to vector-transduced cells. We conclude that not nSMase1 but a different, yet to be identified, nSMase accounts for the generation of Cer during the execution phase of death receptor-induced apoptosis.  相似文献   

12.
All-trans-retinoic acid (ATRA) induces growth arrest of many cell types. Previous studies have reported that ATRA can modulate cellular sphingolipids, but the role of sphingolipids in the ATRA response is not clear. Using MCF-7 cells as a model system, we show that ATRA stimulates an increase in ceramide levels followed by G(0)/G(1) growth arrest. Notably, induction of nSMase2 was the primary effect of ATRA on the sphingolipid network and was both time- and dose-dependent. Importantly, pretreatment with nSMase2 siRNA significantly inhibited ATRA effects on ceramide levels and growth arrest. In contrast, nSMase2 overexpression was sufficient to increase ceramide levels and induce G(0)/G(1) growth arrest of asynchronous MCF-7 cells. Surprisingly, neither ATRA stimulation nor nSMase2 overexpression had significant effects on classical cell cycle regulators such as p21/WAF1 or retinoblastoma. In contrast, ATRA suppressed phosphorylation of ribosomal S6 kinase (S6K) and its downstream targets S6 and eIF4B. Importantly, these effects were significantly inhibited by nSMase2 siRNA. Reciprocally, nSMase2 overexpression was sufficient to suppress S6K phosphorylation and signaling. Notably, neither ATRA effects nor nSMase2 effects on S6K phosphorylation required the ceramide-activated protein phosphatase PP2A, previously identified as important for S6K regulation. Finally, nSMase2 overexpression was sufficient to decrease translation as measured by methionine incorporation and analysis of polyribosome profiles. Taken together, these results implicate nSMase2 as a major component of ATRA-induced growth arrest of MCF-7 cells and identify S6K as a novel downstream target of nSMase2.  相似文献   

13.
Neutral sphingomyelinase: past, present and future   总被引:2,自引:0,他引:2  
Sphingomyelin and its metabolic products are now known to have second messenger functions in a variety of cellular signaling pathways. At the epicenter of the sphingomyelin--cell signaling pathway is a family of phospholipases called sphingomyelinases. These enzymes cleave sphingomyelin to produce ceramide and phosphocholine. Ceramide in turn serves as a lipid second messenger that induces a variety of cell regulatory phenomenon such as programmed cell death (apoptosis), cell differentiation, cell proliferation, and sterol homeostasis. Neutral sphingomyelinase (N-SMase) is a Mg2+ sensitive enzyme that can be activated by a host of physiologically relevant and structurally diverse molecules like tumor necrosis factor-alpha (TNF-alpha), oxidized human low density lipoproteins (Ox-LDL), and several growth factors. Large amounts of ceramide accumulate in human fatty streaks and plaques along with Ox-LDL, growth factors, and proinflammatory cytokines in human atherosclerosis. A further role of ceramide and N-SMase in atherosclerosis was uncovered by the finding that Ox-LDL and TNF-alpha stimulated N-SMase activity. In turn, ceramide and/or a homolog serves as an important stress signaling molecule in signal transduction, which leads to apoptosis. Interestingly, an antibody against N-SMase can abrogate Ox-LDL and TNF-alpha induced apoptosis, and therefore may be useful for additional studies of apoptosis in experimental animals. Overexpression of recombinant human N-SMase in human aortic smooth muscle cells markedly stimulate apoptosis, presumably via the multioligomerization of the 'death domain'. Since plaque stability is an integral aspect of atherosclerosis management, activation of N-SMase and subsequent apoptosis may be vital events in the onset of plaque rupture, stroke and heart failure. In contrast to these observations in human hepatocytes, TNF-alpha mediated N-SMase activation did not induce apoptosis. Rather it stimulated the maturation of sterol regulatory element (SRE) binding protein (SREBP-1). Moreover, a cell permeable ceramide was found to reconstitute the phenomenon above in a sterol-independent fashion. These findings provide alternate avenues for therapy of patients with hypercholesterolemia and atherosclerosis. The findings reported here suggests that N-SMase plays important cell regulatory roles and provide an exciting opportunity to further these findings to understand the pathophysiology of human disease states.  相似文献   

14.
Two genes encoding neutral sphingomyelinases-1 and -2 (sphingomyelin phosphodiesterases-2 and -3) have been recently identified that hydrolyze sphingomyelin to phosphorylcholine and ceramide. Data bank searches using a peptide sequence derived from a previously purified bovine neutral sphingomyelinase (nSMase) allowed us to identify a cDNA encoding a novel human sphingomyelinase, nSMase3, that shows only a little homology to nSMase1 and -2. nSMase3 was biochemically characterized by overexpression in a yeast strain, JK9-3ddeltaIsc1p, lacking endogenous SMase activity. Similar to nSMase2, nSMase3 is Mg2+-dependent and shows optimal activity at pH 7, which is enhanced in the presence of phosphatidylserine and inhibited by scyphostatin. nSMase3 is ubiquitously expressed as a 4.6-kb mRNA species. nSMase3 lacks an N-terminal signal peptide, yet contains a 23-amino-acid transmembrane domain close to the C terminus, which is indicative for the family of C-tail-anchored integral membrane proteins. Cellular localization studies with hemagglutinin-tagged nSMase3 demonstrated colocalization with markers of the endoplasmic reticulum as well as with Golgi markers. Tumor necrosis factor stimulates rapid activation of nSMase3 in MCF7 cells with peak activity at 1.5 min, which was impaired by expression of dominant negative FAN.  相似文献   

15.
The magnesium-dependent, plasma membrane-associated neutral sphingomyelinase (N-SMase) catalyzes hydrolysis of membrane sphingomyelin to form ceramide, a lipid signaling molecule implied in intracellular signaling. We report here the biochemical purification to apparent homogeneity of N-SMase from bovine brain. Proteins from Nonidet P-40 extracts of brain membranes were subjected to four purification steps yielding a N-SMase preparation that exhibited a specific enzymatic activity 23,330-fold increased over the brain homogenate. When analyzed by two-dimensional gel electrophoresis, the purified enzyme presented as two major protein species of 46 and 97 kDa, respectively. Matrix-assisted laser desorption/ionization-mass spectrometry analysis of tryptic peptides revealed at least partial identity of these two proteins. Amino acid sequencing of tryptic peptides showed no apparent homologies of bovine N-SMase to any known protein. Peptide-specific antibodies recognized a single 97-kDa protein in Western blot analysis of cell lysates. The purified enzyme displayed a K(m) of 40 microM for sphingomyelin with an optimal activity at pH 7-8. Bovine brain N-SMase was strictly dependent on Mg(2+), whereas Zn(2+) and Ca(2+) proved inhibitory. The highly purified bovine N-SMase was effectively blocked by glutathione and scyphostatin. Scyphostatin proved to be a potent inhibitor of N-SMase with 95% inhibition observed at 20 microM scyphostatin. The results of this study define a N-SMase that fulfills the biochemical and functional criteria characteristic of the tumor necrosis factor-responsive membrane-bound N-SMase.  相似文献   

16.
Sphingomyelin hydrolysis during apoptosis   总被引:9,自引:0,他引:9  
Sphingolipid breakdown products are now being recognized as important players in apoptosis. Ceramide, which is considered to serve as second messenger, is mainly generated by hydrolysis of the membrane sphingophospholipid sphingomyelin (SM) through the action of a sphingomyelinase (SMase). However, little is known about the localization and regulation of this phenomenon. Here, we summarize the current knowledge on the function of SM hydrolysis in apoptosis signaling. In particular, the present review focuses on the role of neutral sphingomyelinase (N-SMase) in the generation of the proapoptotic ceramide. This enzyme is regulated by several mechanisms, including the tumor necrosis factor (TNF) receptor-associated protein FAN (for factor associated with N-SMase activation) and oxidative stress. These observations place SMase activation and SM hydrolysis as early events in the apoptosis signaling cascade.  相似文献   

17.
Sodium nitroprusside (SNP), a NO donor, has been recognized as an inducer of apoptosis in various cell lines. Here, we demonstrated the intracellular formation of ceramide, a lipid signal mediator, in SNP-induced apoptosis in human leukemia HL-60 cells and investigated the mechanisms of ceramide generation. The levels of intracellular ceramide increased to, at most, 160% of the control level in a time- and dose-dependent manner when the cells were treated with 1 mM SNP. SNP also decreased the sphingomyelin level to approximately 70% of the control level and increased magnesium-dependent neutral sphingomyelinase (N-SMase) activity to 160% of the control activity 2 h after treatment. Neither acid SMase nor magnesium-independent N-SMase was affected by SNP. Caspases are thought to be key enzymes in apoptotic cell death. Acetyl-Asp-Glu-Val-Asp-aldehyde, a synthetic tetrapeptide inhibitor of caspases, inhibited magnesiumdependent N-SMase, ceramide generation, and apoptosis. Moreover, recombinant purified caspase-3 increased magnesium-dependent N-SMase in a cell-free system. These results suggest that the findings that SNP increased ceramide generation and magnesium-dependent N-SMase activity via caspase-3 are interesting to future study to determine the relation between caspases and sphingolipid metabolites in NO-mediated signaling.  相似文献   

18.
Ceramide is a bioactive lipid that plays an important role in stress responses leading to apoptosis, cell growth arrest and differentiation. Ceramide production is due in part to sphingomyelin hydrolysis by sphingomyelinases. In brain, neutral sphingomyelinase 2 (nSMase2) is expressed in neurons and increases in its activity and expression have been associated with pro-inflammatory conditions observed in Alzheimer’s disease, multiple sclerosis and human immunodeficiency virus (HIV-1) patients. Increased nSMase2 activity translates into higher ceramide levels and neuronal cell death, which can be prevented by chemical or genetic inhibition of nSMase2 activity or expression. However, to date, there are no soluble, specific and potent small molecule inhibitor tool compounds for in vivo studies or as a starting point for medicinal chemistry optimization. Moreover, the majority of the known inhibitors were identified using bacterial, bovine or rat nSMase2. In an attempt to identify new inhibitor scaffolds, two activity assays were optimized as screening platform using the recombinant human enzyme. First, active hits were identified using a fluorescence-based high throughput compatible assay. Then, hits were confirmed using a 14C sphingomyelin-based direct activity assay. Pharmacologically active compounds and approved drugs were screened using this strategy which led to the identification of cambinol as a novel uncompetitive nSMase2 inhibitor (Ki = 7 μM). The inhibitory activity of cambinol for nSMase2 was approximately 10-fold more potent than for its previously known target, silence information regulator 1 and 2 (SIRT1/2). Cambinol decreased tumor necrosis factor-α or interleukin-1 β-induced increases of ceramide and cell death in primary neurons. A preliminary study of cambinol structure and activity allowed the identification of the main structural features required for nSMase2 inhibition. Cambinol and its analogs may be useful as nSMase2 inhibitor tool compounds to prevent ceramide-dependent neurodegeneration.  相似文献   

19.
It was previously observed that cell confluence induced up-regulation of neutral sphingomyelinase 2 (nSMase2) and increased ceramide levels [Marchesini N., Osta W., Bielawski J., Luberto C., Obeid L.M. and Hannun Y.A. (2004) J. Biol. Chem., 279, 25101-11]. In this study, we show that, in MCF7 cells, confluence induces the dephosphorylation of phosphorylated-beta-catenin at threonine41/serine45. The effect of confluence on beta-catenin dephosphorylation was prevented by down regulation of nSMase2 using siRNA; reciprocally, exogenous addition of short or very long chain ceramides induced dephosphorylation of beta-catenin. The serine/threonine protein phosphatase inhibitors calyculin A and okadaic acid prevented beta-catenin dephosphorylation during confluence. The specific phosphatase involved was determined by studies using siRNA against the major serine/threonine phosphatases, and the results showed that a specific siRNA against PP1cgamma prevented dephosphorylation of beta-catenin. Moreover, exogenous ceramides and confluence were found to induce the translocation of PP1cgamma to the plasma membrane. All together these results establish: A) a specific intracellular pathway involving the activation of PP1 to mediate the effects of confluence-induced beta-catenin dephosphorylation and B) PP1 as a lipid-regulated protein phosphatase downstream of nSMase2/ceramide. Finally, evidence is provided for a role for this pathway in regulating cell motility during confluence.  相似文献   

20.
Crocin is a pharmacologically active component of Crocus sativus L. (saffron) that has been used in traditional Chinese medicine. In a previous study, we demonstrated that crocin inhibits apoptosis in PC-12 cells by affecting the function of tumor necrosis factor-alpha. In this study, we found that depriving cultured PC-12 cells of serum/glucose causes a rapid increase in cellular ceramide levels, followed by an increase in the phosphorylation of c-jun kinase (JNK). The accumulation of ceramide was found to depend on the activation of magnesium-dependent neutral sphingomyelinase (N-SMase), but not on de novo synthesis. The serum/glucose-deprived PC-12 cells also decreased the cellular levels of glutathione (GSH), which is the potent inhibitor of N-SMase. Treating the PC-12 cells with crocin prevented N-SMase activation, ceramide production, and JNK phosphorylation. We also found that the chemical can enhance the activities of GSH reductase and gamma-glutamylcysteinyl synthase (gamma-GCS), contributing to a stable GSH supply that blocks the activation of N-SMase. Thus our data suggest that crocin combats the serum/glucose deprivation-induced ceramide formation in PC-12 cells by increasing GSH levels and prevents the activation of JNK pathway, which is reported to have a role of the signaling cascade downstream ceramide for neuronal cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号