首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PtK1 cells containing two independent mitotic spindles can cleave between neighboring centrosomes, in the absence of an intervening spindle, as well as at the spindle equators. We used same-cell video, immunofluorescence, and electron microscopy to compare the structure and composition of normal equatorial furrows with that of ectopic furrows formed between spindles. As in controls, ectopic furrows contained midbodies composed of microtubule bundles and an electron-opaque matrix. Despite the absence of an intervening spindle and chromosomes, the midbodies associated with ectopic furrows also contained the microtubule-bundling protein CHO1 and the chromosomal passenger protein INCENP. However, CENP-E, another passenger protein, was not found in ectopic furrows but was always present in controls. We also examined cells in which the ectopic furrow initiated but relaxed. Although relaxing furrows contained overlapping microtubules from opposing centrosomes, they lacked microtubule bundles as well as INCENP and CHO1. Together these data suggest that the mechanism defining the site of furrow formation during mitosis in vertebrates does not depend on the presence of underlying microtubule bundles and chromosomes or on the stable association of INCENP or CHO1. The data also suggest that the completion of cytokinesis requires the presence of microtubule bundles and specific proteins (e.g., INCENP, CHO1, etc.) that do not include CENP-E.  相似文献   

2.
Isolation and initial characterization of the mammalian midbody   总被引:11,自引:5,他引:6       下载免费PDF全文
Midbodies were isolated from synchronized cultures of Chinese hamster ovary (CHO) cells and their protein composition was studied by means of SDS PAGE. Gels of the midbodies included alpha and beta tubulins as major bands (approximately 30% of the total protein) and approximately 35 other bands, none of which constituted greater than 3.5% of the total protein. Extraction of the isolated midbodies with Sarkosyl NL-30- solubilized the midbody microtubules but left the central, dense matrix zone of the midbody intact. A protein doublet of approximately 115,000 mol wt was retained preferentially by the particulate fraction containing the matrix zones, indicating it to be a component of the matrix. The 115,000 mol wt doublet was also present in gels of isolated mitotic spindles from CHO cells. The overall protein composition of the isolated spindles was very similar to that of the isolated midbodies.  相似文献   

3.
Salt-extracted proteins of taxol-stabilized microtubules from Chinese hamster ovary cells arrested at mitosis were used to immunize mice for hybridoma production. From a group of related monoclonal antibodies (MAbs), one, C9, recognized an epitope on antigens localized by immunofluorescence microscopy to interphase centrosomes and nuclei. The availability of the nuclear antigen was cell cycle-dependent; however, permeabilization of cells before fixation revealed that the antigen was present throughout the cell cycle. The nuclear antigen was exposed during prophase and was released from the nucleus upon nuclear envelope breakdown filling the cytoplasm of the mitotic cell. Antigenic material re-accumulated at daughter nuclei and was concealed during G1 phase. Detergent extraction of the cytoplasmic antigen from mitotic cells enabled localization of antigens to centrosomes, kinetochores, and the furrowing region/midbody. Immunoblot analysis of cells of a variety of species of origin identified an approximate 250 kD polypeptide as corresponding to the nuclear antigen, whereas polypeptides of 107/117 kD as well as approximately 250 kD accounted for the mitotic cytoplasmic antigens. No polypeptides could be associated with antigens at centrosomes, kinetochores, or midbodies. This MAb joins the antibody preparations previously reported that describe nuclear antigens, or epitopes on antigens, enhanced at mitosis.  相似文献   

4.
Immunofluorescent staining of mitotic centrosomes and spindles by anti-p53 antibodies was observed in the embryonic chick epiblast by epifluorescence microscopy and in three human cancer cell lines, an SV40-immortalized cell line, and a normal human fibroblast culture by confocal microscopy. In the chick epiblast, the centrosomes stained from early prophase through to the formation of the G1 nuclei and the spindle fibers stained from prophase through to telophase. In the human cells, the staining was observed from late prophase to telophase. The epiblast was stained by the anti-p53 antibodies DO-1, Ab-6, and Bp53-12. The human cells were also stained by these antibodies as well as by other anti-p53 antibodies. Preabsorption of DO-1 and Bp53-12 with purified tubulin did not diminish the immunostaining, showing that the antibodies were not reacting with tubulin in the mitotic centrosomes and spindles. The immunostaining in the chick epiblast was very clearly localized to the mitotic centrosomes and spindles, revealing a cytoplasmic location for p53 during mitosis and accounting for earlier reports of an association between p53, tubulin, and centrosomes. The localization of p53 to the spindle supports an involvement of p53 in spindle function.  相似文献   

5.
A griseofulvin-resistant Chinese hamster ovary (CHO) mutant (Grs-2) which has an altered beta-tubulin subunit as well as wild-type beta-tubulin is temperature-sensitive (ts) for growth at 40.5 degrees C. This growth defect appears to result from the formation of abnormal mitotic spindles at the non-permissive temperature (Abraham, I et al., J cell biol 97 (1983) 1055) [19]. Light microscopy of spindles isolated from mutant cells cultured at the permissive temperature showed a typical bipolar morphology, whereas spindles isolated at the non-permissive temperature were multipolar. In order to study the role of tubulin in spindle formation, we analyzed the tubulin composition of the multipolar spindles. Two-dimensional gels and immunoblotting analysis of one-dimensional electrophoretic gels stained with monoclonal anti-Chinese hamster brain beta-tubulin antibody revealed that both mutant and wild-type beta-tubulins were present in similar proportions in both bipolar spindles at 37 degrees C and multipolar spindles at 40.5 degrees C. The ratio between wild-type and mutant tubulin in spindles was also found to be the same as in the cytoplasmic microtubule network in interphase cells, providing evidence that the mutant beta-tubulin appeared to be incorporated in a similar manner into both interphase and mitotic microtubule structures. In vitro microtubule polymerization onto centrosomes prepared from mutant Grs-2 demonstrated that 80% of the sites for microtubule nucleation were without centrioles, suggesting fragmentation of pericentriolar material away from centrioles. This may be one of the causes of multipolar spindle formation in the mutant cells. These results, therefore, suggest that abnormal formation of spindles in mutant cells is due not to the presence of the mutant tubulin per se, but to the abnormal behavior of this mutant tubulin in the cellular environment during mitosis or abnormal interaction with other components in the spindle at 40.5 degrees C.  相似文献   

6.
M Kallajoki  K Weber    M Osborn 《The EMBO journal》1991,10(11):3351-3362
Six monoclonal antibodies identify a 210 kDa polypeptide which shows a cell cycle specific redistribution from the nucleus to the mitotic spindle. In interphase cells this polypeptide was localized in the nucleus and behaved during differential cell extraction as a component of the nuclear matrix. It accumulated in the centrosome region at prophase, in the pole regions of the mitotic spindle at metaphase and in crescents at the poles in anaphase, and reassociated with the nuclei as they reformed in telophase. Due to its staining pattern we call the protein the Spindle Pole-Nucleus (SPN) antigen. The localization of SPN antigen during mitosis was dependent on the integrity of the spindle since treatment of cells with nocodazole resulted in the dispersal of SPN antigen into many small foci which acted as microtubule organizing centres when the drug was removed. The SPN antigen was present in nuclei and mitotic spindles of all human and mammalian cell lines and tissues so far tested. When microinjected into the cytoplasm or nuclei of HeLa cells, one antibody caused a block in mitosis. Total cell number remained constant or decreased slightly after 24 h. At this time, about half the cells were arrested in a prometaphase-like state and revealed aberrant spindles. Many other cells were multinucleate. These results show that the SPN antigen is a protein associated with mitotic spindle microtubules which has to function correctly for the cell to complete mitosis.  相似文献   

7.
alpha-Tubulin in the microtubules of mouse oocytes and embryos is acetylated in a specific spatial and temporal sequence. In the unfertilized oocyte, a monoclonal antibody to the acetylated form of alpha-tubulin is bound predominantly at the poles of the arrested metaphase meiotic spindle. The labeling intensity of the spindle microtubules is weaker as observed by immunofluorescence using oocytes double-labeled for total tubulin and acetylated alpha-tubulin, and as measured by immuno high-voltage electron microscopy (immunoHVEM) with colloidal gold; cytasters are not acetylated. At meiotic anaphase, the spindle becomes labeled, and by telophase and during second polar body formation only the meiotic midbody is acetylated. The sperm axoneme retains its acetylation after incorporation though the interphase microtubules are not detected. First mitosis follows a pattern similar to that observed at the second meiosis and during interphase only the mitotic midbodies are acetylated. After treatment with cold, colcemid, or griseofulvin, the remaining stable microtubules are acetylated, but immunoHVEM observations suggest that these fibers might not have been acetylated prior to microtubule disruption. Taxol stabilization does not alter acetylation patterns. Acetylated microtubules are not necessarily old microtubules since acetylated fibers are observed at 30 sec after cold recovery. These results show the presence of acetylated microtubules during meiosis and mitosis and demonstrate a cell-cycle-specific pattern of acetylation, with acetylated microtubules found at the centrosomes at metaphase, an increase in spindle labeling at anaphase, and the selective deacetylation of all but midbody microtubules at telophase.  相似文献   

8.
The molecular composition of two morphologically distinct microtubule-organizing centers (MTOCs) was compared by probing with monoclonal antibodies raised against (i) nucleus-associated bodies (NABs) isolated in a complex with nuclei from the cellular slime mold Dictyostelium discoideum and (ii) mammalian mitotic spindles isolated from Chinese hamster ovary (CHO) cells. The staining patterns observed by immunofluorescence microscopy in whole CHO cells and Dictyostelium amoebae showed that the distribution of thirteen MTOC antigens is heterogeneous. Not all antibodies recognized the MTOC in both interphase and mitosis. Most of the anti-MTOC antibodies cross-reacted with other cellular organelles such as nuclei, Golgi apparatus-like aggregates and cytoskeletal elements. Two antibodies, CHO3 and AX3, recognized phosphorylated epitopes present in both mammalian centrosomes and Dictyostelium NABs. On immunoblots, most of the antibodies showed multiple bands, often of high molecular weight, indicating that the antigenic determinants are shared among different molecules. One antibody inhibited the regrowth of microtubules onto centrosomes in vitro after addition of exogenous tubulin to detergent-lysed CHO cells on coverslips; this antibody binds to an antigen(s) that might be essential for the microtubule-nucleating activity of centrosomes. These observations demonstrate that molecular components in different MTOCs exhibit a variety of distinct subcellular localizations and functional properties, and that some antigenic molecules have been conserved among morphologically distinct MTOCs.  相似文献   

9.
Components of centrosomes are those among cellular proteins that are phosphorylated at the transition from interphase to mitosis. Using an anti-phosphoprotein antibody (CHO3) directed against isolated mitotic CHO spindles, we identified a 225-kDa centrosomal phosphocomponent in mitotic CHO cells and in cleaving sea urchin eggs. The 225-kDa protein is tightly attached to the centrosome, which allowed us to separate it from other spindle-associated factors by high salt extraction. Phosphorylation of the 225-kDa protein occurred during mitosis. This was shown by isotope labeling on gels as well as by visualization of thiophosphorylated centrosomes with an anti-thiophosphoprotein antibody (M. Cyert, T. Scherson, and M. W. Kirschner, 1988, Dev. Biol. 129, 209) after preincubation with ATP-gamma-S in vivo and in vitro. Mitotic spindles isolated from CHO cells retained their ability to phosphorylate the centrosomal component, whereas sea urchin spindles did not, possibly due to loss or inactivation of protein kinase(s) during spindle isolation. The enzyme associated with isolated CHO spindles was extractable by high salt treatment and was capable of phosphorylating many spindle components, including the 225-kDa centrosomal protein of CHO cells and sea urchin embryos. Such high salt extracts contain protein kinases, including cell cycle control protein kinase p34cdc2, suggesting that the enzyme responsible for centrosomal phosphorylation could be p34cdc2 or other downstream mitotic kinases activated by the action of p34cdc2.  相似文献   

10.
Survivin is a member of the chromosomal passenger complex implicated in kinetochore attachment, bipolar spindle formation, and cytokinesis. However, the mechanism by which survivin modulates these processes is unknown. Here, we show by time-lapse imaging of cells expressing either green fluorescent protein (GFP)-alpha-tubulin or the microtubule plus-end binding protein GFP-EB1 that depletion of survivin by small interfering RNAs (siRNAs) increased both the number of microtubules nucleated by centrosomes and the incidence of microtubule catastrophe, the transition from microtubule growth to shrinking. In contrast, survivin overexpression reduced centrosomal microtubule nucleation and suppressed both microtubule dynamics in mitotic spindles and bidirectional growth of microtubules in midbodies during cytokinesis. siRNA depletion or pharmacologic inhibition of another chromosomal passenger protein Aurora B, had no effect on microtubule dynamics or nucleation in interphase or mitotic cells even though mitosis was impaired. We propose a model in which survivin modulates several mitotic events, including spindle and interphase microtubule organization, the spindle assembly checkpoint and cytokinesis through its ability to modulate microtubule nucleation and dynamics. This pathway may affect the microtubule-dependent generation of aneuploidy and defects in cell polarity in cancer cells, where survivin is commonly up-regulated.  相似文献   

11.
A monoclonal antibody, G8, which recognizes a form of tubulin (G8-tubulin) with a novel distribution in Rat-1 cells and Potorous tridactylis kidney (Ptk-2) cells was isolated. G8 labeled the interphase cytoskeleton of Rat-1 fibroblasts but not mitotic spindles or midbodies. G8 also stained a fiber network in some but not all Ptk-2 interphase cells but did not label mitotic spindles or midbodies in these cells. G8-tubulin is the only identified tubulin known to be absent from these structures. This distribution may indicate that G8-tubulin possesses functional specificity.  相似文献   

12.
Human survivin is a kinetochore-associated passenger protein   总被引:48,自引:0,他引:48  
Survivin, a dimeric baculovirus inhibitor of apoptosis repeat (BIR) motif protein that is principally expressed in G2 and mitosis, has been associated with protection against apoptosis of cells that exit mitosis aberrantly. Mammalian survivin has been reported to associate with centrosomes and with the mitotic spindle. We have expressed a human hemagglutinin-tagged survivin plasmid to determine its localization, and find instead that it clearly acts as a passenger protein. In HeLa cells, survivin first associates with the kinetochores, and then translocates to the spindle midzone during anaphase and, finally, to the midbody during cell cleavage. Its localization is similar to that of TD-60, a known passenger protein. Both a point mutation in the baculovirus IAP repeat motif (C84A) and a COOH-terminal deletion mutant (Delta106) of survivin fail to localize to either kinetochores or midbodies, but neither interferes with cell cleavage. The interphase localization of survivin is cell cycle regulated since in permanently transfected NIH3T3 cells it is excluded from the nuclei until G2, where it localizes with centromeres. Survivin remains associated with mitotic kinetochores when microtubule assembly is disrupted and its localization is thus independent of microtubules. We conclude that human survivin is positioned to have an important function in the mechanism of cell cleavage.  相似文献   

13.
A monoclonal antibody raised against mitotic spindles isolated from CHO cells ([CHO1], Sellitto, C., and R. Kuriyama. 1988. J. Cell Biol. 106:431-439) identifies an epitope that resides on polypeptides of 95 and 105 kD and is localized in the spindles of diverse organisms. The antigen is distributed throughout the spindle at metaphase but becomes concentrated in a progressively narrower zone on either side of the spindle midplane as anaphase progresses. Microinjection of CHO1, either as an ascites fluid or as purified IgM, results in mitotic inhibition in a stage-specific and dose-dependent manner. Parallel control injections with nonimmune IgMs do not yield significant mitotic inhibition. Immunofluorescence analysis of injected cells reveals that those which complete mitosis display normal localization of CHO1, whereas arrested cells show no specific localization of the CHO1 antigen within the spindle. Immunoelectron microscopic images of such arrested cells indicate aberrant microtubule organization. The CHO1 antigen in HeLa cell extracts copurifies with taxol-stabilized microtubules. Neither of the polypeptides bearing the antigen is extracted from microtubules by ATP or GTP, but both are approximately 60% extracted with 0.5 M NaCl. Sucrose gradient analysis reveals that the antigens sediment at approximately 11S. The CHO 1 antigen appears to be a novel mitotic MAP whose proper distribution within the spindle is required for mitosis. The properties of the antigen(s) suggest that the corresponding protein(s) are part of the mechanism that holds the antiparallel microtubules of the two interdigitating half spindles together during anaphase.  相似文献   

14.
We identified a human homolog of Drosophila warts tumor suppressor gene, termed h-warts, which was mapped at chromosome 6q24-25.1. The h-warts protein has a serine/threonine kinase domain and is localized to centrosomes in interphase cells. However, it becomes localized to the mitotic apparatus, including spindle pole bodies, mitotic spindle, and midbody, in a highly dynamic manner during mitosis. Furthermore, h-warts is specifically phosphorylated in cells at mitotic phase, most likely by Cdc2 kinase. These findings suggest that h-warts functions as a component of the mitotic apparatus and is involved in proper progression of mitosis.  相似文献   

15.
16.
The organization of microtubules within the surface caps of Drosophila embryos is described for the mitotic cycles of the syncytial blastoderm stage (particularly cycle 10), and for the subsequent cellularization process. Tubulin was labelled with the well characterized monoclonal antibody YL 1/2 (Kilmartin et al., J cell biol 93 (1982) 576). Each surface cap was found to contain an array of microtubules running around the nucleus. The microtubules originated at prominent centrosomes located close to the apical surface of each cap nucleus. During mitosis the spindle microtubules stained strongly for tubulin. A novel finding was that the spindle microtubules of the interzone region appeared to reduce their connections with the centrosomes at the end of anaphase. The spindle remnant remained in position during telophase but then became smaller in size, disappearing by interphase. At this phase of the cell cycle duplication of the aster centrosomes occurred. The cellular blastoderm stage was marked by a change in the main axis of microtubule orientation. The centrosomes of each cap separated somewhat and formed initiation centres for the development of a well developed basket of microtubules around each nucleus, but now perpendicular to the surface. The microtubule baskets were seen to extend in parallel with nuclear elongation, but not in concert with growth of the cell membranes, which extended some way beneath the bases of the nuclei.  相似文献   

17.
In Sciara, unfertilized embryos initiate parthenogenetic development without centrosomes. By comparing these embryos with normal fertilized embryos, spindle assembly and other microtubule-based events can be examined in the presence and absence of centrosomes. In both cases, functional mitotic spindles are formed that successfully proceed through anaphase and telophase, forming two daughter nuclei separated by a midbody. The spindles assembled without centrosomes are anastral, and it is likely that their microtubules are nucleated at or near the chromosomes. These spindles undergo anaphase B and successfully segregate sister chromosomes. However, without centrosomes the distance between the daughter nuclei in the next interphase is greatly reduced. This suggests that centrosomes are required to maintain nuclear spacing during the telophase to interphase transition. As in Drosophila, the initial embryonic divisions of Sciara are synchronous and syncytial. The nuclei in fertilized centrosome-bearing embryos maintain an even distribution as they divide and migrate to the cortex. In contrast, as division proceeds in embryos lacking centrosomes, nuclei collide and form large irregularly shaped nuclear clusters. These nuclei are not evenly distributed and never successfully migrate to the cortex. This phenotype is probably a direct result of a failure to form astral microtubules in parthenogenetic embryos lacking centrosomes. These results indicate that the primary function of centrosomes is to provide astral microtubules for proper nuclear spacing and migration during the syncytial divisions. Fertilized Sciara embryos produce a large population of centrosomes not associated with nuclei. These free centrosomes do not form spindles or migrate to the cortex and replicate at a significantly reduced rate. This suggests that the centrosome must maintain a proper association with the nucleus for migration and normal replication to occur.  相似文献   

18.
19.
To examine the behavior of microtubule-associated proteins (MAPs) in living cells, MAP 4 and MAP 2 have been derivatized with 6-iodoacetamido-fluorescein, and the distribution of microinjected MAP has been analyzed using a low light level video system and fluorescence redistribution after photobleaching. Within 1 min following microinjection of fluoresceinated MAP 4 or MAP 2, fluorescent microtubule arrays were visible in interphase or mitotic PtK1 cells. After cold treatment of fluorescent MAP 2-containing cells (3 h, 4 degrees C), microtubule fluorescence disappeared, and the only fluorescence above background was located at the centrosomes; microtubule patterns returned upon warming. Loss of microtubule immunofluorescence after nocodozole treatment was similar in MAP-injected and control cells, suggesting that injected fluorescein-labeled MAP 2 did not stabilize microtubules. The dynamics of the MAPs were examined further by FRAP. FRAP analysis of interphase cells demonstrated that MAP 2 redistributed with half-times slightly longer (60 +/- 25 s) than those for MAP 4 (44 +/- 20 s), but both types of MAPs bound to microtubules in vivo exchanged with soluble MAPs at rates exceeding the rate of tubulin turnover. These data imply that microtubules in interphase cells are assembled with constantly exchanging populations of MAP. Metaphase cells at 37 degrees C or 26 degrees C showed similar mean redistribution half-times for both MAP 2 and MAP 4; these were 3-4 fold faster than the interphase rates (MAP 2, t1/2 = 14 +/- 6 s; MAP 4, t1/2 = 17 +/- 5 s). The extent of recovery of spindle fluorescence in MAP-injected cells was to 84-94% at either 26 or 37 degrees C. Although most metaphase tubulin, like the MAPs, turns over rapidly and completely under physiologic conditions, published work shows either reduced rates or extents of turnover at 26 degrees C, suggesting that the fast mitotic MAP exchange is not simply because of fast tubulin turnover. Exchange of MAP 4 bound to telophase midbodies occurred with dynamics comparable to those seen in metaphase spindles (t1/2 = approximately 27 s) whereas midbody tubulin exchange was slow (greater than 300 s). These data demonstrate that the rate of MAP exchange on microtubules is a function of time in the cell cycle.  相似文献   

20.
Mitosis is a fundamental process in the development of all organisms. The mitotic spindle guides the cell through mitosis as it mediates the segregation of chromosomes, the orientation of the cleavage furrow, and the progression of cell division. Birth defects and tissue-specific cancers often result from abnormalities in mitotic events. Here, we report a proteomic study of the mitotic spindle from Chinese Hamster Ovary (CHO) cells. Four different isolations of metaphase spindles were subjected to Multi-dimensional Protein Identification Technology (MudPIT) analysis and tandem mass spectrometry. We identified 1155 proteins and used Gene Ontology (GO) analysis to categorize proteins into cellular component groups. We then compared our data to the previously published CHO midbody proteome and identified proteins that are unique to the CHO spindle. Our data represent the first mitotic spindle proteome in CHO cells, which augments the list of mitotic spindle components from mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号