首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated genetic diversity in West European populations of the fungal pathogen Microbotryum violaceum in sympatric, parapatric and allopatric populations of the host species Silene latifolia and S. dioica, using four polymorphic microsatellite loci. In allopatric host populations, the fungus was highly differentiated by host species, exhibiting high values of F(ST) and R(ST), and revealed clear and distinct host races. In sympatric and parapatric populations we found significant population differentiation as well, except for one sympatric population in which the two host species grew truly intermingled. The mean number of alleles per locus for isolates from each of the host species was significantly higher in sympatric/parapatric than in allopatric populations. This suggests that either gene flow between host races in sympatry, or in case of less neutral loci, selection in a more heterogeneous host environment can increase the level of genetic variation in each of the demes. The observed pattern of host-related genetic differentiation among these geographically spread populations suggest a long-term divergence between these host races. In sympatric host populations, both host races presumably come in secondary contact, and host-specific alleles are exchanged depending on the amount of fungal gene flow.  相似文献   

2.
Eight polymorphic microsatellites were isolated from the Greek smooth newt (Lissotriton vulgaris graecus) using a microsatellite enrichment protocol and selective hybridization with a biotinylated (AC)(11) probe. The loci showed different variation patterns in a single breeding population (32 individuals) with mean number of alleles at 5.0 and mean observed heterozygosity at 0.520. The amplification success also in the nominotypical subspecies favours the use of these microsatellite loci in population genetic analyses as well as in the study of contact zones between smooth newt subspecies.  相似文献   

3.
Highly variable loci can provide insight into the recognition of species, evolutionarily significant units (ESUs) and management units (MUs). In general, the ESU and MU categories are thought to be reflective of adaptive differences between them. Here we examine this premise by presenting a comprehensive examination of genetic variation for both microsatellite loci and a major histocompatibility complex (MHC) locus, thought to be of adaptive significance, in the endangered Sonoran topminnow. The extent of variation for the microsatellite loci and the MHC gene within the 13 populations of the Gila topminnow is highly correlated, suggesting that nonselective factors have played an important role in influencing variation within and between populations for the MHC locus. Therefore, using all of these loci, we found that the eight natural populations of the Gila topminnow fell into two different ESUs, one of which had four different MUs. The source of the Boyce Thompson sample, a population that was used extensively for restocking, appeared to be Monkey Spring. The source of the Watson Wash population also appeared to be Monkey Spring (or Boyce Thompson). The newly colonized Santa Cruz River population, which had the most genetic variation of any Gila topminnow population, appeared to descend primarily from Sonoita Creek populations. The Yaqui topminnow, presently considered another subspecies of the Sonoran topminnow, was very distinct for both microsatellite (only two of 25 alleles found in the Yaqui were in any of the Gila topminnow samples) and MHC alleles (nonoverlapping sets of alleles for the two groups). As a result, it appeared that the taxonomic status of the two subspecies should be re-evaluated and that full species status for Gila and Yaqui topminnows was appropriate. There was evidence for the importance of long-term selection at the MHC locus in the higher rate of nonsynonymous than synonymous substitution. In addition, there appeared to have been a duplication of the MHC locus that was present in most of the fish in six of the natural populations of the Gila topminnow.  相似文献   

4.
Morphometric variation of 11 characters was studied in 14 samples of Rana arvalis from allopatric population groups in Central Europe, representing two subspecies formerly recognised: R. a. arvalis and R. a. wolterstorffi. All samples from Poland (nine) were collected from the area, which is believed to be populated by the nominal form. In addition, the isolated population of R. arvalis from the Eastern Carpathians of Romania was classified to that form. All the Hungarian samples fall into the range of R. a. wolterstorffi. No significant differences in body size between sexes and among the populations from the three geographic regions (Poland, Hungary and Romanian Eastern Carpathians) were found. Multivariate analysis of the differences in body shape among groups showed that the populations from Hungary differed from the nominal form mainly in the relative hindlimb length. However, substantial overlap in overall shape differences resulted in a relatively low percentage of correct classifications to the respective geographic groups in the Discriminant Analysis. Large intrapopulation variation in the values of the two ratios (SVL/TL and TL/IMT) formerly used for differentiate the two European subspecies of R. arvalis makes them unreliable characters for distinguishing the two forms. The pattern of morphometric variation does not match the overall genetic divergence of the R. arvalis populations, which suggests that the body shape differences in this species result from the phenotypic plasticity correlated with local climatic factors.  相似文献   

5.
We developed 18 new microsatellite loci for the endangered Egyptian vulture (Neophron percnopterus). Microsatellite loci were screened for variation in two different populations belonging to separate subspecies: the nominal N. p. percnopterus and the Canarian N. p. majorensis. Mean expected heterosygosities were respectively 0.51 and 0.46, while the mean number of alleles per locus was 4.7 and 3.9. These new markers allow further genetic studies for the endangered Canarian Egyptian Vulture.  相似文献   

6.
The possibly distinct Carpathian red deer was compared genetically to other European populations. We screened 120 red deer specimens from Serbia, the Romanian lowland and the Romanian Carpathians for genetic variability using 582 bp of the mitochondrial control region and nine polymorphic nuclear microsatellite loci. The study aimed at a population genetic characterization of the Carpathian red deer, which are often treated as a distinct subspecies (Cervus elaphus montanus). The genetic integrity of the Carpathian populations was confirmed through the haplotype distribution, private alleles and genetic distances. The Carpathian red deer are thus identified as one of the few remaining natural populations of this species, deserving special attention among game and conservation biologists. The history of the populations studied, in particular the introduction of Carpathian red deer into Romanian lowland areas in the 20th century, was reflected by the genetic data.  相似文献   

7.
We isolated seven novel polymorphic microsatellite DNA loci from the burrowing parrot (Cyanoliseus patagonus) and optimised them for future studies of population differentiation and genetic variation. The loci were screened for polymorphism using 38 samples from wild individuals from three neighbouring colonies in Argentina. The primers amplified highly variable loci characterised by 3–10 alleles per locus and their observed and expected heterozygosities ranged from 0.15 to 0.78 and 0.15 to 0.81, respectively. When we analysed 52 samples across Argentina and Chile, we found strong genetic differentiation between the Chilean and the Argentinean subspecies as well as significant differentiation between two geographically separated subspecies within Argentina. Our results indicate the suitability of these microsatellites for investigating further questions regarding the population genetics in this species.  相似文献   

8.
Delphinium variegatum is subdivided into three subspecies: D. v. variegatum is widespread in central and northern California, while D. v. kinkiense (an endangered taxon) and D. v. thornei are endemic to San Clemente Island off the coast of southern California. Electrophoretic data for 19 loci were collected from 7 populations of the mainland subspecies and all 24 known populations of the two insular endemic subspecies. Populations of the widespread mainland subspecies have more polymorphic loci (33.6% vs. 24.5%) and more alleles per polymorphic locus (2.61 vs. 2.15) than the insular endemic subspecies. However, observed heterozygosities are lower in the mainland subspecies (0.041 vs. 0.071), presumably due to lower levels of outcrossing (t = 0.464 vs. 0.895). Expected heterozygosities are similar (0.064 vs. 0.074) due to lower alternative allele frequencies in populations of the mainland subspecies (mean q = 0.075 vs. 0.190). Populations of the two insular subspecies are almost equivalent genetically (mean I = 0.997) regardless of taxonomic designation or geographic location. In contrast, one of the mainland populations is genetically well differentiated from the others. If this exceptional population is excluded, the mainland subspecies partitions genetic diversity similarly to the island subspecies, with most variation being found within populations (G(ST) = 0.073 vs. 0.030).  相似文献   

9.
Two acorn barnacles, Tetraclita japonica japonica and Tetraclita japonica formosana, have been recently reclassified as two subspecies, because they are morphologically similar and genetically indistinguishable in mitochondrial DNA sequences. The two barnacles are distinguishable by parietes colour and exhibit parapatric distributions, coexisting in Japan, where T. j. formosana is very low in abundance. Here we investigated the genetic differentiation between the subspecies using 209 polymorphic amplified fragment length polymorphism markers and 341 individuals from 12 locations. The subspecies are genetically highly differentiated (ΦCT = 0.267). Bayesian analysis and principal component analysis indicate the presence of hybrids in T. j. formosana samples from Japan. Strong differentiation between the northern and southern populations of T. j. japonica was revealed, and a break between Taiwan and Okinawa was also found in T. j. formosana. The differentiation between the two taxa at individual loci does not deviate from neutral expectation, suggesting that the oceanographic pattern which restricts larval dispersal is a more important factor than divergent selection in maintaining genetic and phenotypic differentiation. The T. j. formosana in Japan are probably recent migrants from Okinawa, and their presence in Japan may represent a poleward range shift driven by global warming. This promotes hybridization and might lead to a breakdown of the boundary between the subspecies. However, both local adaptation and larval dispersal are crucial in determining the population structure within each subspecies. Our study provides new insights into the interplay of local adaptation and dispersal in determining the distribution and genetic structure of intertidal biota and the biogeography of the northwestern Pacific.  相似文献   

10.
Although F(ST) values are widely used to elucidate population relationships, in some cases, when employing highly polymorphic loci, they should be regarded with caution, particularly when subspecies are under consideration. Tripterygion delaisi presents two subspecies that were investigated here, using 10 microsatellite loci. A Bayesian approach allowed us to clearly identify both subspecies as two different evolutionary significant units. However, low F(ST) values were found between subspecies as a consequence of the large number of alleles per locus, while homoplasy could be disregarded as indicated by the standardized genetic distance G'(ST). Heterozygosity saturation was observed in highly polymorphic loci containing more than 15 alleles, and this threshold was used to define two loci pools. The less variable loci pool revealed higher genetic variance between subspecies, while the more variable pool showed higher genetic variance between populations. Furthermore, higher differentiation was also observed between populations using G'(ST) with the more variable loci. Nonetheless, a more reliable population structure within subspecies was obtained when all loci were included in the analyses. In T. d. xanthosoma, isolation by distance was detected between the eight analysed populations, and six genetically homogeneous clusters were inferred by Bayesian analyses that are in accordance with F(ST) values. The neighbourhood-size method also indicated rather small dispersal capabilities. In conclusion, in fish with limited adult and larval dispersal capabilities, continuous rocky habitat seems to allow contact between populations and prevent genetic differentiation, while large discontinuities of sand or deep-water channels seems to reduce gene flow.  相似文献   

11.
Allozymic variation in 22 loci in several Yugoslavian populations of four subspecies of the smooth newt Triturus vulgaris, has been analyzed. The frequency of private alleles and the coefficient of genetic differentiation, FST, give very different indirect estimates of the effective number of migrants per generation, Nm. However, such Nm estimates, in most cases higher than 1, imply that gene flow between populations is large enough as to prevent differentiation by random drift. In the case of T.v. vulgaris, of which sixteen populations amply distributed through Yugoslavia were sampled, there is evidence that frequent extinction and recolonization processes might be responsible for the observed genetic structure. This conclusion has been reached after testing the correlation between genetic, environmental and geographical matrices.  相似文献   

12.
Howard A.  Ross 《Journal of Zoology》1983,201(3):351-362
Several hundred starlings (Sturnus vulgaris) were introduced to New Zealand from Great Britain during1860–1880. Allozymic variation at 24 loci was analysed in winter populations sampled at six localities in each country. New Zealand samples had fewer alleles per locus but the same mean heterozygosity (3% per locus) and proportion of polymorphic loci as did British samples. Winter populations in Britain contain European migrants and were genetically homogeneous. Paradoxically, genetic distances among derived New Zealand populations, and between New Zealand and Great Britain were much greater, similar in magnitude to those observed among allopatric populations in other avian species. The geographical pattern of genetic variation in New Zealand suggests that reproductive isolation of populations and random drift have contributed to the development of population differentiation.  相似文献   

13.
Noninvasive genetic techniques have become indispensible tools in wildlife conservation and management. Here, we report the development of the first set of microsatellite markers for the Eurasian beaver (Castor fiber). All 15 loci show considerable variation within the sampled region in southwestern Germany, with number of alleles ranging from two to six alleles per locus. A comparison between tissue and hair samples revealed that amplification success was only slightly lower for hair samples, making their use in noninvasive monitoring feasible. Despite some evidence for false alleles and allelic dropout, 77% of all loci were genotyped successfully among all hair samples and loci tested. The developed markers will be used for subspecies differentiation and reconstruction of dispersal routes, following reintroductions in Central Europe.  相似文献   

14.
选择12对微卫星标记检测了于2011年采集自元江(红河上游中国江段)5个样点192尾鲤的群体遗传多样性.共检测到201个等位基因,每个位点等位基因2-27个.各群体各位点平均等位基因(NA)12.25-14.67个,平均有效等位基因(NE)8.28-9.73个,平均观察杂合度(Ho)o.7765-0.8037,平均期望杂合度(HE)0.7761-0.8080,平均多态信息含量(PIC)0.7534-0.7843.元江鲤种群192个个体各位点NA、NE、Ho、HE、PIC分别为16.50、11.26、0.7927、0.8049、0.7966,种群遗传多样性水平高.元江鲤群体之间遗传分化小,可作为一个种群管理单元进行管理.增殖放流要防止遗传多样性丧失.  相似文献   

15.
Mitochondrial DNA variation in the cytochrome b (cyt b) gene and the control region was examined in the red fox Vulpes vulpes from Japan, with special focus on the population divergence between Hokkaido and northern Honshu. Resultant haplotypes from Hokkaido were subdivided into two distinct groups (I and II), with an average genetic distance of 0.027 for cyt b. Divergence time is roughly estimated to be 1-2 million years ago, given that the conventional divergence rate of the mammalian cyt b gene is 2% per million years. Notably, Group II was only found in Hokkaido, whereas Group I comprised haplotypes from Honshu, Kyushu (Japan), eastern Russia, and Europe, as indicated by a comparison of our own data to the literature. On the other hand, judging from constructed trees, Group I haplotypes from Hokkaido appeared to differ from those from other parts of Japan, i.e., Honshu and Kyushu. This implies that Blakiston's Line, which demarcates the boundary between Hokkaido and Honshu, has been an effective barrier and has allowed the structuring of genetic variation in maternal lineages. Thus, these results suggest that the Hokkaido population, which is sometimes referred to as the distinct subspecies V. v. schrencki, has its own genetic background with multiple migration events and differs from the parapatric subspecies V. v. japonica found in Honshu and Kyushu.  相似文献   

16.
G A Wilson  C Strobeck 《Génome》1999,42(3):483-496
There are two recognized subspecies of bison, wood (Bison bison athabascae) and plains (Bison bison bison) bison. The establishment of most bison populations from a small number of individuals has raised concerns about their genetic variation. To this end, 11 bison populations were surveyed with 11 microsatellite loci in order to calculate genetic variation and genetic distances. Mean number of alleles ranged between 3.18 at Antelope Island State Park (Utah) and 6.55 at Wood Buffalo National Park (Alberta and Northwest Territories). Mean heterozygosity ranged from 0.295 at Antelope Island State Park to 0.669 at Custer State Park (South Dakota). The amount of genetic variability present in the bison populations as measured by mean number of alleles and overall probability of identity was found to correlate with the number of founders for all sampled populations. The G-test for heterogeneity revealed some evidence for the existence of subpopulations at Wood Buffalo National Park, however very small genetic distances between these subpopulations suggest that nuclear material from the plains bison introduced into Wood Buffalo National Park has diffused throughout the park. Genetic distances between the sampled populations were generally larger between than within the two bison subspecies.  相似文献   

17.
Although quite a lot is known about the genetic structure of the polytypic species Mus musculus at the periphery of its range, the centre of origin and dispersion of the species remains unknown. To investigate the amount of genetic subdivision that occurs in the central parts of its range, we analysed the genetic variation in four new samples of mice coming from Iran, Pakistan, northern and southern India using 35 autosomal protein loci and restriction fragment length polymorphisms of three genes of the Vβ gene complex of the immune system. The variation was then compared with that found in the subspecies occupying the peripheral regions of the species range. The two samples from the northern part of the Indian subcontinent were shown to be more heterozygous than the samples from any of the other regions. They also contain the majority of the alleles that exist in the differentiated subspecies at the periphery of the species range. A neighbour-joining analysis on Nei's genetic distances and a factorial analysis of correspondences on the allelic composition of each sample both place the Pakistani and Indian populations in a phylogenetically and genetically central position compared to the peripheral subspecies. These results suggest that the populations in this geographically central area have retained most of the ancestral polymorphisms, which in turn indicates that the Indian subcontinent is probably the cradle of the species. The nature of the genetic relationships between the various populations throughout the species range and the possibility that they form an incipient ring species are also discussed. Our results are in agreement with the classical model of geographic differentiation where genetic divergence in allopatry is considered to be the prime cause of subspecies formation that may eventually lead to partial reproductive isolation on secondary contact.  相似文献   

18.
Blood samples of 561 Lipizzan horses from subpopulations (studs) of seven European countries representing a large fraction of the breed's population were used to examine the genetic diversity, population subdivision and gene flow in the breed. DNA analysis based on 18 microsatellite loci revealed that genetic diversity (observed heterozygosity = 0.663, gene diversity = 0.675 and the mean number of alleles = 7.056) in the Lipizzan horse is similar to other horse breeds as well as to other domestic animal species. The genetic differentiation between Lipizzan horses from different studs, although moderate, was apparent (pairwise F(ST) coefficients ranged from 0.021 to 0.080). Complementary findings explaining the genetic relationship among studs were revealed by genetic distance and principal component analysis. One genetic cluster consisted of the subpopulations of Austria, Italy and Slovenia, which represent the classical pool of Lipizzan horse breeding. A second cluster was formed by the Croatian, Hungarian and Slovakian subpopulations. The Romanian subpopulation formed a separate unit. The largest genetic differentiation was found between the Romanian and Italian subpopulation. Genetic results are consistent with the known breeding history of the Lipizzan horse. Correct stud assignment was obtained for 80.9% and 92.1% of Lipizzan horses depending on the inclusion or exclusion of migrant horses, respectively. The results of the present study will be useful for the development of breeding strategies, which consider classical horse breeding as well as recent achievements of population and conservation genetics.  相似文献   

19.
Morton RA  Choudhary M  Cariou ML  Singh RS 《Genetica》2004,120(1-3):101-114
Comparison of synonymous and nonsynonymous variation/substitution within and between species at individual genes has become a widely used general approach to detect the effect of selection versus drift. The sibling species group comprised of two cosmopolitan (Drosophila melanogaster and Drosophila simulans) and two island (Drosophila mauritiana and Drosophila sechellia) species has become a model system for such studies. In the present study we reanalyzed the pattern of protein variation in these species, and the results were compared against the patterns of nucleotide variation obtained from the literature, mostly available for melanogaster and simulans. We have mainly focused on the contrasting patterns of variation between the cosmopolitan pair. The results can be summarized as follows: (1) As expected the island species D. mauritiana and D. sechellia showed much less variation than the cosmopolitan species D. melanogaster and D. simulans. (2) The chromosome 2 showed significantly less variation than chromosome 3 and X in all four species which may indicate effects of past selective sweeps. (3) In contrast to its overall low variation, D. mauritiana showed highest variation for X-linked loci which may indicate introgression from its sibling, D. simulans. (4) An average population of D. simulans was as heterozygous as that of D. melanogaster (14.4% v.s. 13.9%) but the difference was large and significant when considering only polymorphic loci (37.2% v.s. 26.1%). (5) The species-wise pooled populations of these two species showed similar results (all loci = 18.3% v.s. 20.0%, polymorphic loci = 47.2% v.s. 37.6%). (6) An average population of D. simulans had more low-frequency alleles than D. melanogaster, and the D. simulans alleles were found widely distributed in all populations whereas the D. melanogaster alleles were limited to local populations. As a results of this, pooled populations of D. melanogaster showed more polymorphic loci than those of D. simulans (48.0% v.s. 32.0%) but the difference was reduced when the comparison was made on the basis of an average population (29.1% v.s. 21.4%). (7) While the allele frequency distributions within populations were nonsignificant in both D. melanogaster and D. simulans, melanogaster had fewer than simulans, but more than expected from the neutral theory, low frequency alleles. (8) Diallelic loci with the second allele with a frequency less than 20% had similar frequencies in all four species but those with the second allele with a frequency higher than 20% were limited to only melanogaster the latter group of loci have clinal (latitudinal) patterns of variation indicative of balancing selection. (9) The comparison of D. simulans/D. melanogaster protein variation gave a ratio of 1.04 for all loci and 1.42 for polymorphic loci, against a ratio of approximately 2-fold difference for silent nucleotide sites. This suggests that the species ratios of protein and silent nucleotide polymorphism are too close to call for selective difference between silent and allozyme variation in D. simulans. In conclusion, the contrasting levels of allozyme polymorphism, distribution of rare alleles, number of diallelic loci and the patterns of geographic differentiation between the two species suggest the role of natural selection in D. melanogaster, and of possibly ancient population structure and recent worldwide migration in D. simulans. Population size differences alone are insufficient as an explanation for the patterns of variation between these two species.  相似文献   

20.
Two species of the genus Taricha are widely distributed. T. granulosa ranges from southern Alaska to central California. T. torosa is comprised of two described subspecies, T. t. torosa, which occupies much of the coast ranges of California, and T. t. sierrae, which inhabits the western slopes of the Sierra Nevada Mountains. A starch gel electrophoretic survey for genetic variation at 34 loci in four population samples of T. granulosa and at 40 loci in five population samples of T. torosa reveals differences among these taxa both in amounts of intrapopulational variability and in patterns of geographic variation. Average observed heterozygosity is 9.6%±0.3% in T. granulosa, 3.3%±0.5% in T. t. torosa, and 7.2%±1.2% in T. t. sierrae. Average numbers of alleles per locus and proportions of polymorphic loci are also highest in T. granulosa, intermediate in T. t. sierrae, and lowest in T. t. torosa. Oregon and California granulosa are genetically nearly as different as the subspecies of torosa, but geographic variation is continuous in the former. T. torosa on the other hand is comprised of three distinct gene pools—T. t. sierrae and northern and southern races of T. t. torosa. Strikingly different amounts of intrapopulational genetic variation and patterns of geographic variation may be explained by steadystate species differences, but historical causes may also exist.This work was supported by AEC Research Contract AT(04-3)34 and NSF Grant GB-42246 to F. J. Ayala and by an NIH predoctoral traineeship administered by the Department of Genetics, U.C. Davis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号