首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gene tree is an evolutionary reconstruction of the genealogical history of the genetic variation found in a sample of homologous genes or DNA regions that have experienced little or no recombination. Gene trees have the potential of straddling the interface between intra- and interspecific evolution. It is precisely at this interface that the process of speciation occurs, and gene trees can therefore be used as a powerful tool to probe this interface. One application is to infer species status. The cohesion species is defined as an evolutionary lineage or set of lineages with genetic exchangeability and/or ecological interchangeability. This species concept can be phrased in terms of null hypotheses that can be tested rigorously and objectively by using gene trees. First, an overlay of geography upon the gene tree is used to test the null hypothesis that the sample is from a single evolutionary lineage. This phase of testing can indicate that the sampled organisms are indeed from a single lineage and therefore a single cohesion species. In other cases, this null hypothesis is not rejected due to a lack of power or inadequate sampling. Alternatively, this null hypothesis can be rejected because two or more lineages are in the sample. The test can identify lineages even when hybridization and lineage sorting occur. Only when this null hypothesis is rejected is there the potential for more than one cohesion species. Although all cohesion species are evolutionary lineages, not all evolutionary lineages are cohesion species. Therefore, if the first null hypothesis is rejected, a second null hypothesis is tested that all lineages are genetically exchangeable and/or ecologically interchangeable. This second test is accomplished by direct contrasts of previously identified lineages or by overlaying reproductive and/or ecological data upon the gene tree and testing for significant transitions that are concordant with the previously identified lineages. Only when this second null hypothesis is rejected is a lineage elevated to the status of cohesion species. By using gene trees in this manner, species can be identified with objective, a priori criteria with an inference procedure that automatically yields much insight into the process of speciation. When one or more of the null hypotheses cannot be rejected, this procedure also provides specific guidance for future work that will be needed to judge species status.  相似文献   

2.
群体遗传结构中的基因流   总被引:26,自引:1,他引:26  
曲若竹  侯林  吕红丽  李海燕 《遗传》2004,26(3):377-382
群体遗传结构上的差异是遗传多样性的一种重要体现,对群体遗传结构的研究已有较久的历史,而其中的基因流研究近些年来越来越受到重视。它对群体遗传学、进化生物学、保护生物学、生态学有着极其重要的作用。虽然传统的群体遗传学能估测基因流大小,但它的精确性还有很大局限性。随着生物技术的进步,对基因流的研究逐渐向分子水平过渡,应用蛋白质电泳技术、分子标记技术(RAPD、RFLP、VNTR、ISSR、DNA测序等)方法对群体间基因流的流动水平进行了深入细致的研究。通过综述群体遗传结构的几种模式:陆岛模式、海岛模式、阶石模式、距离隔离模式、层次模式,以及在群体遗传结构的几种模式基础上的基因流的研究方法、作用、地位和近些年来研究者的研究成果,并指出了这些方法的局限性。  相似文献   

3.
Species often occur in subdivided populations as a consequence of spatial heterogeneity of the habitat. To describe the spatial organization of subpopulations, existing theory proposes three main population models: patchy population, metapopulation and isolated populations. These models differ in their predicted levels of connectivity among subpopulations, and in the risk that a subpopulation will go extinct. However, spatially discrete subpopulations are commonly considered to be organized as metapopulations, even though explicit tests of metapopulation assumptions are rare. Here, we test predictions of the three models on the basis of demographic and genetic data, a combined approach so far surprisingly little used in mobile organisms. From 2002 to 2005, we studied nine subpopulations of the wetland-restricted reed bunting ( Emberiza schoeniclus ) in the southeastern part of the Canton Zurich (Switzerland), from which local declines of this species have been reported. Here, wetlands are as small as 2.7 ha and separated through intensively used agricultural landscapes. Demographic data consisted of dispersal of colour-banded individuals among subpopulations, immigration rates and extinction-/recolonization dynamics. Genetic data were based on the distribution of genetic variability and gene flow among subpopulations derived from the analysis of nine microsatellite loci. Both demographic and genetic data revealed that the patchy population model best described the spatial organization of reed bunting subpopulations. High levels of dispersal among subpopulations, high immigration into the patchy population, and genetic admixture suggested little risk of extinction of both subpopulations and the entire patchy population. This study exemplifies the idea that spatially discrete subpopulations may be organized in ways other than a metapopulation, and hence has implications for the conservation of subpopulations and species.  相似文献   

4.
Finston T 《Molecular ecology》2002,11(10):1931-1946
Samples from 83 populations of salt lake Ostracods belonging to the genus Mytilocypris were collected from 74 saline lakes and ponds in the semi-arid regions of Australia. These populations were examined for variation at six polymorphic enzyme loci to diagnose breeding systems and to measure population structure, to investigate relative levels of gene flow in species with differing distributions and hence different presumed dispersal capabilities. Despite the occurrence of some populations in disjunct, peripheral, and recent ephemeral habitats, all populations of each species were found to reproduce sexually. Gene flow does occur on a local basis and appears to be facilitated by occupation in the same drainage basin for some species. There was considerable gene pool fragmentation among peripheral populations of four of the five species. Only one species, M. mytiloides, was relatively homogeneous across its range. It may be that gene flow is non-existent into peripheral populations because of poor dispersal abilities, or it may not be frequent enough to overcome local selective pressures. Regardless of these possibilities, the observed gene pool fragmentation has implications for allopatric speciation.  相似文献   

5.
The Old World bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae), is a globally distributed agricultural and horticultural insect pest. Despite the economic importance of this insect in Ethiopia, its genetic diversity and demographic history are poorly understood. We examined the nucleotide variation of the mitochondrial cytochrome c oxidase subunit I (COI) gene fragment of 74 H. armigera individuals from six collection sites in Ethiopia. We recorded 15 COI haplotypes in H. armigera, ten globally shared and five exclusive to Ethiopia (HaET15, HaET14, HaET10, HaET7, and HaET4). Haplotype HaET1 was the most widely geographically distributed and frequent (71.62%). Analysis of molecular variance (AMOVA) revealed a high and significant level of variation within H. armigera populations (θST  = −0.0135). Negative values of the neutrality test and nonsignificant index of mismatch distribution supported the demographic expansion of H. armigera populations in Ethiopia; furthermore, this was also supported by the nonsignificant values of the sum of squared deviations (SSD) and raggedness index (r). The high genetic variation and population expansion of H. armigera have immense implications for devising locally adapted management strategies in area‐wide integrated pest management IPM programs. However, a comprehensive study of H. armigera genetic diversity and population structure using various molecular markers is needed for future confirmation.  相似文献   

6.
Life‐history traits, especially the mode and duration of larval development, are expected to strongly influence the population connectivity and phylogeography of marine species. Comparative analysis of sympatric, closely related species with differing life histories provides the opportunity to specifically investigate these mechanisms of evolution but have been equivocal in this regard. Here, we sample two sympatric sea stars across the same geographic range in temperate waters of Australia. Using a combination of mitochondrial DNA sequences, nuclear DNA sequences, and microsatellite genotypes, we show that the benthic‐developing sea star, Parvulastra exigua, has lower levels of within‐ and among‐population genetic diversity, more inferred genetic clusters, and higher levels of hierarchical and pairwise population structure than Meridiastra calcar, a species with planktonic development. While both species have populations that have diverged since the middle of the second glacial period of the Pleistocene, most P. exigua populations have origins after the last glacial maxima (LGM), whereas most M. calcar populations diverged long before the LGM. Our results indicate that phylogenetic patterns of these two species are consistent with predicted dispersal abilities; the benthic‐developing P. exigua shows a pattern of extirpation during the LGM with subsequent recolonization, whereas the planktonic‐developing M. calcar shows a pattern of persistence and isolation during the LGM with subsequent post‐Pleistocene introgression.  相似文献   

7.
Populations of Sinojackia rehderiana are highly threatened and have small and scattered distribution due to habitat fragmentation and human activities. Understanding changes in genetic diversity, the fine-scale spatial genetic structure (SGS) at different life stages and gene flow of S. rehderiana is critical for developing successful conservation strategies for fragmented populations of this endangered species. In this study, 208 adults, 114 juveniles and 136 seedlings in a 50 × 100-m transect within an old-growth forest were mapped and genotyped using eight microsatellite makers to investigate the genetic diversity and SGS of this species. No significant differences in genetic diversity among different life-history stages were found. However, a significant heterozygote deficiency in adults and seedlings may result from substantial biparental inbreeding. Significant fine-scale spatial structure was found in different life-history stages within 19 m, suggesting that seed dispersal mainly occurred near a mother tree. Both historical and contemporary estimates of gene flow (13.06 and 16.77 m) indicated short-distance gene dispersal in isolated populations of S. rehderiana. The consistent spatial structure revealed in different life stages is most likely the result of limited gene flow. Our results have important implications for conservation of extant populations of S. rehderiana. Measures for promoting pollen flow should be taken for in situ conservation. The presence of a SGS in fragmented populations implies that seeds for ex situ conservation should be collected from trees at least 19-m apart to reduce genetic similarity between neighbouring individuals.  相似文献   

8.
9.
We studied population genetic variation and structure in the fire ant Solenopsis invicta using nuclear genotypic and mitochondrial DNA (mtDNA) sequence data obtained from samples collected throughout its native range. Geographic populations are strongly differentiated at both genomes, with such structure more pronounced in Brazil than in Argentina. Higher-level regional structure is evident from the occurrence of isolation-by-distance patterns among populations, the recognition of clusters of genetically similar, geographically adjacent populations by ordination analysis, and the detection of an mtDNA discontinuity between Argentina and Brazil coinciding with a previously identified landform of biogeographical relevance. Multiple lines of evidence from both genomes suggest that the ancestors of the ants we studied resembled extant northern Argentine S. invicta , and that existing Brazilian populations were established more recently by serial long-distance colonizations and/or range expansions. The most compelling evidence for this is the corresponding increase in F K (a measure of divergence from a hypothetical ancestor) and decrease in genetic diversity with distance from the Corrientes population in northern Argentina. Relatively deep sequence divergence among several mtDNA clades, coupled with geographical partitioning of many of them, suggests prolonged occupation of South America by S. invicta in more-or-less isolated regional populations. Such populations appear, in some cases, to have come into secondary contact without regaining the capacity to freely interbreed. We conclude that nominal S. invicta in its native range comprises multiple entities that are sufficiently genetically isolated and diverged to have embarked on independent evolutionary paths.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 541–560.  相似文献   

10.
Divergence with gene flow in the rock-dwelling cichlids of Lake Malawi   总被引:9,自引:0,他引:9  
Within the past two million years, more than 450 species of haplochromine cichlids have diverged from a single common ancestor in Lake Malawi. Several factors have been implicated in the diversification of this monophyletic clade, including changes in lake level and low levels of gene flow across limited geographic scales. The objectives of this study were to determine the effect of recent lake-level fluctuations on patterns of allelic diversity in the genus Metriaclima, to describe the patterns of population structure within this genus, and to identify barriers to migration. This was accomplished through an analysis of allele frequencies at four microsatellite loci. Twelve populations spanning four species within Metriaclima were surveyed. The effect of lake-level fluctuations can be seen in the reduced genetic diversity of the most recently colonized sites; however, genetic diversity is not depressed at the species level. Low levels of population structure exist among populations, yet some gene flow persists across long stretches of inhospitable habitat. No general barrier to migration was identified. The results of this study are interpreted with respect to several speciation models. Divergence via population bottlenecks is unlikely due to the large allelic diversity observed within each species. Genetic drift and microallopatric divergence are also rejected because some gene flow does occur between adjacent populations. However, the reduced levels of gene flow between populations does suggest that minor changes in the selective environment could cause the divergence of populations.  相似文献   

11.
IAN J. WANG 《Molecular ecology》2011,20(12):2480-2482
Landscape genetics and phylogeography both examine population‐level microevolutionary processes, such as population structure and gene flow, in the context of environmental and geographic variation. They differ in terms of the spatial and temporal scales they typically investigate, meaning that different genetic markers and analytical methods are better suited for testing the different hypotheses typically posed by each discipline. In a recent comment, Bohonak & Vandergast (2011) argue that I overlooked the value of mtDNA for landscape genetics in an article I published last year in Molecular Ecology (Wang 2010) and that a gap between landscape genetics and phylogeography, which I outlined, does not exist. Here, I clarify several points in my original article and summarize the commonly held viewpoint that different genetic markers are appropriate for drawing inferences at different temporal scales.  相似文献   

12.
Genetic effects of habitat fragmentation may be undetectable because they are generally a recent event in evolutionary time or because of confounding effects such as historical bottlenecks and historical changes in species'' distribution. To assess the effects of demographic history on the genetic diversity and population structure in the Neotropical tree Dipteryx alata (Fabaceae), we used coalescence analyses coupled with ecological niche modeling to hindcast its distribution over the last 21 000 years. Twenty-five populations (644 individuals) were sampled and all individuals were genotyped using eight microsatellite loci. All populations presented low allelic richness and genetic diversity. The estimated effective population size was small in all populations and gene flow was negligible among most. We also found a significant signal of demographic reduction in most cases. Genetic differentiation among populations was significantly correlated with geographical distance. Allelic richness showed a spatial cline pattern in relation to the species'' paleodistribution 21 kyr BP (thousand years before present), as expected under a range expansion model. Our results show strong evidences that genetic diversity in D. alata is the outcome of the historical changes in species distribution during the late Pleistocene. Because of this historically low effective population size and the low genetic diversity, recent fragmentation of the Cerrado biome may increase population differentiation, causing population decline and compromising long-term persistence.  相似文献   

13.
Previous studies of Partula land snails from the Society Islands, French Polynesia, have shown that populations within species are highly differentiated in terms of their morphology, behaviour, ecology and molecular genetic variation. Despite this level of variability, differences between species are sometimes small, possibly reflecting the fact that reproductive isolation is not always complete and there exists the opportunity for genetic exchange between taxa through hybridization. The present study uses sequence data from a mitochondrial gene to further investigate genetic variation in Society Island Partula. Most populations are found in this study to be highly differentiated, but within individual species there seems to be no simple relationship either between genetic distance and geographical proximity, or between variation in mitochondria and that in allozymes or morphological characteristics. Among species there appears to be no simple correlation between degrees of reproductive isolation and genetic relatedness according to mitochondrial DNA. The results suggest that past events as well as ongoing drift and selection may have been important in affecting patterns of variation. Similarities among species at specific localities suggest that there must have been some genetic exchange in the past, although this may not necessarily reflect ongoing rates of hybridization. The discrepancy between results for different markers probably reflects the differential effects of drift and selection on mitochondrial and nuclear genes.  相似文献   

14.
We have explored the use of multilocus microsatellite haplotypes to study introgression from cultivated (Malus domestica) into wild apple (Malus sylvestris), and to study gene flow among remnant populations of M. sylvestris. A haplotype consisted of alleles at microsatellite loci along one chromosome. As destruction of haplotypes through recombination occurs much faster than loss of alleles due to genetic drift, the lifespan of a multilocus haplotype is much shorter than that of the underlying alleles. When different populations share the same haplotype, this may indicate recent gene flow between populations. Similarly, haplotypes shared between two species would be a strong signal for introgression. As the expected lifespan of a haplotype depends on the strength of the linkage, the length [in centiMorgans (cM)] of the haplotype shared contains information on the number of generations passed. This application of shared haplotypes is distinct from using haplotype-sharing to detect association between markers and a certain trait. We inferred haplotypes for four to eight microsatellite loci on Linkage Group 10 of apple from genotype data using the program phase, and then identified those haplotypes shared between populations and species. Compared with a Bayesian analysis of unlinked microsatellite loci using the program structure, haplotype-sharing detected a partially different set of putative hybrids. Cultivated haplotypes present in M. sylvestris were short (< 1.5 cM), indicating that introgression had taken place many generations ago, except for two Belgian plants that contained a haplotype of 47.1 cM, indicating recent introgression. In the estimation of gene flow, F(ST) based on unlinked loci indicated small (0.032-0.058) but statistically significant differentiation between some populations only. However, various M. sylvestris haplotypes were shared in nearly all pairwise comparisons of populations, and their length indicated recent gene flow. Hence, all Dutch populations should be considered as one conservation unit. The added value of using sharing of multilocus microsatellite haplotypes as a source of population genetic information is discussed.  相似文献   

15.
The potential effect of population outbreaks on within and between genetic variation of populations in pest species has rarely been assessed. In this study, we compare patterns of genetic variation in different sets of historically frequently outbreaking and rarely outbreaking populations of an agricultural pest of major importance, the migratory locust, Locusta migratoria . We analyse genetic variation within and between 24 populations at 14 microsatellites in Western Europe, where only ancient and low-intensity outbreaks have been reported (non-outbreaking populations), and in Madagascar and Northern China, where frequent and intense outbreak events have been recorded over the last century (outbreaking populations). Our comparative survey shows that (i) the long-term effective population size is similar in outbreaking and non-outbreaking populations, as evidenced by similar estimates of genetic diversity, and (ii) gene flow is substantially larger among outbreaking populations than among non-outbreaking populations, as evidenced by a fourfold to 30-fold difference in F ST values. We discuss the implications for population dynamics and the consequences for management strategies of the observed patterns of genetic variation in L. migratoria populations with contrasting historical outbreak frequency and extent.  相似文献   

16.
In this study, we used mitochondrial control sequences and microsatellite data from 231 Common Moorhen Gallinula chloropus individuals sampled from 19 sites in China to analyse their genetic structure and evolutionary history. High genetic diversity was found for all populations, although microsatellite analysis showed that the genetic diversity in non‐migratory populations was significantly higher than in migratory populations. High gene flow occurred between neighbouring populations, although long‐distance gene flow also occurred. The Huazhong population was the single greatest genetic source for other populations. High gene flow probably led to the shallow genetic structure that we observed. Demographic expansion was found in migratory populations, non‐migratory populations and with all individuals combined. The expansion time for all populations combined was estimated to be 221 000 years ago. The Common Moorhen population grew rapidly during the interglacial before the last glacial maximum (LGM), then remained generally stable from the LGM to the present.  相似文献   

17.
An aridification of the Tarim Basin and adjacent areas since middle Pleistocene has produced significant genetic structuring of the local fauna. We examined the phylogeographic patterns, population structure and history of Phrynocephalus axillaris and Phrynocephalus forsythii using a mitochondrial fragment ND4-tRNA(LEU). Phylogenetic hypotheses were constructed using maximum parsimony and Bayesian inference, and the divergence times of major lineages were estimated by BEAST. Population structure and history were inferred by nested clade analysis, neutrality tests, mismatch distribution, and isolation by distance analysis. The two species might have experienced different evolutionary history throughout their current distribution. For P. forsythii, a vicariant event, as a consequence of geological isolation and desert expansion, might have produced the significant divergence between the Tarim and the Yanqi populations. For P. axillaris, populations of the Yanqi, Turpan and Hami Basins might have been established through dispersal during demographic expansion. Climatic fluctuations caused alternate expansion and shrinkage of rivers and oases several times, which likely led to habitat fragmentation for both species. Interaction between vicariance, dispersal and habitat fragmentation produced the current distribution and genetic diversity. The observed difference between the two species may be due partially to their different reproductive modes (ovoviviparous vs. oviparous).  相似文献   

18.
Abstract.— The high species diversity of aquatic and terrestrial faunas in eastern North America has been attributed to range reductions and allopatric diversification resulting from historical climate change. The role these processes may have played in speciation is still a matter of considerable debate; however, their impacts on intraspecific genetic structure have been well documented. We use mitochondrial DNA sequences to reconstruct an intraspecific phylogeny of the widespread North American spotted salamander, Ambystoma maculatum , and test whether phylogenetic patterns conform to regional biogeographical hypotheses about the origins of diversity in eastern North America. Specifically, we address the number and locations of historical refugia, the extent and patterns of postglacial colonization by divergent lineages, and the origin and affinities of populations in the Interior Highland region. Despite apparent morphological uniformity, genetic discontinuities throughout the range of this species suggest that populations were historically fragmented in at least two refugia in the southern Appalachian Mountains. The ranges of these two highly divergent clades expanded northward, resulting in two widely distributed lineages that are sympatric in regions previously proposed as suture zones for other taxa. The evolutionary history of spotted salamander populations underscores the generality of biogeographical processes in eastern North America: despite differences in population size, glacial refugia, and vagility, similar signatures of differentiation are evident among and within widespread taxa.  相似文献   

19.
The fauna of oceanic islands provide exceptional models with which to examine patterns of dispersal, isolation and diversification, from incipient speciation to species level radiations. Here, we investigate recent differentiation and microevolutionary change in Berthelot's pipit (Anthus berthelotii), an endemic bird species inhabiting three Atlantic archipelagos. Mitochondrial DNA sequence data and microsatellite markers were used to deduce probable colonization pathway, genetic differentiation, and gene flow among the 12 island populations. Phenotypic differentiation was investigated based on eight biologically important morphological traits. We found little mitochondrial DNA variability, with only one and four haplotypes for the control region and cytochrome b, respectively. However, microsatellite data indicated moderate population differentiation (FST=0.069) between the three archipelagos that were identified as genetically distinct units with limited gene flow. Both results, combined with the estimated time of divergence (2.5 millions years ago) from the Anthus campestris (the sister species), suggest that this species has only recently dispersed throughout these islands. The genetic relationships, patterns of allelic richness and exclusive alleles among populations suggest the species originally colonized the Canary Islands and only later spread from there to the Madeiran archipelago and Selvagen Islands. Differentiation has also occurred within archipelagos, although to a lesser degree. Gene flow was observed more among the eastern and central islands of the Canaries than between these and the western islands or the Madeiran Islands. Morphological differences were also more important between than within archipelagos. Concordance between morphological and genetic differentiation provided ambiguous results suggesting that genetic drift alone was not sufficient to explain phenotypic differentiation. The observed genetic and morphological differences may therefore be the result of differing patterns of selection pressures between populations, with Berthelot's pipit undergoing a process of incipient differentiation.  相似文献   

20.
Metapopulation dynamics are increasingly invoked in management and conservation of endangered species. In this context, asymmetrical gene flow patterns can be density dependent, with migration occurring mainly from larger into smaller populations, which may depend on it for their persistence. Using genetic markers, such patterns have recently been documented for various organisms including salmonids, suggesting this may be a more general pattern. However, metapopulation theory does not restrict gene flow asymmetry to 'source-sink' structures, nor need these patterns be constant over longer evolutionary timescales. In anadromous salmonids, gene flow can be expected to be shaped by various selective pressures underlying homing and dispersal ('straying') behaviours. The relative importance of these selective forces will vary spatially and for populations of different census size. Furthermore, the consequences of life-history variation among populations for dispersal and hence gene flow remain poorly quantified. We examine population structure and connectivity in Atlantic salmon (Salmo salar L.) from Newfoundland and Labrador, a region where populations of this species are relatively pristine. Using genetic variation at 13 microsatellite loci from samples (N=1346) collected from a total of 20 rivers, we examine connectivity at several regional and temporal scales and test the hypothesis that the predominant direction of gene flow is from large into small populations. We reject this hypothesis and find that the directionality of migration is affected by the temporal scale over which gene flow is assessed. Whereas large populations tend to function as sources of dispersal over contemporary timescales, such patterns are often changed and even reversed over evolutionary, coalescent-derived timescales. These patterns of population structure furthermore vary between different regions and are compatible with demographic and life-history attributes. We find no evidence for sex-biased dispersal underlying gene flow asymmetry. Our findings caution against generalizations concerning the directionality of gene flow in Atlantic salmon and emphasize the need for detailed regional study, if such information is to be meaningfully applied in conservation and management of salmonids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号