首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
cDNA clones were selected from a corn (Zea mays L.) leaf lambda gt11 expression library using polyclonal antibodies for corn leaf NADH:nitrate reductase. One clone, Zmnrl, had a 2.1 kilobase insert, which hybridized to a 3.2 kilobase mRNA. The deduced amino acid sequence of Zmnrl was nearly identical to peptide sequences of corn leaf NADH:nitrate reductase. Another clone, Zm6, had an insert of 1.4 kilobase, which hybridized to a 1.4 kilobase mRNA, and its sequence coded for chloroplastic NAD(P)+:glyceraldehyde-3-phosphate dehydrogenase based on comparisons to sequences of this enzyme from tobacco and corn. When nitrate was supplied to N-starved, etiolated corn plants, nitrate reductase, and glyceraldehyde-3-phosphate dehydrogenase mRNA levels in leaves increased in parallel. When green leaves were treated with nitrate, only nitrate reductase mRNA levels were increased. Nitrate is a specific inducer of nitrate reductase in green leaves, but appears to have a more general effect in etiolated leaves. In the dark, nitrate induced nitrate reductase expression in both etiolated and green leaves, indicating light and functional chloroplast were not required for enzyme expression.  相似文献   

2.
3.
Leaves of 15 - 30-d-old plants of sunflower and jute were harvested at 10.00 or 23.00 (local time) and measured immediately, or those harvested at 10.00 were incubated for one hour in sunlight either in water or 5 mM methionine sulfoximine (MSX) solution and then for three hours in dark either in water or 15 mM KNO3 solution. Nitrate feeding during dark incubation, in general, increased nitrate reductase (NR) and nitrite reductase (NiR) activities, and NADH and soluble sugar contents. Increase in tissue nitrate concentration in MSX fed but not in control samples suggested reduction of nitrate in dark. NADPH-dependent NR activity increased considerably upon feeding with nitrate in dark. Concomitantly, NADPH phosphatase activity was also increased in nitrate treated, dark incubated leaves. It is proposed that nitrate regulates dark nitrate reduction by facilitating generation of NADH from NADPH by NADPH phosphatase. High amounts of ammonia accumulated in MSX treated, but not in control leaves, upon dark incubation. Relative activities of NR and NADPH phosphatase, and amounts of soluble sugar and NADH were low in MSX fed samples compared to that of control. So, high amount of ammonia might partially repress NADPH phosphatase and consequently deprive NR of reducing equivalents. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The relation between nitrate reductase (NR; EC 1.6.6.1) activity, activation state and NR protein in leaves of barley (Hordeum vulgare L.) seedlings was investigated. Maximum NR activity (NRAmax) and NR protein content (Western blotting) were modified by growing plants hydroponically at low (0.3 mM) or high (10 mM) nitrate supply. In addition, plants were kept under short-day (8 h light/16 h dark) or long-day (16 h light/8 h dark) conditions in order to manipulate the concentration of nitrate stored in the leaves during the dark phase, and the concentrations of sugars and amino acids accumulated during the light phase, which are potential signalling compounds. Plants were also grown under phosphate deficiency in order to modify their glucose-6-phosphate content. In high-nitrate/long-day conditions, NRAmax and NR protein were almost constant during the whole light period. Low-nitrate/long-day plants had only about 30% of the NRAmax and NR protein of high-nitrate plants. In low-nitrate/long-day plants, NRAmax and NR protein decreased strongly during the second half of the light phase. The decrease was preceded by a strong decrease in the leaf nitrate content. Short daylength generally led to higher nitrate concentrations in leaves. Under short-day/low-nitrate conditions, NRAmax was slightly higher than under long-day conditions and remained almost constant during the day. This correlated with maintenance of higher nitrate concentrations during the short light period. The NR activation state in the light was very similar in high-nitrate and low-nitrate plants, but dark inactivation was twice as high in the high-nitrate plants. Thus, the low NRAmax in low-nitrate/long-day plants was slightly compensated by a higher activation state of NR. Such a partial compensation of a low NRmax by a higher dark activation state was not observed with phosphate-depleted plants. Total leaf concentrations of sugars, of glutamine and glutamate and of glucose-6-phosphate did not correlate with the NR activation state nor with NRAmax. Received: 24 March 1999 / Accepted: 31 May 1999  相似文献   

5.
Nitrate reductase (NR, EC 1.6.6.1) from higher plants is a homodimeric enzyme carrying a molybdenum cofactor at the catalytic site. Tungsten can be substituted for molybdenum in the cofactor structure, resulting in an inactive enzyme. When nitratefed Nicotiana tabacum plants were grown on a nutrient solution in which tungstate was substituted for molybdate, NR activity in the leaves decreased to a very low level within 24 hours while NR protein accumulated progressively to a level severalfold higher than the control after 6 days. NR mRNA level in molybdate-grown plants exhibited a considerable day-night fluctuation. However, when plants were treated with tungstate, NR mRNA level remained very high. NR activity and protein increased over a 24-hour period when nitrate was added back to N-starved molybdate-grown plants. NR mRNA level increased markedly during the first 2 hours and then decreased. In the presence of tungstate, however, the induction of NR activity by nitrate was totally abolished while high levels of NR protein and mRNA were both induced, and the high level of NR mRNA was maintained over a 10-hour period. These results suggest that the substitution of tungsten for molybdenum in NR complex leads to an overexpression of the NR structural gene. Possible mechanisms involved in this deregulation are discussed.  相似文献   

6.
Diurnal variations of nitrate reductase (NR) activity and stability have been studied in leaves of barley seedlings ( Hordeum vulgare L. cv. Herta) grown in an 8 h light/16 h darkness regime. Stability (decay) of NR was tested both in the extracts and in the plants. In the morning, when the plants were transferred to light, NR activity increased rapidly during the first hour and then remained constant. After the photoperiod, activity decreased rapidly during the first hour of darkness and then remained fairly constant during the rest of the dark period. The high NR activity during the photoperiod was associated with low NR stability both in the extracts and in the plants. On the other hand the low NR activity during the dark period was associated with high stability in the extracts and in the plants.  相似文献   

7.
Purification and Kinetics of Higher Plant NADH:Nitrate Reductase   总被引:17,自引:12,他引:5       下载免费PDF全文
Squash cotyledon (Cucurbita pepo L.) NADH:nitrate reductase (NR) was purified 150-fold with 50% recovery by a single step procedure based on the affinity of the NR for blue-Sepharose. Blue-Sepharose, which is prepared by direct coupling of Cibacron blue to Sepharose, appears to bind squash NR at the NADH site. The NR can be purified in 2 to 3 hours to a specific activity of 2 μmol of NADH oxidized/minute • milligram of protein. Corn (Zea mays L.) leaf NR was also purified to a specific activity of 6.9 μmol of NADH oxidized/minute • milligram of protein using a blue-Sepharose affinity step. The blue-Sepharose method offers the advantages of a rapid purification of plant NR to a high specific activity with reasonable recovery of total activity.

The kinetic mechanism of higher plant NR was investigated using these highly purified squash and corn NR preparations. Based on initial velocity and product inhibition studies utilizing both enzymes, a two-site ping-pong mechanism is proposed for NR. This kinetic mechanism incorporates the concept of the reduced NR transferring electrons from the NADH site to a physically separated nitrate site.

  相似文献   

8.
The effects of red (R), far red (FR), or blue light (B) on the enhancement of nitrate reductase (NR) activity and on nitrate uptake in etiolated rice seedlings were examined. On 5-minute illumination followed by 12-hour dark, R caused marked increase of NR activity, but FR and B caused only slight increase. Illumination with 560 ergs per square centimeter per second of R for 5 minutes caused maximal increase. The effect of R was almost completely counteracted by subsequent illumination with 2,000 ergs per square centimeter per second of FR for 10 minutes, indicating that NR induction was mediated by phytochrome. Exogenous supply of inducer nitrate was not required during the 5-minute illumination and the R-FR cycles, if the seedlings were transferred to nitrate solution at the beginning of the dark incubation. NR activity in the shoots was found high when shoots were illuminated but was low when only roots were illuminated. On continuous illumination for 12 hours, B had more effect on NR increase than R.  相似文献   

9.
Spinach (Spinacia oleracea L.) leaf nitrate reductase (NADH:NR;NADH:nitrate oxidoreductase, EC 1.6.6.1) activity was found to rapidly change during light/dark transitions. The most rapid and dramatic changes were found in a form of NR which was sensitive to inhibition by millimolar concentrations of magnesium. This form of NR predominated in leaves in the dark, but was almost completely absent from leaves incubated in the light for only 30 min. When the leaves were returned to darkness, the NR rapidly became sensitive to Mg2+ inhibition. Modulation of the overall reaction involving NADH as electron donor was also found when reduced methyl viologen was the donor (MV:NR), indicating that electron transfer had been blocked, at least in part, at or near the terminal molybdenum cofactor site. Changes in activity appear to be the result of a covalent modification that affects sensitivity of NR to inhibition by magnesium, and our results suggest that protein phosphorylation may be involved. NR was phosphorylated in vivo after feeding excised leaves [32P]Pi. The NR subunit was labeled exclusively on seryl residues in both light and dark. Tryptic peptide mapping indicated three major 32P-labeled phosphopeptide (Pp) fragments. Labeling of two of the P-peptides (designated Pp1 and 3) was generally correlated with NR activity assayed in the presence of Mg2+. In vivo, partial dephosphorylation of these sites (and activation of NR assayed with Mg2+) occurred in response to light or feeding mannose in darkness. The light effect was blocked completely by feeding okadaic acid via the transpiration stream, indicating the involvement of type 1 and/or type 2A protein phosphatases in vivo. While more detailed analysis is required to establish a causal link between the phosphorylation status of NR and sensitivity to Mg2+ inhibition, the current results are highly suggestive of one. Thus, in addition to the molecular genetic mechanisms regulating this key enzyme of nitrate assimilation, NR activity may be controlled in leaves by phosphorylation/dephosphorylation of the enzyme protein resulting from metabolic changes taking place during light/dark transitions.  相似文献   

10.
The importance of light to the induction of nitrate reductase activity in barley (Hordeum vulgare L.) was studied. Activity in etiolated leaves in darkness stayed at a low endogenous level even while large amounts of nitrate were actively accumulated. Light was required for any increase in activity, though the requirement may be satisfied to a limited extent before nitrate is available. Nitrate reductase activity was induced in the dark in green leaves which had not previously had nitrate but were supplied nitrate at the beginning of the dark period. If the nitrate then made available was sufficient, nitrate reductase activity increased until the effect of the previous light treatment was exhausted. Activity then decreased even though nitrate uptake continued. Upon returning the leaves to light, enzymatic activity increased again, as expected. Nitrate uptake was eliminated as an experimental variable by giving dark-grown plants nitrate, then detaching the leaves for induction studies. Under these conditions light saturation occurred between 3600 and 7700 lux at exemplary periods of illumination. At intensities of 3600 lux and above, activity increased sharply after a 6-hour lag period. As light intensity was decreased below 3600 lux the lag period became longer. Thus, when sufficient nitrate was available, the extent of induction of nitrate reductase activity was regulated by light.  相似文献   

11.
Plasma-membrane (PM) vesicles isolated from 6-d-old corn roots by sucrose gradient centrifugation or two-phase partitioning showed an NADH-dependent nitrate reductase (NR) activity averaging at 40 nmol per milligram PM protein per hour. This membrane-associated NR activity could not be removed from two-phase-partitioned PM vesicles by salt washing, osmotic shock treatment, sonication, or freeze-thawing to reverse vesicle sidedness. Therefore, it could not be attributed to contamination of membrane vesicles by the soluble, cytosolic NR. Plasma-membrane vesicles reduced NO 3 - in the presence of the electron donors NADH or NADPH at an activity ratio of 2.2. The NADH- and NADPH-dependent NR activities of outside-out oriented PM vesicles differed in their sensitivity toward the detergent Brij 58, leading to a latency of 65% or 29% using NADH or NADPH as electron donor, respectively. The activities of NO 3 - reduction in the presence of saturating concentrations of NADH and NADPH were additive. Furthermore, both activities were characterized by a different pH dependence with a pH optimum of 7.5 for the NADH-dependent activity and of 6.8 for the NADPH-dependent activity. The membrane-associated NAD(P)H-dependent NR activities responded to different nitrogen nutrition of plants in a manner different from the soluble forms of the enzyme. The data confirm the existence of a corn PM NR and suggest that there may be two different NO 3 - -reducing enzymes located at the PM of corn roots.Abbreviations PM Plasma membrane - NR nitrate reductase This research was supported by grants from the National Research Council of Italy (bilateral project between Italy and Germany to Z.V. and U.L.), by the Ministero dell' Università e Ricera Scientifice e Tecnologica (MURST 40%) and by the Deutsche Forschungsgemeinschaft.  相似文献   

12.
The level of nitrate reductase (NR) and nitrite reductase (NiR) varied in both shoot and root tissue from nitrate-fed Zea mays L. grown under a 16-hour light/8-hour dark regime over a 10-day period postgermination, with peak activity occurring in days 5 to 6. To study the effect of different light regimes on NR and NiR enzyme activity and mRNA levels, 6-day-old plants were grown in the presence of continuous KNO3 (10 millimolar). Both shoot NRA and mRNA varied considerably, peaking 4 to 8 hours into the light period. Upon transferring plants to continuous light, the amplitude of the peaks increased, and the peaks moved closer together. In continuous darkness, no NR mRNA or NR enzyme activity could be detected by 8 hours and 12 hours, respectively. In either a light/dark or continuous light regime, root NRA and mRNA did not vary substantially. However, when plants were placed in continuous darkness, both declined steadily in the roots, although some remained after 48 hours. Although there was no obvious cycling of NiR enzyme activity in shoot tissue, changes in mRNA mimicked those seen for NR mRNA. The expression of NR and NiR genes is affected by the light regime adopted, but light does not have a direct effect on the expression of these genes.  相似文献   

13.
In wild-type Nicotiana plumbaginifolia and other higher plants, nitrate reductase (NR) is rapidly inactivated/activated in response to dark/light transitions. Inactivation of NR is believed to be caused by phosphorylation at a special conserved regulatory Ser residue, Ser 521, and interactions with divalent cations and inhibitory 14-3-3 proteins. A transgenic N. plumbaginifolia line (S(521)) was constructed where the Ser 521 had been changed by site-directed mutagenesis into Asp. This mutation resulted in complete abolishment of inactivation in response to light/dark transitions or other treatments known to inactivate NR. During prolonged darkness, NR in wild-type plants is in the inactivated form, whereas NR in the S(521) line is always in the active form. Differences in degradation rate between NR from S(521) and lines with non-mutated NR were not found. Kinetic constants like Km values for NADH and NO3(-) were not changed, but a slightly different pH profile was observed for mutated NR as opposed to non-mutated NR. Under optimal growth conditions, the phenotype of the S(521) plants was not different from the wild type (WT). However, when plants were irrigated with high nitrate concentration, 150 mM, the transgenic plants accumulated nitrite in darkness, and young leaves showed chlorosis.  相似文献   

14.
低pH对水稻黄化叶片硝酸还原酶活性暗诱导的调节   总被引:4,自引:0,他引:4  
在低pH条件下,水稻离体黄化叶片的硝酸还原酶(NR)活性能在暗中诱导产生,其诱导过程约有2h的滞后期,亚胺环已酮(CHI,5ppm)和Na_2WO_4(25 mmol/L)能完全抑制这种诱导作用。在最适pH 3.0时,H~3标记氨基酸掺入NR的量比pH 7.0时约高2倍,表明酶活性的产生与酶蛋白的重新合成有关。 当低pH暗诱导时,BA(5ppm)和ABA(15ppm)能使酶活性分别提高约30%和80%,但它们都不能取代低pH在NR活性暗诱导中的作用。当存在1ppm CHI的时候,BA仍促进NR活性,而ABA则加强CHI对酶活性的抑制作用,这提示BA与ABA在低pH暗诱导条件下促进NR活性的机制是不同的。在pH 7.0的光诱导条件下,ABA对NR活性起抑制作用。  相似文献   

15.
During the night, shoot nitrate concentration in spinach (Spinacia oleracea L. cv. Vroeg Reuzenblad) increased due to increased uptake of nitrate by the roots. When the plants were subjected to a one night “low light’period at 35 μmol m?2 s?1, the shoot nitrate concentration did not increase and was reduced by 25% compared to control plants in the dark. The major contribution to this decrease was located in the leaf blades, where the nitrate concentration was decreased by 60%, while the petiole nitrate concentration decreased by only 9%. Nitrate accumulated in the leaf blade vacuoles during a dark night, but this was not the case during the “low light’period. This decrease in vacuolar nitrate concentration, compared to control plants in the dark, was not caused by increased amounts of leaf blade nitrate reductase (NR; EC 1.6.6.1). During a “low light’night period, the cytoplasmic soluble carbohydrate concentration was increased compared to the control plants in the dark. Calculations showed in situ NR activity to be higher than in the control plants in the dark. This increase in NR activity, however, was not large enough to account for the total difference found in the shoot nitrate concentration. Net uptake of nitrate by the roots was increased during the initial hours of the dark night, while vacuolar nitrate concentration in the leaf blades increased at the same time. During the “low light’night period, however, net uptake of nitrate by the roots did not increase, and vacuolar nitrate concentration did not change. We conclude that nitrate uptake by the roots and vacuolar nitrate concentration in the leaf blades are tightly coupled. The decreased shoot nitrate concentration is mainly caused by a reduction in net uptake of nitrate by the roots. During the “low light’night period, carbohydrates and malic acid partly replaced vacuolar nitrate. A “low light’period one night prior to harvest provides a valuable tool to reduce shoot nitrate concentrations in spinach grown in greenhouses in the winter months.  相似文献   

16.
Evidence is given that a selective light-pretreatment of the embryonic axis exerts a deep influence on the greening in primary leaves of 8-day-old etiolated bean seedlings (Phaseolus vulgaris cv. Limburg). After a subsequent dark incubation of sufficient length and a final exposure of the entire plants to continuous illumination the lag phase of chlorophyll synthesis is completely removed. In particular the highly meristematic hook tissue seems to be responsible for this light effect. Lengthening of the dark period following pre-irradiation increased the capability of chlorophyll production in the main white light period, reaching its maximum after about 12 hours of darkness. The period of dark incubation for elimination of the lag phase is considerably longer in plants with shielded leaves than the length of the lag phase in etiolated seedlings of the same age, exposed entirely to continuous light. This difference may be explained by the synergistic effect between leaves and embryonic axis. Evidence for this interorgan cooperation is given by experiments with a selective light-pretreatment of leaves and embryonic axis. After a 5 min pre-exposure to white light of whole plants the leaves of some of the plants were shielded and these plants received a further pre-illumination of 2 hours on their embryonic axis. In all the pre-irradiated, etiolated plants the lag phase of chlorophyll synthesis was eliminated during the main white light period, following a dark incubation of 2 hours. Additional and preferential light activation of the embryonic axis during the pretreatment had no significant effect on chlorophyll production during the white light illumination after a 2 hours dark incubation, but resulted in a lower yield of chlorophylls after 18 hours dark incubation compared to the white light controls, receiving no selective light-pretreatment on the embryonic axis. From our results we can decisively conclude that a simultaneous light-pretreatment of both, leaves and embryonic axis, is more effective and beneficial for building up a capacity of chlorophyll synthesis in the leaves than either a selective light-pretreatment of the embryonic axis alone or a simultaneous pre-illumination of leaves and embryonic axis, immediately followed by an additional preirradiation of the embryonic axis. Therefore, we think that several photoactive sites are involved in de-etiolation processes of intact, etiolated seedings. Light activation of the embryonic axis stimulates the development of this organ and contributes to the greening processes in the leaf. At the same time, by irradiating the leaf, light activates the photo-sensitive site in the leaf itself, which also develops a capacity for chlorophyll synthesis. Both photo-acts are cooperative, explaining the enhanced chlorophyll production. Additional pre-irradiation of the embryonic axis after a short illumination of whole plants favours its own development and reduces the synthetic capacity of the leaf. A prolonged far-red pretreatment induces qualitatively the same response as white light. We assume that these effects on lag phase removal and chlorophyll production, induced in etiolated, primary bean leaves by selective irradiation of the embryonic axis, is a phytochrome-mediated process. Our results indicate a transmission of light-induced stimuli from one organ to another.  相似文献   

17.
NO (nitric oxide) production from sunflower plants (Helianthus annuus L.), detached spinach leaves (Spinacia oleracea L.), desalted spinach leaf extracts or commercial maize (Zea mays L.) leaf nitrate reductase (NR, EC 1.6.6.1) was continuously followed as NO emission into the gas phase by chemiluminescence detection, and its response to post-translational NR modulation was examined in vitro and in vivo. NR (purified or in crude extracts) in vitro produced NO at saturating NADH and nitrite concentrations at about 1% of its nitrate reduction capacity. The K(m) for nitrite was relatively high (100 microM) compared to nitrite concentrations in illuminated leaves (10 microM). NO production was competitively inhibited by physiological nitrate concentrations (K(i)=50 microM). Importantly, inactivation of NR in crude extracts by protein phosphorylation with MgATP in the presence of a protein phosphatase inhibitor also inhibited NO production. Nitrate-fertilized plants or leaves emitted NO into purified air. The NO emission was lower in the dark than in the light, but was generally only a small fraction of the total NR activity in the tissue (about 0.01-0.1%). In order to check for a modulation of NO production in vivo, NR was artificially activated by treatments such as anoxia, feeding uncouplers or AICAR (a cell permeant 5'-AMP analogue). Under all these conditions, leaves were accumulating nitrite to concentrations exceeding those in normal illuminated leaves up to 100-fold, and NO production was drastically increased especially in the dark. NO production by leaf extracts or intact leaves was unaffected by nitric oxide synthase inhibitors. It is concluded that in non-elicited leaves NO is produced in variable quantities by NR depending on the total NR activity, the NR activation state and the cytosolic nitrite and nitrate concentration.  相似文献   

18.
Foliar application of benzyladenine (BA) has been shown to enhance nitrate-dependent induction of nitrate reductase (NR; EC 1.6.6.1) in etiolated wheat ( Triticum aestivum L.) seedlings. Whether similar enhancement occurs in light-grown plants, or whether endogenous cytokinin content affects this enhancement is unknown. Since the cytokinin content of etiolated plants probably differs from that of light-grown seedlings, the NR response of each to exogenous root- or shoot-applied BA in wheat (cv. Red Bob) was examined. Endogenous cytokinins present in untreated control tissues prior to BA application and changes that occurred after a 22 h (12 h dark followed by 10 h of light) period were determined using a combined HPLC-immunoassay method. Shoot application of BA enhanced the induction of NR in etiolated seedlings in a concentration-dependent manner but failed to enhance NR induction in light-grown plants. Root-applied BA enhanced NR induction in both etiolated and light-grown seedlings. Endogenous root cytokinin levels were similar in both etiolated and light-grown plants. In contrast, shoots of 6 day-old light-grown seedlings contained at least 20 times the amount of total cytokinins measured in shoots from etiolated plants of the same age. Total cytokinin content of the light-grown plants diminished after the 22-h period while that measured in etiolated seedlings increased. The responsiveness of seedlings to BA was correlated with endogenous cytokinin levels in that enhancement of NR induction by exogenous BA was low in tissues which contained high concentrations of cytokinin at the time of BA application. These results may prove useful in interpretation of gene responses to exogenous plant growth regulators.  相似文献   

19.
20.
In vivo nitrate reductase (NR) activity declined gradually either in absence or presence of Mg2+ In dark grown plants of spinach. The increased sensitivity of the extracted NR from the dark grown plants to Mg2+ and ATP is indicative of the post-translational modification as one of the mechanisms to control NR activity. The response of extracted NR was gradual and not instantaneous suggesting a complex interplay of NR regulation, as the dark acclimatized plants when exposed to light caused significant nitrate reduction within 15 min of light exposures even in the presence of Mg2+ and ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号