首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A single-step large-scale purification of pyruvate oxidase   总被引:1,自引:0,他引:1  
Pyruvate oxidase is an Escherichia coli peripheral membrane flavoprotein which catalyzes the oxidative decarboxylation of pyruvate to acetate and CO2. Pyruvate oxidase, like several other peripheral membrane enzymes, can be activated either by binding to lipid amphiphiles or by limited protease digestion. This paper reports a rapid and convenient method for effecting the large-scale purification of pyruvate oxidase from crude enzyme preparations using a Triton X-114 phase separation technique. It appears likely that this purification procedure can be used successfully with the family of enzymes which respond to both lipid and protease activation.  相似文献   

2.
NADPH-protochlorophyllide oxidoreductase (PChilde reductase, EC 1.3.1.33), a key enzyme in light-dependent greening and the conversion of etioplasts into chloroplasts was investigated in the the greening mutant C-2A' of the unicellular green alga Scenedesmus obliquus. In the absence of detergent, the solubilization of the enzyme increased with high glycerol concentrations in the buffer. Solubilization capacities of 4 non-ionic or zwitterionic detergents, Triton X-100, CHAPS, octylglucoside and decyl-maltopyranoside, were compared. Due to the addition of these detergents, the enzyme activity in the soluble fraction was increased severalfold. Hydrophobicity of the enzyme was analyzed by Triton X-114 phase partitioning. The protein had a preference for the aqueous phase, but its distribution was strongly influenced by the glycerol concentration of the buffer. These results indicate that the PChlide reductase of the green alga Scenedesmus obliquus is a hydrophobic, membrane-associated enzyme, but not an integral membrane protein.  相似文献   

3.
The membrane nature of squalene oxide cyclase from Saccharomyces cerevisiae was investigated by comparing properties of the enzyme recovered from both microsomes and the soluble fraction of the yeast homogenate. The "apparent soluble" form and microsomal form of the enzyme were both stimulated by the presence of mammalian soluble cytoplasm and corresponded to one another in response to detergents Triton X-100 and Triton X-114. The observed strong dependence of the enzyme activity on the presence of detergents and the behavior of the enzyme after Triton X-114 phase separation were peculiar to a lipophilic membrane-bound enzyme. A study of the conditions required to extract the enzyme from microsomes confirmed the lipophilic character of the enzyme. Microsomes, exposed to ipotonic conditions to remove peripheral membrane proteins, retained most of the enzyme activity within the integral protein fraction. Quantitative dissociation of the enzyme from membranes occurred only if microsomes were treated with detergents (Triton X-100 or octylglucoside) at concentrations which alter membrane integrity. The squalene oxide cyclase was purified 140 times from yeast microsomes by (a) removal of peripheral proteins, (b) extraction of the enzyme from the integral protein fraction with octylglucoside, and (c) separation of the solubilized proteins by DEAE Bio-Gel A chromatography. Removal of the peripheral proteins seemed to be a key step necessary for obtaining high yields.  相似文献   

4.
Ascidian sperm bind to vitelline coat N-acetylglucosamine groups of the egg bvia sperm surface N-acetylglucosaminidase. This sperm surface egg receptor remains anchored throughout penetration. Localization to the sperm surface was verified by biotinylation of intact sperm followed by solubilization in Triton X-100 and binding to streptavidin agarose. The enzyme was determined to be an integral membrane protein as judged by resistance to release by KI and high pH. Linkage of the enzyme to the sperm surface was probed through differential solubilization followed by measuring released enzymatic activity with a fluorogenic substrate. Nonionic detergents released 90% of the activity. Proteases released about 40%. No activity was released by a phosphatidyl–inositol specific phospholipase C. This finding, combined with the similarity of release level by all the detergents, including triton X-114 phase separation experiment. This observation, coupled with the finding of release by nonionic detergents, suggests that the protein is hydrophilic once released from the membrane. Thus, although clearly an integral membrane protein, the enzyme has limited bydrophobicity such as would be present in a single transmembrane sequence or extensive glycosylation. © 1994 Wiley-Liss, Inc.  相似文献   

5.
Triton X-114 was used to partially purify broad bean polyphenol oxidase, a thylakoid membrane-bound enzyme, in latent form, free of phenolic compounds and chlorophylls, with a high recovery rate. The activation of the latent enzyme by detergents or trypsin was 10 times higher than that obtained when the enzyme was purified by other methods used in plant biochemistry, such as acetone powders and ammonium sulfate fractionation. The kinetic parameters of the latent and activated enzyme are also given.  相似文献   

6.
Triton X-114-aided purification of latent tyrosinase   总被引:1,自引:0,他引:1  
Mushroom tyrosinase was partially purified using an aqueous two-phase system with Triton X-114. The purification achieved was 5.5-fold from a crude extract of mushroom pileus, with a high recovery of 84%. The phenols were reduced to 8% of the original content, avoiding pre- and post-purification tanning of the enzyme. The enzyme obtained was latent and was activated 3-fold by trypsin, 2.7-fold by changes in the pH and to different extents by cationic and anionic detergents, the latter being the more effective. There was also a synergistic effect between trypsin and detergent, at low detergent concentrations. When kinetically characterized, latent enzyme showed both monophenolase and diphenolase activities, the latter activity displaying an unexpected lag period before reaching the steady-state rate. This behaviour is characteristic of a hysteretic enzyme, and has not been previously described for this enzyme. In addition, inhibition studies with substrate analogues were carried out, tropolone being found to be the most effective inhibitor.  相似文献   

7.
Membranes were isolated from Bacillus stearothermophilus 2184D by lysozyme digestion of the cell wall and subsequent differential centrifugation. Observations with the electron microscope indicate that such membranes are relatively intact and have a typical membrane appearance. Nitrate will preferentially oxidize the cytochrome b of such membranes. Approximately 80% of the total respiratory nitrate reductase activity of whole cells can be localized in the washed membrane fraction and the process of membrane isolation results in a sixfold purification of this enzyme. Of several detergents tested, sodium dodecyl sulfate, Triton 114, and Triton X-100 are most effective in converting reduced methyl viologen-nitrate reductase to a form which will not pellet at 130,000 x g. Density gradient analysis reveals that such detergent-mediated solubilization converts virtually all membrane protein to a form of lighter density.  相似文献   

8.
Acetylcholinesterase has been isolated from bovine erythrocyte membranes by affinity chromatography using a m-trimethylammonium ligand. The purified enzyme had hydrophobic properties by the criterion of phase partitioning into Triton X-114. The activity of the hydrophobic enzyme was seen as a slow-moving band in nondenaturing polyacrylamide gels. After treatment with phosphatidylinositol-specific phospholipase C, another form of active enzyme was produced that migrated more rapidly toward the anode in these gels. This form of the enzyme partitioned into the aqueous phase in Triton X-114 phase separation experiments and was therefore hydrophilic. The hydrophobic form bound to concanavalin A in the absence of Triton X-100. As this binding was partially prevented by detergent, but not by alpha-methyl mannoside, D-glucose, or myo-inositol, it is in part hydrophobic. Erythrocyte cell membranes showed acetylcholinesterase activity present as a major form, which was hydrophobic by Triton X-114 phase separation and in nondenaturing gel electrophoresis moved at the same rate as the purified enzyme. In the membrane the enzyme was more thermostable than when purified in detergent. The hydrophobic enzyme isolated, therefore, represents a native form of the acetylcholinesterase present in the bovine erythrocyte cell membrane, but in isolation its stability becomes dependent on amphiphile concentration. Its hydrophobic properties and lectin binding are attributable to the association with the protein of a lipid with the characteristics of a phosphatidylinositol.  相似文献   

9.
A double Triton X-114 phase partitioning procedure that separates plant cytochromes P450 from green pigments and provides an extract highly enriched in total cytochromes P450 has been developed. Upon phase partitioning in Triton X-114, plant cytochromes P450 have previously been found to partition to the pigmented detergent rich phase. These partitionings were carried out using phosphate buffer. We found that the partitioning of the cytochromes P450 could be shifted to a pigment-free Triton X-114 poor phase by changing the buffer component to borate. The protein extract containing the cytochromes P450 but devoid of green pigment was subjected to a second phase partitioning step before which the buffer was changed from borate to phosphate. This second phase partitioning step produced a Triton X-114-rich phase highly enriched in cytochromes P450 proteins compared to the microsomal starting material as monitored by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, cytochrome P450 reconstitution assays, and Western blotting. The yield of the double phase partitioning purification procedure is about 26% which is high compared to the yields obtained at similar stages of purification using column chromatography. The double phase partitioning procedure takes 3–4 h to complete. This is very fast compared to traditional purification schemes for cytochromes P450 which involve multiple of column chromatographic steps. Plant cytochromes P450 are labile, low abundant proteins that are difficult to isolate. The double Triton X-114 phase partitioning here reported thus constitutes a versatile, efficient purification procedure circumventing many of the problems previously encountered.  相似文献   

10.
Extraction systems for hydrophobically tagged proteins have been developed based on phase separation in aqueous solutions of non-ionic detergents and polymers. The systems have earlier only been applied for separation of membrane proteins. Here, we examine the partitioning and purification of the amphiphilic fusion protein endoglucanase I(core)-hydrophobin I (EGI(core)-HFBI) from culture filtrate originating from a Trichoderma reesei fermentation. The micelle extraction system was formed by mixing the non-ionic detergent Triton X-114 or Triton X-100 with the hydroxypropyl starch polymer, Reppal PES100. The detergent/polymer aqueous two-phase systems resulted in both better separation characteristics and increased robustness compared to cloud point extraction in a Triton X-114/water system. Separation and robustness were characterized for the parameters: temperature, protein and salt additions. In the Triton X-114/Reppal PES100 detergent/polymer system EGI(core)-HFBI strongly partitioned into the micelle-rich phase with a partition coefficient (K) of 15 and was separated from hydrophilic proteins, which preferably partitioned to the polymer phase. After the primary recovery step, EGI(core)-HFBI was quantitatively back-extracted (K(EGIcore-HFBI)=150, yield=99%) into a water phase. In this second step, ethylene oxide-propylene oxide (EOPO) copolymers were added to the micelle-rich phase and temperature-induced phase separation at 55 degrees C was performed. Total recovery of EGI(core)-HFBI after the two separation steps was 90% with a volume reduction of six times. For thermolabile proteins, the back-extraction temperature could be decreased to room temperature by using a hydrophobically modified EOPO copolymer, with slightly lower yield. The addition of thermoseparating co-polymer is a novel approach to remove detergent and effectively releases the fusion protein EGI(core)-HFBI into a water phase.  相似文献   

11.
A protein of 110,000 MW connects actin filaments to the plasma membrane in microvilli of intestinal epithelial cells. In the present study four independent lines of evidence suggest that the 110K protein is directly bound to the lipid bilayer. The solubilization of the 110K protein requires detergents and removal of detergent after solubilization results in aggregation. The 110K protein partitions into the detergent phase in Triton X-114 solutions. It is selectively incorporated into liposomes. It is specifically labeled with the hydrophobic probe 14C-phenylisothiocyanate. In addition we present a purification scheme for the 110K protein in milligram amounts. This represents the simplest system of membrane to filament attachment, in which an integral membrane protein is also a cytoskeletal protein.  相似文献   

12.
Analysis of brush border membrane proteins by gel electrophoresis has revealed a complex polypeptide composition. We have investigated the use of Triton X-114 phase partitioning to fractionate such proteins on the basis of their degree of hydrophobicity. Each of the fractions was composed of a complex but distinct set of proteins. Most proteins were solubilized by Triton X-114 and partitioned into the detergent-poor fraction. Trehalase, gamma-glutamyl transpeptidase, and leucine aminopeptidase were well solubilized (greater than 80%) and enriched 5.1-, 3.9-, and 2.5-fold in the detergent-rich fraction. In contrast, alkaline phosphatase and 5'-nucleotidase were poorly solubilized. The specific activities of these enzymes were increased 2.7- and 2.3-fold in the insoluble protein fraction. Maltase was almost completely solubilized and partitioned into the detergent-poor fraction with a small enrichment factor (1.3). These results suggest that Triton X-114 phase partitioning could be useful as a first step in the purification of many brush border membrane proteins.  相似文献   

13.
The property of solutions of Triton X-114 to separate into detergent-rich and detergent-poor phases at 30 degrees C has been exploited to investigate the identities of the aminopeptidases in synaptic membrane preparations from pig striatum. When titrated with an antiserum to aminopeptidase N (EC 3.4.11.2), synaptic membranes solubilized with Triton X-100 revealed that this enzyme apparently comprises no more than 5% of the activity releasing tyrosine from [Leu]enkephalin. When assayed in the presence of puromycin, this proportion increased to 20%. Three integral membrane proteins were fractionated by phase separation in Triton X-114. Aminopeptidase activity, endopeptidase-24.11 and peptidyl dipeptidase A partitioned predominantly into the detergent-rich phase when kidney microvillar membranes were so treated. However, only 5.5% of synaptic membrane aminopeptidase activity partitioned into this phase, although the other peptidases behaved predictably. About half of the aminopeptidase activity in the detergent-rich phase could now be titrated with the antiserum, showing that aminopeptidase N is an integral membrane protein of this preparation. Three aminopeptidase inhibitors were investigated for their ability to discriminate between the different activities revealed by these experiments. Although amastatin was the most potent (IC50 = 5 X 10(-7) M) it failed to discriminate between pure kidney aminopeptidase N, the total activity of solubilized synaptic membranes and that in the Triton X-114-rich phase. Bestatin was slightly more potent for total activity (IC50 = 6.3 X 10(-6) M) than for the other two forms (IC50 = 1.6 X 10(-5) M). Puromycin was a weak inhibitor, but was more selective. The activity of solubilized membranes was more sensitive (IC50 = 1.6 X 10(-5) M) than that of the pure enzyme or the Triton X-114-rich phase (IC50 = 4 X 10(-4) M). We suggest that the puromycin-sensitive aminopeptidase activity that predominates in crude synaptic membrane preparations may be a cytosolic contaminant or peripheral membrane protein rather than an integral membrane component. Aminopeptidase N may contribute to the extracellular metabolism of enkephalin and other susceptible neuropeptides in the brain.  相似文献   

14.
The distribution of annexin V isoforms (CaBP33 and CaBP37) and of annexin VI in bovine lung, heart, and brain subfractions was investigated with special reference to the fractions of these proteins which are membrane-bound. In addition to EGTA-extractable pools of the above proteins, membranes from lung, heart, and brain contain EGTA-resistant annexins V and VI which can be solubilized with detergents (Triton X-100 or Triton X-114). A strong base like Na2CO3, which is usually effective in extracting membrane proteins, only partially solubilizes the membrane-bound, EGTA-resistant annexins analyzed here. Also, only 50-60% of the Triton X-114-soluble annexins partition in the aqueous phase, the remaining fractions being recovered in the detergent-rich phase. Altogether, these findings suggest that, by an as yet unknown mechanism, following Ca(2+)-dependent association of annexin V isoforms and annexin VI with membranes, substantial fractions of these proteins remain bound to membranes in a Ca(2+)-independent way and behave like integral membrane proteins. These results further support the possibility that the above annexins might play a role in membrane trafficking and/or in the regulation of the structural organization of membranes.  相似文献   

15.
Phase separation of integral membrane proteins in Triton X-114 solution   总被引:371,自引:0,他引:371  
A solution of the nonionic detergent Triton X-114 is homogeneous at 0 degrees C but separates in an aqueous phase and a detergent phase above 20 degrees C. The extent of this detergent phase separation increases with the temperature and is sensitive to the presence of other surfactants. The partition of proteins during phase separation in solutions of Triton X-114 is investigated. Hydrophilic proteins are found exclusively in the aqueous phase, and integral membrane proteins with an amphiphilic nature are recovered in the detergent phase. Triton X-114 is used to solubilize membranes and whole cells, and the soluble material is submitted to phase separation. Integral membrane proteins can thus be separated from hydrophilic proteins and identified as such in crude membrane or cellular detergent extracts.  相似文献   

16.
Interactions between delipidated Ca2+-ATPase from sarcoplasmic reticulum and four nonionic detergents--dodecyl octaoxyethyleneglycol monoether (C12E8), Triton X-100, Brij 58, and Brij 35--were characterized with respect to activation of ATPase activity, binding, and solubilization. C12E8 and Triton X-100 activated the delipidated ATPase to at least 80% of the original activity at the critical micelle concentrations (CMCs), whereas Brij 58 and Brij 35 activated no more than 10% of the original activity. The inability of Brij 58 and Brij 35 to activate the delipidated enzyme was probably a result of reduced binding of these detergents below the CMCs; both detergents exhibited a sixteenfold reduction in binding at the CMC compared with C12E8. The two Brij detergents were also unable to solubilize the delipidated enzyme and form monomers, as determined by sedimentation experiments. Thus the reduced binding levels of these detergents may result from an inability to overcome protein/protein interactions in the delipidated preparation. However, the Brij detergents were capable of solubilizing active enzyme from membrane vesicles, although with lower efficiency than C12E8 and Triton X-100. These results suggest that Brij 58 and 35 may be useful for solubilization of membrane proteins without disrupting protein/protein interactions, while Triton X-100 and C12E8 are more useful when bulk solubilization is the goal.  相似文献   

17.
The detergent Triton X-114, because of its convenient cloud point temperature (22 °C), has been used extensively to extract membrane proteins and to separate them in two phases according to their hydropathy. The upper detergent-poor phase contains mostly hydrophilic proteins, whereas hydrophobic ones are found mainly in the lower detergent-rich phase. In this work, we developed a method to fractionate membrane proteins and estimate their hydropathy based on a series of cloud point partitions with Triton X-114. With this method, beetroot plasma membrane proteins were separated in different fractions according to their hydropathy, following the binomial distribution law as expected. This method revealed the presence of both hydrophilic and hydrophobic Ca2+-dependent protein kinases in those membranes. At least five distinct Ca2+-dependent kinases were observed in in-gel kinase activity assays. This separation procedure was also used as the first step in the purification of a hydrophobic 60-kDa kinase.  相似文献   

18.
《The Journal of cell biology》1988,107(6):2679-2688
Cilia were isolated from Tetrahymena thermophila, extracted with Triton X-114, and the detergent-soluble membrane + matrix proteins separated into Triton X-114 aqueous and detergent phases. The aqueous phase polypeptides include a high molecular mass polypeptide previously identified as a membrane dynein, detergent-soluble alpha and beta tubulins, and numerous polypeptides distinct from those found in axonemes. Integral membrane proteins partition into the detergent phase and include two major polypeptides of 58 and 50 kD, a 49-kD polypeptide, and 5 polypeptides in relatively minor amounts. The major detergent phase polypeptides are PAS-positive and are phosphorylated in vivo. A membrane-associated ATPase, distinct from the dynein-like protein, partitions into the Triton X-114 detergent phase and contains nearly 20% of the total ciliary ATPase activity. The ATPase requires Mg++ or Ca++ and is not inhibited by ouabain or vanadate. This procedure provides a gentle and rapid technique to separate integral membrane proteins from those that may be peripherally associated with the matrix or membrane.  相似文献   

19.
Selective recovery of lactate dehydrogenase using affinity foam   总被引:3,自引:0,他引:3  
Selective isolation of lactate dehydrogenase (LDH) from porcine muscle extract was studied using foam generated from the vigorous stirring of a non-ionic surfactant, Triton X-114 derivatized with Cibacron blue. The cloud point of the surfactant-dye conjugate was higher than that of the native Triton X-114, and also the foam prepared from the affinity surfactant was more rigid taking a longer time to collapse. The equilibrium dissociation constant between pure LDH and surfactant-dye conjugate was 5.0 microM as compared to the value of 2.2 microM for the enzyme and free dye as measured by differential spectroscopy. The isolation procedure involved mixing of the porcine muscle extract with the affinity foam, separating and collapsing the foam, and warming the solution formed to 37 degrees C to yield the surfactant-dye phase and an aqueous phase containing the enzyme. The effect of surfactant concentration and protein load on enzyme recovery and purification was investigated. Under optimal conditions, LDH was quantitatively recovered with high purification factor in a very short time. Both recovery and purification were higher when foam prepared from an equivalent mixture of surfactant-dye conjugate and unmodified surfactant was used. The selectivity of interaction between LDH and detergent-dye conjugate was confirmed by lowered recovery when NADH was included during the binding step.  相似文献   

20.
Extraction systems for hydrophobically tagged proteins have been developed based on phase separation in aqueous solutions of non-ionic detergents and polymers. The systems have earlier only been applied for separation of membrane proteins. Here, we examine the partitioning and purification of the amphiphilic fusion protein endoglucanase Icore–hydrophobin I (EGIcore–HFBI) from culture filtrate originating from a Trichoderma reesei fermentation. The micelle extraction system was formed by mixing the non-ionic detergent Triton X-114 or Triton X-100 with the hydroxypropyl starch polymer, Reppal PES100. The detergent/polymer aqueous two-phase systems resulted in both better separation characteristics and increased robustness compared to cloud point extraction in a Triton X-114/water system. Separation and robustness were characterized for the parameters: temperature, protein and salt additions. In the Triton X-114/Reppal PES100 detergent/polymer system EGIcore–HFBI strongly partitioned into the micelle-rich phase with a partition coefficient (K) of 15 and was separated from hydrophilic proteins, which preferably partitioned to the polymer phase. After the primary recovery step, EGIcore–HFBI was quantitatively back-extracted (KEGIcore–HFBI=150, yield=99%) into a water phase. In this second step, ethylene oxide–propylene oxide (EOPO) copolymers were added to the micelle-rich phase and temperature-induced phase separation at 55°C was performed. Total recovery of EGIcore–HFBI after the two separation steps was 90% with a volume reduction of six times. For thermolabile proteins, the back-extraction temperature could be decreased to room temperature by using a hydrophobically modified EOPO copolymer, with slightly lower yield. The addition of thermoseparating co-polymer is a novel approach to remove detergent and effectively releases the fusion protein EGIcore–HFBI into a water phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号