首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sala C 《Neuro-Signals》2002,11(4):213-223
Dendritic spines are discrete membrane protrusions from dendritic shafts where the large majority of excitatory synapses are located. Their highly heterogeneous morphology is thought to be the morphological basis for synaptic plasticity. Electron microscopy and time-lapse imaging studies have suggested that the shape and number of spines can change after long-term potentiation (LTP), although there is no evidence that morphological changes are necessary for LTP induction and maintenance. An increasing number of proteins have been found to be morphogens for dendritic spines and provide new insights into the molecular mechanisms regulating spine formation and morphology.  相似文献   

2.
Modulation of local protein synthesis in neuronal dendrites plays a key role in the production of long-term, activity-dependent changes in synapse structure and functional efficacy. Such long-term changes also require regulation of actin dynamics in dendritic spines. Recent evidence couples local protein synthesis to regulation of actin dynamics in long-term synaptic plasticity. Translation of the dendritically localized mRNA, Arc, is required for consolidation of LTP and stabilization of nascent polymerized actin. BDNF signaling activates Arc-dependent LTP consolidation and is required for actin polymerization and stable expansion of dendritic spines during LTP. Regulation of actin pools within dendritic spines modulates spine size and enlargement, organization of the postsynaptic density, receptor trafficking, and localization of the translational machinery.  相似文献   

3.
Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to evoke synaptic plasticity, or long-term depolarization block by KCl, leading to homeostatic morphological changes, we show that actin stabilization needed for the enlargement of dendritic spines is dependent on PKD activity. Consequently, impaired PKD functions attenuate activity-dependent changes in hippocampal dendritic spines, including LTP formation, cause morphological alterations in vivo, and have deleterious consequences on spatial memory formation. We thus provide compelling evidence that PKD controls synaptic plasticity and learning by regulating actin stability in dendritic spines.  相似文献   

4.
Induction of long-term synaptic potentiation (LTP) in excitatory neurons triggers a transient enlargement of dendritic spines followed by decay to sustained size expansion, a process termed structural LTP which contributes to the cellular basis of learning and memory. The activity-induced structural changes in dendritic spines involve spatiotemporal coordination of actin cytoskeleton reorganization, membrane trafficking and membrane remodeling. In this review, we discuss recent progresses in understanding the complex mechanisms underlying structural LTP, with an emphasis on the interplay between the spine plasma membrane and the actin cytoskeleton. We also highlight open questions and challenges to further understand this interesting cell neurobiological phenomenon.  相似文献   

5.
Two key hypotheses about the structural basis of long-term potentiation (LTP) are evaluated in light of new findings from immature rat hippocampal slices. First, it is shown why dendritic spines do not split during LTP. Instead a small number of spine-like dendritic protrusions may emerge to enhance connectivity with potentiated axons. These 'same dendrite multiple synapse boutons' provide less than a 3% increase in connectivity and do not account for all of LTP or memory, as they do not accumulate during maturation. Second, polyribosomes in dendritic spines served to identify which of the existing synapses enlarged to sustain more than a 30% increase in synaptic strength. Thus, both enhanced connectivity and enlarged synapses result during LTP, with synapse enlargement being the greater effect.  相似文献   

6.
Dendritic spines are micron-sized membrane protrusions receiving most excitatory synaptic inputs in the mammalian brain. Spines form and grow during long-term potentiation (LTP) of synaptic strength. However, the source of membrane for spine formation and enlargement is unknown. Here we report that membrane trafficking from recycling endosomes is required for the growth and maintenance of spines. Using live-cell imaging and serial section electron microscopy, we demonstrate that LTP-inducing stimuli promote the mobilization of recycling endosomes and vesicles into spines. Preventing recycling endosomal transport abolishes LTP-induced spine formation. Using a pH-sensitive recycling cargo, we show that exocytosis from recycling endosomes occurs locally in spines, is triggered by activation of synaptic NMDA receptors, and occurs concurrently with spine enlargement. Thus, recycling endosomes provide membrane for activity-dependent spine growth and remodeling, defining a novel membrane trafficking mechanism for spine morphological plasticity and providing a mechanistic link between structural and functional plasticity during LTP.  相似文献   

7.
Halpain S 《Neuron》2006,52(5):746-748
Dendritic spines form and grow during hippocampal long-term potentiation (LTP). In this issue of Neuron, a new study by Park et al. uses both serial reconstruction electron microscopy and time-lapse imaging to show that plasma membrane for such spine expansion is trafficked from recycling endosomes that reside locally at the spines themselves.  相似文献   

8.
Protein phosphatase-1 (PP1) has been implicated in the control of long-term potentiation (LTP) and depression (LTD) in rat hippocampal CA1 neurons. PP1 catalytic subunits associate with multiple postsynaptic regulatory subunits, but the PP1 complexes that control hippocampal LTP and LTD in the rat hippocampus remain unidentified. The neuron-specific actin-binding protein, neurabin-I, is enriched in dendritic spines, and tethers PP1 to actin-rich postsynaptic density to regulate morphology and maturation of spines. The present studies utilized Sindbis virus-mediated expression of wild-type and mutant neurabin-I polypeptides in organotypic cultures of rat hippocampal slices to investigate their role in synaptic plasticity. While wild-type neurabin-I elicited no change in basal synaptic transmission, it enhanced LTD and inhibited LTP in CA1 pyramidal neurons. By comparison, mutant neurabins, specifically those unable to bind PP1 or F-actin, decreased basal synaptic transmission, attenuated LTD and increased LTP in slice cultures. Biochemical and cell biological analyses suggested that, by mislocalizing synaptic PP1, the mutant neurabins impaired the functions of endogenous neurabin-PP1 complexes and modulated LTP and LTD. Together, these studies provided the first biochemical and physiological evidence that a postsynaptic actin-bound neurabin-I-PP1 complex regulates synaptic transmission and bidirectional changes in hippocampal plasticity.  相似文献   

9.
Zhou Q  Homma KJ  Poo MM 《Neuron》2004,44(5):749-757
Activity-induced modification of neuronal connections is essential for the development of the nervous system and may also underlie learning and memory functions of mature brain. Previous studies have shown an increase in dendritic spine density and/or enlargement of spines after the induction of long-term potentiation (LTP). Using two-photon time-lapse imaging of dendritic spines in acute hippocampal slices from neonatal rats, we found that the induction of long-term depression (LTD) by low-frequency stimulation is accompanied by a marked shrinkage of spines, which can be reversed by subsequent high-frequency stimulation that induces LTP. The spine shrinkage requires activation of NMDA receptors and calcineurin, similar to that for LTD. However, spine shrinkage is mediated by cofilin, but not by protein phosphatase 1 (PP1), which is essential for LTD, suggesting that different downstream pathways are involved in spine shrinkage and LTD. This activity-induced spine shrinkage may contribute to activity-dependent elimination of synaptic connections.  相似文献   

10.
Fukazawa Y  Saitoh Y  Ozawa F  Ohta Y  Mizuno K  Inokuchi K 《Neuron》2003,38(3):447-460
The dendritic spine is an important site of neuronal plasticity and contains extremely high levels of cytoskeletal actin. However, the dynamics of the actin cytoskeleton during synaptic plasticity and its in vivo function remain unclear. Here we used an in vivo dentate gyrus LTP model to show that LTP induction is associated with actin cytoskeletal reorganization characterized by a long-lasting increase in F-actin content within dendritic spines. This increase in F-actin content is dependent on NMDA receptor activation and involves the inactivation of actin depolymerizing factor/cofilin. Inhibition of actin polymerization with latrunculin A impaired late phase of LTP without affecting the initial amplitude and early maintenance of LTP. These observations suggest that mechanisms regulating the spine actin cytoskeleton contribute to the persistence of LTP.  相似文献   

11.
In the adult hippocampus dentate gyrus (DG), newly born neurons are functionally integrated into existing circuits and play important roles in hippocampus-dependent memory. However, it remains unclear how neural plasticity regulates the integration pattern of new neurons into preexisting circuits. Because dendritic spines are major postsynaptic sites for excitatory inputs, spines of new neurons were visualized by retrovirus-mediated labeling to evaluate integration. Long-term potentiation (LTP) was induced at 12, 16, or 21 days postinfection (dpi), at which time new neurons have no, few, or many spines, respectively. The spine expression patterns were investigated at one or two weeks after LTP induction. Induction at 12 dpi increased later spinogenesis, although the new neurons at 12 dpi didn’t respond to the stimulus for LTP induction. Induction at 21 dpi transiently mediated spine enlargement. Surprisingly, LTP induction at 16 dpi reduced the spine density of new neurons. All LTP-mediated changes specifically appeared within the LTP–induced layer. Therefore, neural plasticity differentially regulates the integration of new neurons into the activated circuit, dependent on their developmental stage. Consequently, new neurons at different developmental stages may play distinct roles in processing the acquired information by modulating the connectivity of activated circuits via their integration.  相似文献   

12.
The therapeutic hypothermia is an effective tool for TBI‐associated brain impairment, but its side effects limit in clinical routine use. Hypothermia up‐regulates RNA‐binding motif protein 3 (RBM3), which is verified to protect synaptic plasticity. Here, we found that cognitive and LTP deficits, loss of spines, AD‐like tau pathologies are displayed one month after TBI in mice. In contrast, the deficits of LTP and cognitive, loss of spines and tau abnormal phosphorylation at several sites are obviously reversed in TBI mice combined with hypothermia pre‐treatment (HT). But, the neuroprotective role of HT disappears in TBI mouse models under condition of blocking RBM3 expression with RBM3 shRNA. In other hand, overexpressing RBM3 by AAV‐RBM3 plasmid can mimic HT‐like neuroprotection against TBI‐induced chronic brain injuries, such as improving LTP and cognitive, loss of spines and tau hyperphosphorylation in TBI mouse models. Taken together, hypothermia pre‐treatment reverses TBI‐induced chronic AD‐like pathology and behaviour deficits in RBM3 expression dependent manner, RBM3 may be a potential target for neurodegeneration diseases including Alzheimer disease.  相似文献   

13.
Perlson E  Holzbaur EL 《Cell》2008,135(3):414-415
The induction of long-term potentiation (LTP) leads to an increase in the density of AMPA receptors at dendritic spines. New work by Wang et al. (2008) reveals the mechanism by which myosin Vb regulates the intracellular trafficking of AMPA receptors from recycling endosomes to synaptic sites during LTP.  相似文献   

14.
Fragile X syndrome, caused by a mutation in the Fmr1 gene, is characterized by mental retardation. Several studies reported the absence of long-term potentiation (LTP) at neocortical synapses in Fmr1 knockout (FMR1-KO) mice, but underlying cellular mechanisms are unknown. We find that in the prefrontal cortex (PFC) of FMR1-KO mice, spike-timing-dependent LTP (tLTP) is not so much absent, but rather, the threshold for tLTP induction is increased. Calcium signaling in dendrites and spines is compromised. First, dendrites and spines more often fail to show calcium transients. Second, the activity of L-type calcium channels is absent in spines. tLTP could be restored by improving reliability and amplitude of calcium signaling by increasing neuronal activity. In FMR1-KO mice that were raised in enriched environments, tLTP was restored to WT levels. Our results show that mechanisms for synaptic plasticity are in place in the FMR1-KO mouse PFC, but require stronger neuronal activity to be triggered.  相似文献   

15.
This review focuses on the research that has occurred over the past decade which has solidified a postsynaptic expression mechanism for long-term potentiation (LTP). However, experiments that have suggested a presynaptic component are also summarized. It is argued that the pairing of glutamate uncaging onto single spines with postsynaptic depolarization provides the final and most elegant demonstration of a postsynaptic expression mechanism for NMDA receptor-dependent LTP. The fact that the magnitude of this LTP is similar to that evoked by pairing synaptic stimulation and depolarization leaves little room for a substantial presynaptic component. Finally, recent data also require a revision in our thinking about the way AMPA receptors (AMPARs) are recruited to the postsynaptic density during LTP. This recruitment is independent of subunit type, but does require an adequate reserve pool of extrasynaptic receptors.  相似文献   

16.
Emptage NJ  Reid CA  Fine A  Bliss TV 《Neuron》2003,38(5):797-804
The mechanisms by which long-term potentiation (LTP) is expressed are controversial, with evidence for both presynaptic and postsynaptic involvement. We have used confocal microscopy and Ca(2+)-sensitive dyes to study LTP at individual visualized synapses. Synaptically evoked Ca(2+) transients were imaged in distal dendritic spines of pyramidal cells in cultured hippocampal slices, before and after the induction of LTP. At most synapses, from as early as 10 min to at least 60 min after induction, LTP was associated with an increase in the probability of a single stimulus evoking a postsynaptic Ca(2+) response. These observations provide compelling evidence of a presynaptic component to the expression of early LTP at Schaffer-associational synapses. In most cases, the store-dependent evoked Ca(2+) transient in the spine was also increased after induction, a novel postsynaptic aspect of LTP.  相似文献   

17.

The structural plasticity of dendritic spines plays a critical role in NMDA-induced long-term potentiation (LTP) in the brain. The small GTPases RhoA and Ras are considered key regulators of spine morphology and enlargement. However, the regulatory interaction between RhoA and Ras underlying NMDA-induced spine enlargement is largely unknown. In this study, we found that Rho-kinase/ROCK, an effector of RhoA, phosphorylated SynGAP1 (a synaptic Ras-GTPase activating protein) at Ser842 and increased its interaction with 14-3-3ζ, thereby activating Ras-ERK signaling in a reconstitution system in HeLa cells. We also found that the stimulation of NMDA receptor by glycine treatment for LTP induction stimulated SynGAP1 phosphorylation, Ras-ERK activation, spine enlargement and SynGAP1 delocalization from the spines in striatal neurons, and these effects were prevented by Rho-kinase inhibition. Rho-kinase-mediated phosphorylation of SynGAP1 appeared to increase its dissociation from PSD95, a postsynaptic scaffolding protein located at postsynaptic density, by forming a complex with 14-3-3ζ. These results suggest that Rho-kinase phosphorylates SynGAP1 at Ser842, thereby activating the Ras-ERK pathway for NMDA-induced morphological changes in dendritic spines.

  相似文献   

18.
Dendritic spines are small mushroom-like protrusions arising from neurons where most excitatory synapses reside. Their peculiar shape suggests that spines can serve as an autonomous postsynaptic compartment that isolates chemical and electrical signaling. How neuronal activity modifies the morphology of the spine and how these modifications affect synaptic transmission and plasticity are intriguing issues. Indeed, the induction of long-term potentiation (LTP) or depression (LTD) is associated with the enlargement or shrinkage of the spine, respectively. This structural plasticity is mainly controlled by actin filaments, the principal cytoskeletal component of the spine. Here we review the pioneering microscopic studies examining the structural plasticity of spines and propose how changes in actin treadmilling might regulate spine morphology.  相似文献   

19.
Induction of long-term potentiation (LTP) in excitatory neurons triggers a large transient increase in the volume of dendritic spines followed by decays to sustained size expansion, a process termed structural LTP (sLTP) that contributes to the cellular basis of learning and memory. Although mechanisms regulating the early and sustained phases of sLTP have been studied intensively, how the acute spine enlargement immediately after LTP stimulation is achieved remains elusive. Here, we report that endophilin A1 orchestrates membrane dynamics with actin polymerization to initiate spine enlargement in NMDAR-mediated LTP. Upon LTP induction, Ca2+/calmodulin enhances binding of endophilin A1 to both membrane and p140Cap, a cytoskeletal regulator. Consequently, endophilin A1 rapidly localizes to the plasma membrane and recruits p140Cap to promote local actin polymerization, leading to spine head expansion. Moreover, its molecular functions in activity-induced rapid spine growth are required for LTP and long-term memory. Thus, endophilin A1 serves as a calmodulin effector to drive acute structural plasticity necessary for learning and memory.  相似文献   

20.
Dendritic spines form the postsynaptic compartment of most excitatory synapses in the vertebrate brain. Morphological changes of dendritic spines contribute to major forms of synaptic plasticity such as long-term potentiation (LTP) or depression (LTD). Synaptic plasticity underlies learning and memory, and defects in synaptic plasticity contribute to the pathogeneses of human brain disorders. Hence, deciphering the molecules that drive spine remodeling during synaptic plasticity is critical for understanding the neuronal basis of physiological and pathological brain function. Since actin filaments (F-actin) define dendritic spine morphology, actin-binding proteins (ABP) that accelerate dis-/assembly of F-actin moved into the focus as critical regulators of synaptic plasticity. We recently identified cyclase-associated protein 1 (CAP1) as a novel actin regulator in neurons that cooperates with cofilin1, an ABP relevant for synaptic plasticity. We therefore hypothesized a crucial role for CAP1 in structural synaptic plasticity. By exploiting mouse hippocampal neurons, we tested this hypothesis in the present study. We found that induction of both forms of synaptic plasticity oppositely altered concentration of exogenous, myc-tagged CAP1 in dendritic spines, with chemical LTP (cLTP) decreasing and chemical LTD (cLTD) increasing it. cLTP induced spine enlargement in CAP1-deficient neurons. However, it did not increase the density of large spines, different from control neurons. cLTD induced spine retraction and spine size reduction in control neurons, but not in CAP1-KO neurons. Together, we report that postsynaptic myc-CAP1 concentration oppositely changed during cLTP and cTLD and that CAP1 inactivation modestly affected structural plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号