首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism whereby l-serine specifically promotes the dark senescence of detached oat (Avena) leaves has been examined. The fact that this promotion is strong in darkness but very weak in white light has been explained, at least in part, by the finding that added serine is partly converted to reducing sugars in light. Labeled serine gives rise to 14C-sugars and 14CO2. In the absence of CO2, serine does cause chlorophyll loss in light and undergoes a decreased conversion to sugar.  相似文献   

2.
The modifications induced by abscisic acid (ABA) on the senescence of oat leaves in darkness have been studied and are compared with its well-known effects in light. Contrary to the action in light, ABA preserves chlorophyll (Chl) in the dark almost as well as kinetin. Chlorophylla is decolorized more extensively thanb, and the content ofb is maintained by ABA almost at its initial level for 4 days. ABA also prevents proteolysis in darkness just as completely as chlorophyll loss, the relationship of both breakdown processes to ABA concentration being strictly log-linear over the range from 1 to 100 M. In line with this action, ABA inhibits formation of the neutral protease in the dark but not in the light. The data suggest that ABA and kinetin operate to preserve chlorophyll and protein by different mechanisms, since their actions are neither independent nor synergistic but actually interfere with one another. In this connection, protein values given by the Lowry and Bradford methods have been compared. In parallel with the effect on senescence, ABA slowly opens the stomata in the dark. This effect increases with time, and by day 3 the stomata in ABA are as open as in leaves on water in light. Thus all these effects of ABA in darkness are strikingly opposite to those commonly observed on leaves in natural lighting. In addition, ABA powerfully inhibits the formation of ethylene in the dark by the detached oat leaves, and this inhibition also tends to increase with time. Finally, a slight antagonism to ABA's action on senescence is exerted byp-coumaric acid in the light but not in the dark.  相似文献   

3.
Relation between Respiration and Senescence in Oat Leaves   总被引:1,自引:1,他引:0       下载免费PDF全文
The respiration of excised oat (Avena sativa cv Victory) leaves and their sensitivity to inhibitors was followed during senescence under varied conditions. The respiration rate, which in controls reaches its peak on the third day in darkness, is lowered at the time of fastest loss of chlorophyll (as reported earlier) by seven unrelated reagents that all delay dark senescence. When senescence is delayed by white light or by cytokinins, the respiratory rise is correspondingly delayed. Kinetin and l-serine, which act as antagonists on senescence, also act as antagonists on the respiratory rate. However, an exception to this close correspondence between senescence and the respiratory rise is offered by the lower aliphatic alcohols, which delay dark senescence and yet accelerate the onset of the respiratory rise.  相似文献   

4.
Light treatment markedly accelerated the chlorophyll loss in senescing leaves of Hydrilla verticillata [(L.f.) Royle] as compared to dark treatment, whereas such acceleration could not be observed in senescing spinach (Spinacia oleracea L.) leaves. The light-induced cholorophyll loss in Hydrilla was retarded slightly by chloramphenicol and markedly by cycloheximide. Catalase (EC 1.11.1.6) activity did not change appreciably in Hydrilla leaves either in light or in darkness, while in spinach it declined markedly in the dark, and light retarded such decline. Peroxidase activity in Hydrilla showed faster increase in light than in darkness, while in spinach it increased only in light during senescence. The activity of phenol(pyrogallol)-specific peroxidase increased markedly in light, and that of ascorbate-specific peroxidase decreased slightly both in light and darkness during senescence of Hydrilla leaves. This rise in phenolspecific peroxidase activity was prevented by cycloheximide treatment. Pretreatment of Hydrilla leaves with monophenol (2,4-dichlorophenol) and o-diphenol (hydroquinone) accelerated and retarded, respectively, the light-induced cholorophyll loss. Pretreatment of Hydrilla leaves with H2O2 augmented the chlorophyll loss more markedly in light than in darkness. The endogenous level of H2O2 increased more in light than in dark during senescence of Hydrilla leaves. Treatment of Hydrilla leaves with 3-(3.4-dichlorophenyl)-l,l-dimethylurea. a photosystem II inhibitor, prevented both light-induced rise in H2O: level and chlorophyll loss, but it was without effect in the dark. Retardation of light-induced chlorophyll loss occurred during senescence of Hydrilla leaves when light was given in different photoperiods in a 24-h daily cycle for 6 days instead of as continuous irradiance. There was a negative correlation between the length of the photoperiod and the extent of cholorophyll loss.  相似文献   

5.
A comparison has been made of the progress of senescence in the first leaf of 7-day-old oat plants (Avena sativa cv. Victory) in darkness and in white light. Light delays the senescence, and intensities not over 100 to 200 ft-c (1000-2000 lux) suffice for the maximum effect. In such intensities, chlorophyll loss and amino acid liberation still go on in detached leaves at one-third to one-half the rate observed in darkness; however, when the leaves are attached to the plant, the loss of chlorophyll in 5 days is barely detectable. Transfer of the leaves from 1 or 2 days in the low intensity light to darkness, or vice versa, shows no carryover of the effects of the preceding exposure, so that such treatment affords no evidence for the photoproduction of a stable substance, such as cytokinin, inhibiting senescence. Light causes a large increase in invertaselabile sugar and a smaller increase in glucose, and application of 100 to 300 mm glucose or sucrose in the dark maintains the chlorophyll, at least partially. Correspondingly, short exposure to high light intensity, which increased the sugar content, had a moderate effect in maintaining the chlorophyll. However, 3-(3,4-dichlorphenyl)-1,1-dimethylurea (DCMU) completely prevents the increases in sugars and yet does not prevent the effect of light on senescence, whether determined by chlorophyll loss or by protein hydrolysis. Light causes a 300% increase in the respiration of detached oat leaves, and kinetin lowers that only partly, but unlike the increased respiration associated with senescence in the dark, the increase in the light is fully sensitive to dinitrophenol, and therefore cannot be ascribed to respiratory uncoupling. The increased respiration in light is prevented by DCMU, parallel with the prevention of sugar formation. It is therefore ascribed to the accumulation of soluble sugars, acting as respirable substrate. Also, l-serine does not antagonize the light effect. For all of these reasons, it is concluded that the action of light is not mediated by photosynthetic sugar formation, nor by photoproduction of a cytokinin. Instead, we propose that light exerts its effect by photoproduction of ATP. The action of sugars is ascribed to the same mechanism but by way of respiratory ATP. This hypothesis unifies most of the observed phenomena of the senescence process in oat leaves, and helps to explain some of the divergent findings of earlier workers.  相似文献   

6.
The role of ethylene in the senescence of oat leaves   总被引:20,自引:12,他引:8       下载免费PDF全文
The evolution of ethylene, both from the endogenous source and from added 1-aminocyclopropane-1-carboxylic acid (ACC), has been followed in close relationship with the senescent loss of chlorophyll from seedling oat leaves. In white light, where chlorophyll loss is slow, the ethylene evolution increases slowly at first, but when the loss of chlorophyll becomes more rapid, ethylene evolution accelerates. CoCl2 inhibits this increase and correspondingly maintains the chlorophyll content, with an optimum concentration of 10 micromolar. The rapid rate of chlorophyll loss in the dark is slightly decreased by 3-aminoethoxyvinyl glycine (AVG), by cobalt, and slightly stimulated by ACC. The slower chlorophyll loss in white light, however, is almost completely inhibited by silver ions, greatly decreased by cobalt and by AVG, and strongly increased by ACC. Since the chlorophyll loss is accompanied by proteolysis, it represents true senescence. Chlorophyll loss in light is also strongly antagonized by CO2, 1% CO2 giving almost 50% chlorophyll maintenance in controls, while in the presence of added ACC or ethylene gas, the chlorophyll loss is 50% reversed by about 3% CO2. The ethylene system in leaves is thus more sensitive to CO2 than that in fruits. Indoleacetic acid also clearly decreases the effect of ACC. It is shown that kinetin, CO2, Ag+, and indoleacetic acid, all of which oppose the effect of ethylene, nevertheless increase the evolution of ethylene by the leaves, and it is suggested that ethylene evolution may, in many instances, mean that its hormonal metabolism is being prevented.  相似文献   

7.
The objective of the present work was to describe the simultaneous changes in endogenous levels of cytokinins, abscisic acid, indoleacetic acid and ethylene in detached, senescing tobacco (Nicotiana rustica L.) leaves. These measurements were related to changes in chlorophyll contents, 14CO2 fixation and proline contents — three parameters which have been considered to reflect senescence. Effects of exogenous hormonal treatments on these parameters, as well as on endogenous hormonal levels, provided further evidence for the interrelationships between hormones and for their roles in senescence. Starting with actively growing attached leaves and ending with well-advanced senescence in detached leaves, our data indicate a chronological sequence of three hormonal states: (a) cytokinins — high activity, abscisic acid, auxin and ethylene — low contents (actively growing, attached leaves); (b) cytokinins — low activity, abscisic acid — high, auxin and ethylene — low contents (apparent induction of senescence in detached leaves); and (c) cytokinins and abscisic acid — low, auxin and ethylene — high contents (senescence proper in detached leaves).  相似文献   

8.
The ATP content of 7-day-old Avena sativa leaves during senescence in dark and in light, and after treatment with cytokinins and other reagents, has been determined by the luciferin-luciferase method. Special care was taken to avoid decomposition of the ATP, and a detailed procedure is presented for ATP analysis at the picomole level. Preliminary experiments with several inhibitors of photophosphorylation suggest, though not conclusively, that the delaying effect of light on senescence is mediated by photophosphorylation. The ATP values of the leaves senescing in darkness are found to increase in parallel with the large increase in respiratory rate, and kinetin prevents this increase just as completely as it prevents the respiratory rise. It is concluded that the respiratory increase in senescence cannot be simply due to uncoupling. In light the ATP level also rises, though more slowly, and again kinetin prevents this rise. l-Serine, which promotes dark senescence, does not significantly modify the dark ATP level, but both arginine and kinetin, which antagonize the action of serine on senescence, greatly lower the ATP level below that on serine alone. Cycloheximide has a similar effect, and the combination of cycloheximide and kinetin lowers the ATP level drastically. Fusicoccin, which opens stomata in the dark, correspondingly maintains the ATP at a low level. Thus, in general, a low level of ATP is associated with the prevention of dark senescence, i.e. probably with ATP utilization, and the ATP level at any time may thus be determined more by the rate of utilization than by the efficiency of respiratory coupling.  相似文献   

9.
The Role of Abscisic Acid in Senescence of Detached Tobacco Leaves   总被引:2,自引:0,他引:2  
The role of abscisic acid in the regulation of senescence was investigated in detached tobacco leaves (Nicotiana rustica L.). Leaves senesced in darkness showed a sharp rise in abscisic acid level in the early stage of aging, followed by a rapid decline later. The same trend was found when leaves were aged in light, but the rise in abscisic acid occurred four days later than in darkness. Senescence was slower in light than in darkness, while salt stress accelerated the processes. Leaves treated with kinetin which senesced in light and darkness, did not show an increase in abscisic acid. Application of kinetin led to a transformation from free to bound ABA. These results may indicate that ABA and cytokinin are involved in a trigger mechanism which regulates senescence; the stage at which this trigger is activated determines the rate of senescence.  相似文献   

10.
The senescence of maize and hydrangea leaves after detachmentand darkening was studied in terms of the loss of chlorophylland protein. Chlorophyll contents of the detached leaves decreasedin the dark in both plants. Cycloheximide at 0.1 mM effectivelyinhibited the loss of chlorophyll in maize, but did not do soin hydrangea. Continuous irradiation with white light of 4.6Wm–2 prevented the loss of chlorophyll in hydrangea leaves,while it caused bleaching of maize leaves. Reducing agents suchas ascorbic acid and glutathione did not prevent the bleachingby light. In maize leaves, the amount of protein decreased inthe dark more slowly than that of chlorophyll, and cycloheximideslightly prevented the protein decrease. Continuous light irradiationof 4.6 Wm–2 delayed the loss of protein more effectivelythan cycloheximide did. (Received January 31, 1981; Accepted May 21, 1981)  相似文献   

11.
Following a study of the relationship between cytokinin oxidase/dehydrogenase (CKX) and senescence in darkened barley leaf segments, we have now investigated the influence of light on the in vitro activity of CKX. Seedlings of Hordeum vulgare L. were grown for 8 d under a light/dark regime of 18 h white light and 6 h darkness. Then apical parts of 7 cm length were cut from the first foliage leaves and their bases were placed in water. In segments kept in the dark, the CKX activity measured by cleavage of N6-(Δ2-isopentenyl)adenine rose from 0.1 pkat (g FW)−1 to 0.8 pkat (g initial FW)−1 within the first 4 d of incubation. In contrast, in segments kept under the light/dark regime it reached a value of 8.6 pkat (g initial FW)−1 over the same time period. The chlorophyll a content declined slightly slower during light/dark cycling than in darkness. In contrast to segments and isolated laminae, corresponding attached laminae exhibited less CKX activity after 2 d under light/dark conditions than after 2 d in the dark. The activity in attached laminae of first foliage leaves of plants growing in light/dark cycling increased strongly only when the plants were older than 4 weeks. In line with this, the CKX activity in attached laminae of flag leaves of barley growing in fields increased in a late developmental state. The senescence of darkened isolated laminae of Zea mays L. and Phragmites australis (Cav.) Trin. ex Steudel was associated with an enhancement of CKX activity too. Because in most cases a positive correlation between CKX activity and senescence was found, it is likely that the enzyme promotes senescence by destroying cytokinins, which help to keep Poaceae leaves green. Light may promote not only cytokinin degradation but also the formation of bioactive cytokinins in leaf segments.  相似文献   

12.
Gepstein S 《Plant physiology》1982,70(4):1120-1124
When abraded oat (Avena sativa L. cv Victory) leaf segments are floated on KCl solution, white light causes acidification of the solution external to leaf tissue. The presence of mannitol amplifies the light-induced proton secretion. Mature leaves as well as young ones acidify the medium in light, while senescing leaves (after 3 to 4 days incubated in water in the dark) lose the ability to produce this response to light. The decrease in H+ secretion is already measureable after as little as 30 minutes in darkness, while the increase in proteolysis rate was detected only after 6 hours in dark. The decrease in capacity to secrete protons is one of the symptoms of leaf senescence. Moreover, fusicoccin mimics light in stimulating H+ pumping and delaying the senescence in the dark. On the other hand vanadate, an apparent inhibitor of plasma membrane H+ ATPase, blocks the acidification and promotes the chlorophyll and protein degradation in leaf segments during the 2-day period of incubation. These results, which show a parallel between cessation of H+ secretion and acceleration of senescence, may suggest a regulatory role for H+ secretion in leaf senescence.  相似文献   

13.
In leaves of barley (Hordeum vulgare), as previously found with oats (Avena sativa), a group of six antibiotics that interfere in different ways with the sequence DNA → mRNA → protein all delay senescence in the dark, acting to conserve chlorophyll (Chl) and protein and also to open the stomata. Among the active compounds is chloramphenicol, which had previously been reported to act only on procaryotes. It is now shown that all these compounds with senescence-delaying action in darkness have the opposite effect in light, accelerating Chl destruction and partially or completely closing the stomata. Leaves of the dicot Tropaeolum majus show most of the same responses, though the changes in protein and amino acids are more variable. The data as a whole support the previous conclusion that the synthesis of one or more proteins controls both the opening and the closing of the stomata. An additional compound, kanamycin, acts in the same way as the other six compounds on oats and barley, though its action on proteolysis is unclear. On Tropaeolum, however, it opens the stomata in both light and darkness. Anisomycin and ethidium bromide have comparably atypical effects. Thus, although changes in stomatal opening or closing in the majority of cases are closely linked to the breakdown or preservation of Chl, the occasional exception shows that the biochemical phenomena of senescence cannot be under the direct control of changes in stomatal aperture.  相似文献   

14.
The loss of chlorophyll and total leaf nitrogen during autumnal senescence of leaves from the deciduous tree Platanus occidentalis L. was accompanied by a marked decline in the photosynthetic capacity of O2 evolution on a leaf area basis. When expressed on a chlorophyll basis, however, the capacity for light-and CO2-saturated O2 evolution did not decline, but rather increased as leaf chlorophyll content decreased. The photon yield of O2 evolution in white light (400-700 nanometers) declined markedly with decreases in leaf chlorophyll content below 150 milligrams of chlorophyll per square meter on both an incident and an absorbed basis, due largely to the absorption of light by nonphotosynthetic pigments which were not degraded as rapidly as the chlorophylls. Photon yields measured in, and corrected for the absorptance of, red light (630-700 nanometers) exhibited little change with the loss of chlorophyll. Furthermore, PSII photochemical efficiency, as determined from chlorophyll fluorescence, remained high, and the chlorophyll a/b ratio exhibited no decline except in leaves with extremely low chlorophyll contents. These data indicate that the efficiency for photochemical energy conversion of the remaining functional components was maintained at a high level during the natural course of autumnal senescence, and are consistent with previous studies which have characterized leaf senescence as being a controlled process. The loss of chlorophyll during senescence was also accompanied by a decline in fluorescence emanating from PSI, whereas there was little change in PSII fluorescence (measured at 77 Kelvin), presumably due to decreased reabsorption of PSII fluorescence by chlorophyll. Nitrogen was the only element examined to exhibit a decline with senescence on a dry weight basis. However, on a leaf area basis, all elements (C, Ca, K, Mg, N, P, S) declined in senescent leaves, although the contents of sulfur and calcium, which are not easily retranslocated, decreased to the smallest extent.  相似文献   

15.
The effect of different stress conditions was studied in segmentsof oat leaves (Avena sativa L. cv. Suregrein). Temperature and water (water dificit and rain) stress conditionsaccelerated senescence development. Any stress condition leadingto an increase in membrane permeability accelerated photooxidativephenomena in light, and senescence development including chlorophyllbreakdown and hydroperoxides increase. On the contrary, in darkness,any stress condition prevented chlorophyll breakdown and senescencedevelopment except for proteolysis, despite an increase in permeability. Temperature stress did not increase proteolysis. Water stressinduced in a humid chamber increased proteolysis, but it didnot increase proteolysis when water stress was induced by floatingin osmotic solution. (Received November 17, 1986; Accepted August 19, 1987)  相似文献   

16.
When leaves of plants with C3 metabolism are detached and held in darkness, they senesce and the stomata close. Because the relation of senescence and stomatal closure is very close, if not actually causal, the question arose as to whether in the leaves of plants with Crassulacean acid metabolism whose stomata open at night the relationship to senescence would be reversed. Detached leaves of four species of Hoya, floated on water in constant darkness or constant light, were found to show no large differences in stomatal aperture (measured as diffusion resistance) between those in the light or dark, but the aperture changed in a regular circadian rhythm. In some leaves the rhythm was simple, in others the peak showed small secondary peaks, but in all cases the values were nearly the same in the light as in the dark, throughout the cycle. Previous culture of the intact plants under normal day/night conditions gave results similar to those with plants that had had prolonged culture under constant light or darkness. In those cases when the stomata were more open in the dark, the chlorophyll content was greater than when the stomata were more open in the light; but when they were more open in the light, the chlorophyll content showed little difference between light and dark. When the leaves had only their petioles in water they showed greater senescence in the light than in the dark, and the stomata were more tightly closed in the light, especially at the apical ends. All four species of Hoya gave similar results. We deduce that senescence of these leaves is modified by stomatal aperture, and generally in the same direction as in C3 leaves, but that in continuous light or darkness the primary control over the aperture is the endogenous cycle.  相似文献   

17.
The senescence of detached leaves of tropaeolum   总被引:1,自引:0,他引:1       下载免费PDF全文
Thimann KV 《Plant physiology》1985,79(4):1107-1110
The senescence of detached Tropaeolum majus leaves was compared with that described earlier for Avena. Tropaeolum was chosen as being not only a dicot but also as having a nearly circular leaf, thus needing only the smallest minimum of wounding, since wounding delays the loss of chlorophyll and protein in darkness. Tropaeolum resembles Avena in that closing the stomata osmotically or with ABA causes rapid senescence in light. As in Avena also, n-hexanol and α,α′-dipyridyl delay senescence in darkness but cause `bleaching' of chlorophyll in light. Unlike Avena, however, kinetin and gibberellic acid, which delay senescence in the dark in both species, do so in Tropaeolum without causing any significant stomatal opening. The senescence of Tropaeolum leaves is actually promoted by fusicoccin, which powerfully delays senescence in Avena, although fusicoccin does cause stomatal opening in darkness in both species. Thus, many of the phenomena of senescence are alike in the monocot and dicot, but there are several significantly different responses to the senescence-modifying reagents. It is concluded that while stomatal closure accelerates senescence in both species, stomatal opening is not directly linked to the prevention of leaf senescence.  相似文献   

18.
The changes in chlorophyll and protein in senescing chloroplasts isolated from the first leaves of 7-day-old oat (Avena sativa) seedlings have been investigated. In darkness the chlorophyll in these plastids is highly stable, losing only 5 to 10% of its content after 7 days at 26 C. This result contrasts with the behavior of chlorophyll in intact leaves, in which about 80% of the pigment would have disappeared in that time. The protein is less stable than the chlorophyll, though more stable than in the leaf; probably a small amount of protease is present in the plastids. Some protein is also being synthesized in the chloroplasts along with its breakdown; gains of up to 38% in protein and 13% in chlorophyll were observed under different conditions. l-Serine, which actively promotes senescence in the leaf, has only a very slight effect on the chloroplasts, and kinetin antagonizes it. Kinetin also has a small but significant effect in preserving the protein from breakdown. Acid pH somewhat promotes the breakdown, both of chlorophyll and protein. A loss of chlorophyll and protein comparable to that occurring in the senescence of the leaf could not be induced in the chloroplasts by suspending them in malate, in cytoplasmic extract, or in any of a number of enzymes tested alone. Incubation with a mixture of four enzymes was the only treatment which approximated the senescent process in the leaf, causing 34% loss of chlorophyll at pH 5 and 40% loss of protein at pH 7.4, both in 72 hours.In white light, the chlorophyll and the carotenoids, but not the protein, disappear rapidly. This disappearance was shown to be prevented in an atmosphere of nitrogen or in air by a number of reducing agents, of which ascorbic acid was the most effective. It is, therefore, ascribed to photooxidation rather than to normal senescence.  相似文献   

19.
Hidema J  Makino A  Mae T  Ojima K 《Plant physiology》1991,97(4):1287-1293
Effects of irradiance on photosynthetic characteristics were examined in senescent leaves of rice (Oryza sativa L.). Two irradiance treatments (100 and 20% natural sunlight) were imposed after the full expansion of the 13th leaf through senescence. The photosynthetic rate was measured as a function of intercellular CO2 pressure with a gas-exchange system. The amounts of cytochrome f, coupling factor 1, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), and chlorophyll were determined. The coupling factor 1 and cytochrome f contents decreased rapidly during senescence, and their rates of decrease were much faster from the 20% sunlight treatment than from the full sunlight treatment. These changes were well correlated with those in the photosynthetic rate at CO2 pressure = 600 microbars, but not with those under the ambient air condition (350 microbars CO2) and 200 microbars CO2. This suggested that the amounts of coupling factor 1 and cytochrome f from the full sunlight treatment cannot be limiting factors for the photosynthetic rate at ambient air conditions. The Rubisco content also decreased during senescence, but its decrease from the 20% sunlight treatment was appreciably retarded. However, this difference was not reflected in the photosynthetic rates at the ambient and 200 microbars CO2. This implied that in vivo Rubisco activity may be regulated in the senescent leaves from the 20% sunlight treatment. The chlorophyll content decreased most slowly. In the 20% sunlight treatment, it remained apparently constant with a decline in chlorophyll a/b ratio. These photosynthetic characteristics of the senescent rice leaves under low irradiance were discussed in relation to acclimation of shade plants.  相似文献   

20.
The regulation of senescence by oxygen-concentration, lightirradiance and H2O2 has been studied in leaf segments of Avenasativa L. cv. Suregrain. The development of the components of the senescence process,for example chlorophyll breakdown, proteolysis (as soluble aminoacids), hydroperoxides (as malondi-aldehyde) and permeability(as conductivity) is accelerated in light as the O2-tensionincreases. In darkness, 0.3% O2 accelerates increases in hydroperoxides,permeability and proteolysis and delays the chlorophyll break-down,but 0.0005% O2 delays all the components studied. In every casethe hydroperoxide content, permeability and proteolysis areclosely related. Any treatment inducing an increase in membranepermeability causes chlorophyll bleaching (photo-oxidation)if leaf segments are then treated with light in an atmospherecontaining oxygen. Light has a modulating effect on the senescenceprocess. An irradiance lower or higher than 40 W m–2 hasan accelerating effect on the senescence process. (Received September 7, 1985; Accepted July 30, 1985)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号