首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Intracellular free magnesium concentration ([Mg2+]i) was measured in enzymatically isolated rat skeletal muscle fibers using the fluorescent dye mag-indo-1. The change in [Mg2+]i produced by a local intracellular microinjection of magnesium pidolate (magnesium pyrrolidone carboxylate) was measured at a given distance from the injection site. In one series of experiments this protocol was tested on isolated fibers that were completely embedded into silicone grease: under these conditions, the injection produced an increase in [Mg2+]i that reached a steady level some time following the injection. The time-course of the [Mg2+]i change could be well accounted for by a model of longitudinal diffusion. The mean apparent Mg2+ diffusion coefficient (D(app)) was 188+/-9 microm2 s(-1) (n = 16), approximately four times lower than the value measured in vitro. This reduction likely results from the effects of cytoplasmic viscosity and of Mg2+ binding to low affinity static sites. Another series of measurements was performed on fibers that were either partially or completely free of silicone: under these conditions, the time course of the change in [Mg2+]i was in many cases more complex than predicted by simple diffusion.  相似文献   

2.
1. The concentration of free Mg2+ ([Mg2+]m) within the matrix of isolated rat heart mitochondria was measured after loading of the mitochondria with the fluorescent Mg2+ indicators mag-indo-1 and mag-fura-2. No detectable change in total mitochondrial magnesium content occurred during loading with the indicators. Apparent Kd values for Mg2+ of 3.7 mM and 2.3 mM were obtained for mag-indo-1 and mag-fura-2 respectively within mitochondria permeabilized to bivalent cations with ionomycin and the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone. These values are 2.7- and 1.8-fold greater respectively than those obtained for the free acid forms of the dyes in incubation medium. 2. Based on the above Kd values, mitochondrial matrix Mg2+ concentrations were found to lie in the range 0.8-1.5 mM in the absence, or immediately after the addition, of a respiratory substrate. 3. Incubation of mitochondria in the presence of respiratory substrate, but in the absence of external Mg2+, led to a time-dependent decline in [Mg2+]m to about half the initial values after 5 min. This was accompanied by a fall in the total mitochondrial magnesium content from 12.7 to 7.0 nmol/mg of protein. 4. ADP (0.5 mM), ATP (0.5 mM) or 10 mM-NaCl had no significant effect on the fall in [Mg2+], whereas 1 microM-nigericin blocked, and 0.3 microM-valinomycin accelerated, the fall. 5. External Mg2+ concentrations above 1 mM progressively inhibited and reversed the decline in free and total mitochondrial Mg2+.  相似文献   

3.
Thin strips of guinea pig tenia cecum were loaded with the Mg2+ indicator furaptra, and the indicator fluorescence signals measured in Ca2+-free condition were converted to cytoplasmic-free Mg2+ concentration ([Mg2+]i). Lowering the extracellular Na+ concentration ([Na+]o) caused a reversible increase in [Mg2+]i, consistent with the inhibition of Na+ gradient-dependent extrusion of cellular Mg2+ (Na+-Mg2+ exchange). Curve-fitting analysis indicated that the relation between [Na+]o and the rate of rise in [Mg2+], had a Hill coefficient of approximately 3, a [Na+]o at the half-maximal rate of rise of approximately 30 mM, and a maximal rate of 0.16 +/- 0.01 microM/s (mean +/- SE, n = 6). Depolarization with 56 mM K+ shifted the curve slightly toward higher [Na+]o without significantly changing the maximal rate, suggesting that the Na+-Mg2+ exchange was inhibited by depolarization. The maximal rate would correspond to a flux of 0.15-0.4 pmol/cm2/s, if cytoplasmic Mg2+ buffering power (defined as the ratio of the changes in total Mg2+ and free Mg2+ concentrations) is assumed to be 2-5. Ouabain (1-5 microM) increased the intracellular Na+ concentration, as assessed with fluorescence of SBFI (sodium-binding benzofuran isophthalate, a Na+ indicator), and elevated [Mg2+]i. In ouabain-treated preparations, removal of extracellular Na+ rapidly increased [Mg2+]i, with an initial rate of rise roughly proportional to the degree of the Mg2+ load, and, probably, to the Na+ load caused by ouabain. The enhanced rate of rise in [Mg2+]i (up to approximately 1 microM/s) could be attributed to the Mg2+ influx as a result of the reversed Na+-Mg2+ exchange. Our results support the presence of a reversible and possibly electrogenic Na+-Mg2+ exchange in the smooth muscle cells of tenia cecum.  相似文献   

4.
Increase in extracellular Mg2+ concentration ([Mg2+]o) reduces Ca2+ accumulation during reoxygenation of hypoxic cardiomyocytes and exerts protective effects. The aims of the present study were to investigate the effect of increased [Mg(2+)](o) on Ca2+ influx and efflux, free cytosolic Ca2+ ([Ca2+]i) and Mg2+ concentrations ([Mg2+]i), Ca2+ accumulation in the presence of inhibitors of mitochondrial or sarcoplasmatic reticulum Ca2+ transport, and finally mitochondrial membrane potential (Delta(psi)m). Isolated adult rat cardiomyocytes were exposed to 1 h of hypoxia and subsequent reoxygenation. Cell Ca2+ was determined by 45Ca2+ uptake, and the levels of [Mg2+]i and [Ca2+]i were determined by flow cytometry as the fluorescence of magnesium green and fluo 3, respectively. Ca2+ influx rate was significantly reduced by approximately 40%, whereas Ca2+ efflux was not affected by increased [Mg2+]o (5 mM) during reoxygenation. [Ca2+]i and [Mg2+]i were increased at the end of hypoxia, fell after reoxygenation, and were unaffected by increased [Mg2+]o. Clonazepam, a selective mitochondrial Na+/Ca2+ exchange inhibitor (100 microM), significantly reduced Ca2+ accumulation by 70% and in combination with increased [Mg2+]o by 90%. Increased [Mg2+]o, clonazepam, and the combination of both attenuated the hypoxia-reoxygenation-induced reduction in Delta(psi)m, determined with the cationic dye JC-1 by flow cytometry. A significant inverse correlation was observed between Delta(psi)m and cell Ca2+ in reoxygenated cells treated with increased [Mg2+]o and clonazepam. In conclusion, increased [Mg2+]o (5 mM) inhibits Ca2+ accumulation by reducing Ca2+ influx and preserves Delta(psi)m without affecting [Ca2+]i and [Mg2+]i during reoxygenation. Preservation of mitochondria may be an important effect whereby increased [Mg2+]o protects the postischemic heart.  相似文献   

5.
This study investigated the signaling pathways responsible for ketamine-induced cardiac depression in guinea pigs. The left ventricular development pressure (LVDP), velocity of the change in pressure (dP/dt), and heart rate (HR) accompanied with the total magnesium efflux ([Mg]e) were measured simultaneously in perfused hearts. The level of activation of the extracellular signal-regulated kinases 1/2 (ERK 1/2) and p38 mitogen-activated protein (MAP) kinase. The intracellular ionized magnesium concentration ([Mg2+]i) was measured using Mag-fura 2 AM in a single cardiomyocyte. Ketamine produced reversible decreases in the LVDP, dP/dt, and HR accompanied by increases in the [Mg]e. Ketamine also produced significant activation of p38 MAP kinase and ERK 1/2, and produced a dose-dependent increase in the [Mg2+]i, which was inhibited SB203580 and PD98059. These results suggest that ketamine-induced cardiac depression can be partly responsible for the increase in [Mg2+]i and [Mg]e, accompanied by the activation of p38 MAP kinase and ERK 1/2 in guinea pigs.  相似文献   

6.
The regulation of the intracellular free Mg2+ concentration ([Mg2+]i) was monitored in rat sublingual mucous acini using dual wavelength microfluorometry of the Mg(2+)-sensitive dye mag-fura-2. Acini attached to coverslips and superfused continuously with a Mg(2+)-containing medium (0.8 mM) have a steady-state [Mg2+]i of 0.35 +/- 0.01 mM. Adjusting the extracellular Mg2+ concentration to 0 and 10 mM or removing extracellular Na+ did not alter the resting [Mg2+]i. Stimulation with the Ca(2+)-mobilizing, muscarinic agonist, carbachol, induced a sustained increase in [Mg2+]i (approximately 50%; t1/2 < 20 s; Kd approximately 1.5 microM), the magnitude and the duration of which were unchanged in Mg(2+)-depleted medium indicating that the rise in [Mg2+]i was generated by Mg2+ release from an intracellular Mg2+ pool. Forskolin, which increases the intracellular cAMP content, produced a small, transient increase in the [Mg2+]i (< 10%). Muscarinic stimulation in a Ca(2+)-free medium blunted the initial increase in [Mg2+]i by approximately 50%, whereas the sustained increase in [Mg2+]i was lost. When the muscarinic-induced increase in [Ca2+]i was blocked by 8-(diethylamino)octyl 3,4,5-trimethoxybenzoate, an inhibitor of the agonist-sensitive intracellular Ca2+ release pathway, both the initial and the sustained phases of the increase in [Mg2+]i were virtually eliminated. Thapsigargin and 2,5-di-(terbutyl)-1,4-benzohydroquinone, which increase [Ca2+]i by inhibiting microsomal Ca(2+)-ATPase, caused a dramatic increase in [Mg2+]i. Stimulation in a Na(+)-free medium or in the presence of bumetanide, an inhibitor of Na+/K+/2Cl- cotransport, blunted the agonist-induced rise in [Mg2+]i (approximately 50%), whereas ouabain, a Na+,K(+)-ATPase inhibitor, had no significant effect. FCCP (carbonyl cyanide p-trifluoromethoxyphenylhydrazone), a mitochondrial uncoupler, mobilized an intracellular Mg2+ pool as well. The carbachol-induced increase in [Mg2+]i was markedly inhibited by FCCP (approximately 80%), suggesting that the same pool(s) of Mg2+ were primarily involved. The above results provide strong evidence that Ca(2+)-mobilizing agonists increase cytoplasmic free [Mg2+] by releasing an intracellular pool of Mg2+ that is associated with a rise in the [Na+]i.  相似文献   

7.
The effects of N-methyl-D-aspartate (NMDA) on the free intracellular Ca2+ concentration [( Ca2+]i) and the energy state in superfused cerebral cortical slices have been studied using 19F- and 31P-nuclear magnetic resonance spectroscopy. [Ca2+]i was measured using the calcium indicator 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid (5FBAPTA). NMDA (10 microM) in the absence of extracellular Mg2+ caused the expected rise in [Ca2+]i but produced an impairment of the energy state: the phosphocreatine (PCr) content was decreased by 42%, and the Pi/PCr ratio was increased by 55%. There was no detectable change in ATP or free intracellular Mg2+ concentration. Increasing the NMDA concentration in the superfusing medium to 100 or 400 microM caused no further increase in [Ca2+]i or further decrease in PCr content, but the Pi/PCr ratio continued to rise. The impairment of the energy state preceded the effect on [Ca2+]i, and these changes were irreversible on return to control conditions. Repeating the experiments in the presence of 1.2 mM extracellular Mg2+ resulted in similar changes in the energy state, with no change in [Ca2+]i. The possibilities that the effects were due to membrane depolarisation or to the presence of 5FBAPTA within the tissues were eliminated. The results suggest that low concentrations (10 microM) of NMDA produce an impaired energy state independent of the presence of extracellular Mg2+ and that the decreased energy state is not due to the changes in [Ca2+]i, which are seen only in the absence of extracellular Mg2+.  相似文献   

8.
Binding of S-adenosylhomocysteine to hydroxyindole O-methyltransferase   总被引:1,自引:0,他引:1  
Mg2+-selective microelectrodes have been used to measure the intracellular free Mg2+ concentration in frog skeletal muscle fibers. Glass capillaries with a tip diameter of less than 0.4 micron were backfilled with the Mg2+ sensor, ETH 1117. In the absence of interfering ions, they gave Nernstian responses between 1 and 10 mM free Mg2+. In the presence of an ionic environment resembling the myoplasm, the microelectrode response was sub Nernstian (18-24 mV) but still useful. The electrodes were calibrated before and after muscle-fiber impalements . In quiescent fibers from sartorius muscle (Rana pipiens), with resting membrane potentials not less than -82 mV, the intracellular free Mg2+ concentration was 3.8 +/- 0.41 (S.E.) mM (n = 58) at 22 degrees C. No significant change in the intracellular free Mg2+ was observed following extensive (approx. 6 h) incubation in Mg2+-free media. Increasing the external concentration of magnesium from 4 to 20 mM (approx. 15 min) produced a slow and small enhancement (1.8 mM) of [Mg2+]i, which was fully reverted when the divalent cation was removed from the bathing solution. No change in ionic magnesium resting concentration was observed when the muscle fibers were treated either with caffeine 3 mM or with Na+-free solutions. In depolarized muscle fibers (-23 +/- 2.7 mV) treated with 100 mM K+, the myoplasmic [Mg2+] was 3.7 +/- 0.45 (S.E.) mM, n = 6, immediately after the spontaneous relaxation of the contracture. Similar determinations in muscle fibers during stimulation at low frequency (5 Hz), and after fatigue development, showed no changes in the concentration of free cytosolic Mg2+. These results point out that [Mg2+]i is not modified under these three different experimental conditions.  相似文献   

9.
The fluorescent Mg2+/Ca2+ indicator, furaptra, was injected into single frog skeletal muscle fibers, and the indicator's fluorescence signals were measured and analyzed with particular interest in the free Mg2+ concentration ([Mg2+]) in resting muscle. Based on the fluorescence excitation spectrum of furaptra, the calibrated myoplasmic [Mg2+] level averaged 0.54 mM, if the value of dissociation constant (KD) for Mg2+ obtained in vitro (5.5 mM) was used. However, if the indicator reacts with Mg2+ with a two-fold larger KD in myoplasm, as previously suggested for the furaptra-Ca2+ reaction (M. Konishi, S. Hollingworth, A.B. Harkins, S.M. Baylor. 1991. J. Gen. Physiol. 97:271-301), the calculated [Mg2+] would average 1.1 mM. Thus, the value 1.1 mM probably represents the best estimate from furaptra of [Mg2+] in resting muscle fibers. Extracellular perfusion of muscle fibers with high Mg2+ concentration solution or low Na+ concentration solution did not cause any detectable changes in the [Mg2+]-related furaptra fluorescence within 4 min. The results suggest that the myoplasmic [Mg2+] is highly regulated near the resting level of 1 mM, and that changes only occur with a very slow time course.  相似文献   

10.
Sphingolipids have a variety of important signaling roles in mammalian cells. We tested the hypothesis that certain sphingolipids and neutral sphingomyelinase (N-SMase) can regulate intracellular free magnesium ions ([Mg2+]i) in vascular smooth muscle (VSM) cells. Herein, we show that several sphingolipids, including C2-ceramide, C8-ceramide, C16-ceramide, and sphingosine, as well as N-SMase, have potent and direct effects on content and mobilization of [Mg2+]i in primary cultured rat aortic smooth muscle cells. All of these sphingolipid molecules increase, rapidly, [Mg2+]i in these vascular cells in a concentration-dependent manner. The increments of [Mg2+]i, induced by these agents, are derived from influx of extracellular Mg2+ and are extracellular Ca2+ concentration-dependent. Phospholipase C and Ca2+/calmodulin/Ca2+-ATPase activity appear to be important in the sphingolipid-induced rises of [Mg2+]i. Activation of certain PKC isozymes may also be required for sphingolipid-induced rises in [Mg2+]i. These novel results suggest that sphingolipids may be homeostatic regulators of extracellular Mg2+ concentration influx (and transport) and [Mg2+]i content in vascular muscle cells.  相似文献   

11.
Jan CR 《Life sciences》2005,77(5):589-599
In Madin-Darby canine kidney (MDCK) cells, the effect of p-chloroamphetamine, a neurotoxin that depletes intracellular serotonin, on intracellular Ca2+ concentration ([Ca2+]i) and viability was measured by using the Ca2+-sensitive fluorescent dye fura-2 and the viability detecting fluorescent dye tetrazolium. p-Chloroamphetamine (> or = 10 microM) caused a rapid rise of [Ca2+]i in a concentration-dependent manner. p-Chloroamphetamine-induced [Ca2+]i rise was partly reduced by removal of extracellular Ca2+. p-Chloroamphetamine-induced extracellular Ca2+ influx was also suggested by Mn2+ influx-induced fura-2 fluorescence quench. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which p-chloroamphetamine failed to increase [Ca2+]i; also, pretreatment with p-chloroamphetamine reduced 50% of thapsigargin-sensitive Ca2+ stores. U73122, an inhibitor of phospholipase C, abolished ATP (but not p-chloroamphetamine)-induced [Ca2+]i rise. Overnight incubation with 1-500 microM p-chloroamphetamine decreased cell viability. These findings suggest that p-chloroamphetamine evokes a rapid increase in [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release, and is cytotoxic.  相似文献   

12.
Magnesium (Mg2+) is an abundant intracellular cation that participates in the regulation of the intracellular concentration of ATP. In this study, we examined the relationship between insulin secretion and intracellular free Mg2+ ([Mg2+]i) in a rat-insulinoma cell line (RIN m5F), using a fluorescent dye (Mag-fura-2). KCI, forskolin, and D-glyceraldehyde increased [Mg2+]i and insulin secretion from RIN m5F cells in a dose-dependent fashion. Verapamil, a voltage-dependent Ca2+ channel blocker, inhibited the increase of [Mg2+]i that was evoked by KCI, forskolin, and D-glyceraldehyde. In a Mg(2+)-free buffer, these agents failed to cause an elevation in [Mg2+]i; however, the insulin response to KCI and forskolin was enhanced, compared with that in the presence of Mg2+ (1.25 mM). Our findings suggest that [Mg2+]i is dependent upon extracellular Mg2+, and the influx through the voltage-dependent Ca2+ channel. Mg2+ may competitively inhibit the voltage-dependent Ca2+ channel, which is known to play a role in insulin secretion. An absence of Mg2+ in the extracellular space may result in enhanced insulin secretion. [Mg2+]i may play a role in insulin secretion from RIN m5F cells.  相似文献   

13.
Apparent free cytoplasmic concentrations of Mg2+ ([Mg2+]i) and Na+ ([Na+]i) were estimated in rat ventricular myocytes using fluorescent indicators, furaptra (mag-fura-2) for Mg2+ and sodium-binding benzofuran isophthalate for Na+, at 25 degrees C in Ca2+-free conditions. Analysis included corrections for the influence of Na+ on furaptra fluorescence found in vitro and in vivo. The myocytes were loaded with Mg2+ in a solution containing 24 mM Mg2+ either in the presence of 106 mM Na+ plus 1 mM ouabain (Na+ loading) or in the presence of only 1.6 mM Na+ to deplete the cells of Na+ (Na+ depletion). The initial rate of decrease in [Mg2+]i from the Mg2+-loaded cells was estimated in the presence of 140 mM Na+ and 1 mM Mg2+ as an index of the rate of extracellular Na+-dependent Mg2+ efflux. Average [Na+]i, when estimated from sodium-binding benzofuran isophthalate fluorescence in separate experiments, increased from 12 to 31 mM and 47 mM after Na+ loading for 1 and 3 h, respectively, and decreased to approximately 0 mM after 3 h of Na+ depletion. The intracellular Na+ loading significantly reduced the initial rate of decrease in [Mg2+]i, on average, by 40% at 1 h and by 64% at 3 h, suggesting that the Mg2+ efflux was inhibited by intracellular Na+ with 50% inhibition at approximately 40 mM. A reduction of the rate of Mg2+ efflux was also observed when Na+ was introduced into the cells through the amphotericin B-perforated cell membrane (perforated patch-clamp technique) via a patch pipette that contained 130 mM Na+. When the cells were heavily loaded with Na+ with ouabain in combination with intracellular perfusion from the patch pipette containing 130 mM Na+, removal of extracellular Na+ caused an increase in [Mg2+]i, albeit at a very limited rate, which could be interpreted as reversal of the Mg2+ transport, i.e., Mg2+ influx driven by reversed Na+ gradient. Extracellular Na+ dependence of the rate of Mg2+ efflux revealed that the Mg2+ efflux was activated by extracellular Na+ with half-maximal activation at 55 mM. These results contribute to a quantitative characterization of the Na+-Mg2+ exchange in cardiac myocytes.  相似文献   

14.
Estimates of the free myoplasmic [Ca2+] ([Ca2+]i) with fluorescent dyes are complicated by the fact that some properties of these dyes are altered in the intracellular environment. In the present study indo-1 was used to measure [Ca2+]i in isolated muscle fibers from Xenopus frogs. Fluorescent ratio signals obtained from indo-1 were converted into [Ca2+]i by means of an intracellular calibration method, which involved microinjection of 0.5 M EGTA and 1 M CaCl2 to get the ratio at very low (Rmin) and high (Rmax) [Ca2+], respectively; ratios at intermediate [Ca2+] were obtained by injection of solutions with different EGTA/Ca(2+)-EGTA proportions. This calibration gave an intracellular Ca2+ dissociation constant of indo-1 of 311 nM and a [Ca2+]i at rest of 52 +/- 4 nM (mean +/- SE; n = 15). Indo-1 records during twitches were compared with records obtained with the much faster indicator mag-indo-1. This analysis suggests a Ca2+ dissociation rate of indo-1 of 52 s-1 (22 degrees C). This makes indo-1 less suitable for measurements of [Ca2+]i during twitches, whereas it is fast enough to follow most aspects of [Ca2+]i during tetani, including the relaxation phase.  相似文献   

15.
It has long been recognized that magnesium is associated with several important diseases, including diabetes, hypertension, cardiovascular, and cerebrovascular diseases. In the present study, we measured the intracellular free Mg2+ concentration ([Mg2+]i) using 31P nuclear magnetic resonance (NMR) in pig carotid artery smooth muscle. In normal solution, application of amiloride (1 mm) decreased [Mg2+]i by approximately 12% after 100 min. Subsequent washout tended to further decrease [Mg2+]i. In contrast, application of amiloride significantly increased [Mg2+]i (by approximately 13% after 100 min) under Ca2+-free conditions, where passive Mg2+ influx is facilitated. The treatments had little effect on intracellular ATP and pH (pHi). Essentially the same Ca2+-dependent changes in [Mg2+]i were produced with KB-R7943, a selective blocker of reverse mode Na+-Ca2+ exchange. Application of dimethyl amiloride (0.1 mM) in the presence of Ca2+ did not significantly change [Mg2+]i, although it inhibited Na+-H+ exchange at the same concentration. Removal of extracellular Na+ caused a marginal increase in [Mg2+]i after 100-200 min, as seen in intestinal smooth muscle in which Na+-Mg2+ exchange is known to be the primary mechanism of maintaining a low [Mg2+]i against electrochemical equilibrium. In Na+-free solution (containing Ca2+), neither amiloride nor KB-R7943 decreased [Mg2+]i, but they rather increased it. The results suggest that these inhibitory drugs for Na+-Ca2+ exchange directly modulate Na+-Mg2+ exchange in a Ca2+-dependent manner, and consequently produce the paradoxical decrease in [Mg2+]i in the presence of Ca2+.  相似文献   

16.
The role of intracellular free magnesium concentration ([Mg2+]) in modulating calcium release from the sarcoplasmic reticulum (SR) was studied in voltage-clamped frog cut skeletal muscle fibers equilibrated with cut end solutions containing two calcium indicators, fura-2 and antipyrylazo III (AP III), and various concentrations of free Mg2+ (25 microM-1 mM) obtained by adding appropriate total amounts of ATP and magnesium to the solutions. Changes in AP III absorbance were used to monitor calcium transients, whereas fura-2 fluorescence was used to monitor resting calcium. The rate of release (Rrel) of calcium from the SR was calculated from the calcium transient and found to be increased in low internal [Mg2+]. After correcting for effects of calcium depletion from the SR and normalization to SR content, the mean values of the inactivatable and noninactivatable components of Rrel were increased by 163 and 46%, respectively, in low Mg2+. Independent of normalization to SR content, the ratio of inactivatable to noninactivatable components of Rrel was increased in low internal [Mg2+]. Both observations suggest that internal [Mg2+] preferentially modulates the inactivatable component of Rrel, which is thought to be due to calcium-induced calcium release from the SR. This could also explain the observation that, in low internal [Mg2+], the time to the peak of the calcium transient for a 5-ms depolarizing pulse was not very different from the time to the peak of the delta [Ca2+] for a 10-ms pulse of the same amplitude. Finally, in low internal [Mg2+], the calcium transient elicited by a short depolarizing pulse was in some cases clearly followed by a very slow rise of calcium after the end of the pulse. The observed effects of reduced [Mg2+] on calcium release are consistent with a removal of the inhibition that the normal 1 mM myoplasmic [Mg2+] exerts on calcium release in skeletal muscle fibers.  相似文献   

17.
The increase in intracellular Ca2+ concentration [( Ca2+]i) in cytolytic T lymphocytes in response to target cell binding was investigated by ratio image fluorescence microscopy. Ca2+ mobilization from intracellular stores occurred at a site distal to target cell contact and was transient. Extracellular Ca2+ influx resulted in an increase in [Ca2+]i that was prolonged and distributed more proximal to the target cell. Oscillations in [Ca2+]i were observed after target cell contact, although the periodicity was dependent on the presence of extracellular Ca2+. The Ag-specific reorientation of cytoplasmic granules occurred well after [Ca2+]i had begun to decline to a resting level, but was dependent on extracellular Ca2+. These studies indicate that the Ag-stimulated increase in [Ca2+]i exhibits considerable spatial and temporal variation, and that these characteristics are altered by the availability of extracellular Ca2+. The results also suggest that these changes in [Ca2+]i may play a role in the cytoplasmic events that accompany T cell-mediated cytolysis.  相似文献   

18.
This study is concerned with the regulation of intracellular-free Mg2+ concentration ([Mg2+]i) in the smooth muscle of guinea pig taenia caeci. To assess an interaction of Ca2+ on the Na(+)-dependent Mg(2+)- extrusion mechanism (Na(+)-Mg2+ exchange), effects of Na+ removal (N- methyl-D-glucamine substitution) were examined in Ca(2+)-containing solutions. As changes in pHi in Na(+)-free solutions perturb estimation of [Mg2+]i using the single chemical shift only of the beta-ATP peak in 31P NMR (nuclear magnetic resonance) spectra, [Mg2+]i and pHi were concomitantly estimated from the chemical shifts of the gamma- and beta- peaks. When extracellular Na+ was substituted with N-methyl-D- glucamine, [Mg2+]i was reversibly increased. This increase in [Mg2+]i was eliminated in Mg(2+)-free solutions and enhanced in excess Mg2+ solutions. ATP content fluctuated little during removal and readmission of Na+, indicating that [Mg2+]i changes were not induced by Mg2+ release from ATP, and that Mg(2+)-extruding system would not be inhibited by fuel restriction. A slow acidification in Na(+)-free solutions and transient alkalosis by a readmission of Na+ were observed regardless of the extracellular Mg2+ concentration. When the extracellular Ca2+ concentration was increased from normal (2.4 mM) to 12 mM, only a marginal increase in [Mg2+]i was caused by Na+ removal, whereas a similar slow acidosis was observed, indicating that extracellular Ca2+ inhibits Mg2+ entry, and that the increase in [Mg2+]i is negligible through competition between Mg2+ and Ca2+ in intracellular sites. These results imply that Na(+)-Mg2+ exchange is the main mechanism to maintain low [Mg2+]i even under physiological conditions.  相似文献   

19.
In Madin-Darby canine kidney (MDCK) cells, the effect of 2-O-methyl PAF, an inactive analogue of platelet activating factor (PAF), on intracellular Ca2+ concentration ([Ca2+]i) was measured by using the Ca2+-sensitive fluorescent dye fura-2. 2-O-methyl PAF (> or = 15 microM) caused a rapid rise of [Ca2+]i in a concentration-dependent manner. 2-O-methyl PAF-induced [Ca2+]i rise was partly reduced by removal of extracellular Ca2+. 2-O-methyl PAF-induced extracellular Ca2+ influx was also suggested by Mn2+ influx-induced fura-2 fluorescence quench. The 2-O-methyl PAF-induced Ca2+ influx was blocked by nifedipine, verapamil and diltiazem. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which 2-O-methyl PAF failed to increase [Ca2+]i; also, pretreatment with 2-O-methyl PAF depleted thapsigargin-sensitive Ca2+ stores. U73122, an inhibitor of phospholipase C, abolished ATP (but not 2-O-methyl PAF)-induced [Ca2+]i rise. These findings suggest that 2-O-methyl PAF evokes a rapid increase in [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release.  相似文献   

20.
19F nuclear magnetic resonance is used in conjunction with 5,5'-difluoro-1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (5FBapta), a fluorinated calcium chelator, to report steady-state intracellular free calcium levels ([Ca2+]i) in populations of resting, quiescent, isolated adult heart cells. 31P nuclear magnetic resonance shows that 5FBapta-loaded cells maintain normal intracellular high-energy phosphates, pH, and free Mg2+. The intracellular free calcium concentration of well perfused, isolated heart cells is 61 +/- 5 nM, measured with 5FBapta, which has a dissociation constant (Kd) for calcium chelation of 500 nM. A similar value is obtained with Quin-MF, another fluorinated calcium chelator with Kd and maximum calcium sensitivity at 80 nM. We find that the steady-state level of intracellular free calcium is increased by decreased extra-cellular sodium concentration, omission of extracellular magnesium, decreased extracellular pH, hyperglycemia, and upon treatment with lead acetate. Further, extracellular ATP caused a large transient increase in [Ca2+]i. Thus, while heart cells maintain a very low level of intracellular free Ca2+, acute alterations in extracellular environment can cause derangement of calcium homeostasis, resulting in measurable increases in [Ca2+]i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号