首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is established that Porifera (sponges) represent the earliest phylum which branched off from the common ancestor of all multicellular animals, the Urmetazoa. In the present study, the hypothesis is tested if, during this transition, pluripotent stem cells were formed which are provided-similar to the totipotent cells (archaeocytes/germ cells)-with a self-renewal capacity. As a model system, primmorphs from the sponge Suberites domuncula were used. These 3D-cell aggregates were cultivated in medium (RPMI 1640/seawater) either lacking silicate and ferric iron or in medium which was supplemented with these 'morphogenetic' factors. As molecular markers for the potential existence of stem cells in primmorphs, two genes which encode proteins found in stem cells of higher metazoan species, were cloned from S. domuncula. First, the noggin gene, which is present in the Spemann organizer of amphibians and whose translation product acts during the formation of dorsal mesoderm derivatives. The second gene encodes the mesenchymal stem cell-like protein. Both cDNAs were used to study their expression in primmorphs in dependence on the incubation conditions. It was found that noggin expression is strongly upregulated in primmorphs kept in the presence of silicate and ferric iron, while the expression of the mesenchymal stem cell-like protein was downregulated. These data are discussed with respect to the existence of stem cells in sponges.  相似文献   

2.
Contrary to the rarity of totipotent cells in animals, almost every cell formed by a fungus can function as a "stem cell". The multicellular fruiting bodies of basidiomycete fungi consist of the same kind of filamentous hyphae that form the feeding phase, or mycelium, of the organism, and visible cellular differentiation is almost nonexistent. Mushroom primordia develop from masses of converging hyphae, and the stipe (or stem), cap, and gills are clearly demarcated within the embryonic fruiting body long before the organ expands and unfolds through water uptake and cell wall loosening. Though frequent references are made to gilled mushrooms in this article, the totipotent nature of fruiting body cells and lack of meristems is also applicable to basidiomycetes that spread their spore-producing tissues inside tubes (e.g., boletes), over spines and rippled surfaces, or form spores in cavities within the fruiting body.Even in the mature mushroom, every hypha retains its totipotency. Among animals, only sponges exhibit a similar degree of developmental flexibility, which is interesting, because these simple metazoans may be relatively close relatives of fungi.  相似文献   

3.
Sponges are considered the oldest living animal group and provide important insights into the earliest evolutionary processes in the Metazoa. This paper reviews the evidence that sponge stem cells have essential roles in cellular specialization, embryogenesis and Bauplan formation. Data indicate that sponge archaeocytes not only represent germ cells but also totipotent stem cells. Marker genes have been identified which are expressed in totipotent stem cells and gemmule cells. Furthermore, genes are described for the three main cell lineages in sponge, which share a common origin from archaeocytes and result in the differentiation of skeletal, epithelial, and contractile cells.  相似文献   

4.
(Re)defining stem cells   总被引:8,自引:0,他引:8  
Stem-cell nomenclature is in a muddle! So-called stem cells may be self-renewing or emergent, oligopotent (uni- and multipotent) or pluri- and totipotent, cells with perpetual embryonic features or cells that have changed irreversibly. Ambiguity probably seeped into stem cells from common usage, flukes in biology's history beginning with Weismann's divide between germ and soma and Haeckel's biogenic law and ending with contemporary issues over the therapeutic efficacy of adult versus embryonic cells. Confusion centers on tissue dynamics, whether stem cells are properly members of emerging or steady-state populations. Clarity might yet be achieved by codifying differences between cells in emergent populations, including embryonic stem and embryonic germ (ES and EG) cells in tissue culture as opposed to self-renewing (SR) cells in steady-state populations.  相似文献   

5.
6.
The earliest evidence for animal life comes from the fossil record of 24-isopropylcholestane, a sterane found in Cryogenian deposits, and whose precursors are found in modern demosponges, but not choanoflagellates, calcareans, hexactinellids, or eumetazoans. However, many modern demosponges are also characterized by the presence of siliceous spicules, and there are no convincing demosponge spicules in strata older than the Cambrian. This temporal disparity highlights a problem with our understanding of the Precambrian fossil record – either these supposed demosponge-specific biomarkers were derived from the sterols of some other organism and are simply retained in modern demosponges, or spicules do not primitively characterize crown-group demosponges. Resolving this issue requires resolving the phylogenetic placement of another group of sponges, the hexactinellids, which not only make a spicule thought to be homologous to the spicules of demosponges, but also make their first appearance near the Precambrian/Cambrian boundary. Using two independent analytical approaches and data sets – traditional molecular phylogenetic analyses and the presence or absence of specific microRNA genes – we show that demosponges are monophyletic, and that hexactinellids are their sister group (together forming the Silicea). Thus, spicules must have evolved before the last common ancestor of all living siliceans, suggesting the presence of a significant gap in the silicean spicule fossil record. Molecular divergence estimates date the origin of this last common ancestor well within the Cryogenian, consistent with the biomarker record, and strongly suggests that siliceous spicules were present during the Precambrian but were not preserved.  相似文献   

7.
The genetic regulatory networks controlling major developmental processes seem to be conserved in bilaterians regardless of an independent or a common origin of the structures. This has been explained by the employment of a genetic toolkit that was repeatedly used during bilaterian evolution to build the various forms and body plans. However, it is not clear how genetic networks were incorporated into the formation of novel structures and how homologous genes can regulate the disparate morphological processes. Here we address this question by analysing the role of Notch signalling, which is part of the bilaterian toolkit, in neural stem cell evolution in arthropods. Within arthropods neural stem cells have evolved in the last common ancestor of insects and crustaceans (Tetraconata). We analyse here for the first time the role of Notch signalling in a crustacean, the branchiopod Daphnia magna, and show that it is required in neural stem cells for regulating the time of neural precursor production and for binary cell fate decisions in the ventral neuroectoderm. The function of Notch signalling has diverged in the ventral neuroectoderm of insects and crustaceans accompanied by changes in the morphogenetic processes. In the crustacean, Notch controlled mechanisms of neuroblast regulation have evolved that are surprisingly similar to vertebrates and thus present a remarkable case of parallel evolution. These new data on a representative of crustaceans complete the arthropod data set on Notch signalling in the nervous system and allow for reconstructing how the Notch signalling pathway has been co-opted from pre-existing structures to the development of the evolving neural stem cells in the Tetraconata ancestor.  相似文献   

8.
9.
Sponges are one of the critical groups in understanding the early evolution of animals. Traditional views of these relationships are currently being challenged by molecular data, but the debate has so far made little use of recent palaeontological advances that provide an independent perspective on deep sponge evolution. This review summarises the available information, particularly where the fossil record reveals extinct character combinations that directly impinge on our understanding of high-level relationships and evolutionary origins. An evolutionary outline is proposed that includes the major early fossil groups, combining the fossil record with molecular phylogenetics. The key points are as follows. (1) Crown-group sponge classes are difficult to recognise in the fossil record, with the exception of demosponges, the origins of which are now becoming clear. (2) Hexactine spicules were present in the stem lineages of Hexactinellida, Demospongiae, Silicea and probably also Calcarea and Porifera; this spicule type is not diagnostic of hexactinellids in the fossil record. (3) Reticulosans form the stem lineage of Silicea, and probably also Porifera. (4) At least some early-branching groups possessed biminerallic spicules of silica (with axial filament) combined with an outer layer of calcite secreted within an organic sheath. (5) Spicules are homologous within Silicea, but also between Silicea and Calcarea, and perhaps with Homoscleromorpha. (6) The last common ancestor of extant sponges was probably a thin-walled, hexactine-bearing sponge with biminerallic spicules. (7) The stem group of sponges included tetraradially-symmetric taxa that grade morphologically into Cambrian fossils described as ctenophores. (8) The protomonaxonid sponges are an early-branching group, probably derived from the poriferan stem lineage, and include the problematic chancelloriids as derived members of the piraniid lineage. (9) There are no definite records of Precambrian sponges: isolated hexactine-like spicules may instead be derived from radiolarians. Early sponges had mineralised skeletons and thus should have a good preservation potential: the lack of sponge fossils in Precambrian strata may be due to genuine absence of sponges. (10) In contrast to molecular clock and biomarker evidence, the fossil record indicates a basal Cambrian diversification of the main sponge lineages, and a clear relationship to ctenophore-like ancestors. Overall, the early sponge fossil record reveals a diverse suite of extinct and surprising character combinations that illustrate the origins of the major lineages; however, there are still unanswered questions that require further detailed studies of the morphology, mineralogy and structure of early sponges.  相似文献   

10.
In many tissues, mammalian aging is associated with a decline in the replicative and functional capacity of somatic stem cells and other self‐renewing compartments. Understanding the basis of this decline is a major goal of aging research. In particular, therapeutic approaches to ameliorate or reverse the age‐associated loss of stem function could be of use in clinical geriatrics. Such approaches include attempts to protect stem cells from age‐promoting damage, to ‘rejuvenate’ stem cells through the use of pharmacologic agents that mitigate aging‐induced alterations in signaling, and to replace lost stem cells through regenerative medicine approaches. Some headway has been made in each of these arenas over the last 18 months including advances in the production of donor‐specific totipotent stem cells through induced pluripotency (iPS), gains in our understanding of how tumor suppressor signaling is controlled in self‐renewing compartments to regulate aging, and further demonstration of extracellular ‘milieu’ factors that perturb stem cell function with age. This period has also been marked by the recent award of the Nobel Prize in Physiology or Medicine for elucidation of telomeres and telomerase, a topic of critical importance to stem cell aging.  相似文献   

11.
12.
13.
Regulatory networks in embryo-derived pluripotent stem cells   总被引:1,自引:0,他引:1  
Mammalian development requires the specification of over 200 cell types from a single totipotent cell. Investigation of the regulatory networks that are responsible for pluripotency in embryo-derived stem cells is fundamental to understanding mammalian development and realizing therapeutic potential. Extracellular signals and second messengers modulate cell-autonomous regulators such as OCT4, SOX2 and Nanog in a combinatorial complexity. Knowledge of this circuitry might reveal how to achieve phenotypic changes without the genetic manipulation of Oct4, Nanog and other toti/pluripotency-associated genes.  相似文献   

14.
Cancer stem cells: the lessons from pre-cancerous stem cells   总被引:1,自引:0,他引:1  
How a cancer is initiated and established remains elusive despite all the advances in decades of cancer research. Recently the cancer stem cell (CSC) hypothesis has been revived, challenging the long-standing model of "clonal evolution" for cancer development and implicating the dawning of a potential cure for cancer [1]. The recent identification of precancerous stem cells (pCSCs) in cancer, an early stage of CSC development, however, implicates that the "clonal evolution" is not contradictory to the CSC hypothesis, but is rather an aspect of the process of CSC development [2]. The discovery of pCSC has revealed and will continue to reveal the volatile properties of CSC with respects to their phenotype, differentiation and tumorigenic capacity during initiation and progression. Both pCSC and CSC might also serve as precursors of tumor stromal components such as tumor vasculogenic stem/progenitor cells (TVPCs). Thus, the CSC hypothesis covers the developing process of tumor-initiating cells (TIC) --> pCSC --> CSC --> cancer, a cellular process that should parallel the histological process of hyperplasia/metaplasia (TIC) --> precancerous lesions (pCSC) --> malignant lesions (CSC --> cancer). The embryonic stem (ES) cell and germline stem (GS) cell genes are subverted in pCSCs. Especially the GS cell protein piwil2 may play an important role during the development of TIC --> pCSC --> CSC, and this protein may be used as a common biomarker for early detection, prevention, and treatment of cancer. As cancer stem cell research is yet in its infancy, definitive conclusions regarding the role of pCSC can not be made at this time. However this review will discuss what we have learned from pCSC and how this has led to innovative ideas that may eventually have major impacts on the understanding and treatment of cancer.  相似文献   

15.
Cellular and developmental properties of fetal hematopoietic stem cells   总被引:35,自引:0,他引:35  
We have characterized the fetal totipotent hematopoietic stem cell using a novel strategy that integrates physical analysis of cell properties and genetic analysis of in vivo developmental behavior. This approach allows the simultaneous isolation and in vivo characterization of any stem cell population. Using this procedure we demonstrate that a cell surface marker, recognized by monoclonal antibody AA4.1, defines 0.5%-1.0% of fetal liver tissue that contains the entire hierarchy of primitive hematopoietic cells. The AA4.1+ subpopulation includes multipotential in vitro progenitors, CFU-S cells, and lymphoid-myeloid stem cells that function to yield permanent and oligoclonal blood systems. Further fractionation of these cells by analysis of density, fibronectin binding, and surface antigen distribution has defined 0.1%-0.2% of fetal liver that contains the totipotent stem cell.  相似文献   

16.
Ivanov VB 《Ontogenez》2003,34(4):253-261
The uppermost cells of the root and shoot apical meristems are considered as stem cells. They are similar, in many features, to the stem cells of animals. But, unlike animals, the stem cells can repeatedly arise in plants during morphogenesis and regeneration or in tissue culture from actively dividing or differentiated cells. When the stem cells are removed, they can be repeatedly restored from the actively dividing cells. The maintenance of the population of stem cells is determined by interaction between the stem cells and actively dividing cells located below according to the feedback principle. The protein synthesized in the stem cells determines how the lower located cells affect the stem cells. Specificity of stem cell identification in plants is discussed.  相似文献   

17.
During the past several years, it has become increasingly possible to study adult stem cells in their native territories within tissues. These studies have provided new evidence for the existence of stem cells in the breast, muscle, lung and kidney and have led to a deeper understanding of the best-known stem cells in Drosophila and mice. Tissue stem cells are turning out to be diverse, with varying division rates, lineage lengths, and mechanisms of regulation. In addition, stem cells are now known to engage in a wide variety of interactions with neighboring cells and extracellular matrices, and to respond to various neural and hormonal signals. Stem cell niches are also diverse, sometimes harboring multiple stem cell types. Internally, a stem cell's chromatin and cytoskeletal organization play key roles. Understanding how stem cells and their progeny are controlled will illuminate fundamental biological mechanisms that govern the construction and maintenance of tissues within metazoan animals.  相似文献   

18.
A hallmark of stem cells is the ability to sustainably generate stem cells themselves (self-renew) as well as differentiated cells. Although a full understanding of this ability will require clarifying underlying the primordial molecular and cellular mechanisms, how stem cells maintain their stem state and their population in the evolutionarily oldest extant multicellular organisms, sponges, is poorly understood. Here, we report the identification of the first stem cell-specific gene in demosponges, a homolog of Musashi (an evolutionarily conserved RNA binding protein that regulates the stem cell state in various organisms). EflMsiA, a Musashi paralog, is specifically expressed in stem cells (archeocytes) in the freshwater sponge Ephydatia fluviatilis. EflMsiA protein is localized predominantly in the nucleus, with a small fraction in the cytoplasm, in archeocytes. When archeocytes enter M-phase, EflMsiA protein diffuses into the cytoplasm, probably because of the breakdown of the nuclear membrane. In the present study, the existence of two types of M-phase archeocytes [(M)-archeocytes] was revealed by a precise analysis of the expression levels of EflMsiA mRNA and protein. In Type I (M)-archeocytes, presumably archeocytes undergoing self-renewal, the expression levels of EflMsiA mRNA and protein were high. In Type II (M)-archeocytes, presumably archeocytes committed to differentiate (committed archeocytes), the expression levels of EflMsiA mRNA and protein were about 60% and 30% lower than those in Type I (M)-archeocytes. From these results, archeocytes can be molecularly defined for the first time as EflMsiA-mRNA-expressing cells. Furthermore, these findings shed light on the mode of cell division of archeocytes and suggest that archeocytes divide symmetrically for both self-renewal and differentiation.  相似文献   

19.
The demosponge Crambe crambe shows a peculiar spermatogenesis, hard to be reconciled with the basal position of sponges in the animal phylogeny. Early spermatogenesis stages showed most of the simple features expected in sponges. However, spermiogenesis departed from the anticipated process. Spermatids lengthened remarkably, forming a deep cytoplasmic pit around the cilium insertion, with the proximal axoneme bending to produce a V-shaped spermatozoon surprisingly similar to that known in the phylum Phoronida. The cytology was unexpectedly complex, with a needle-like nucleus of helically condensed chromatin, a conical acrosome with a subacrosomal rod, and a mitochondrion connected to the basal body by striated rootlets. These findings establish that the spermatozoon of broad-casting demosponges occurs in two structural categories ('primitive' and 'modified' type). This dualistic condition must necessarily have pre-dated the evolutionary apparition of higher metazoans, if we are to keep regarding sponges as the most primitive animals. We hypothesize that internal fertilization in C. crambe – and incidentally other demosponges – may depart from the general model assumed for spermcasting sponges. The V-shape of this spermatozoon suggests a design to favour autonomous penetration through the dense mesohyl to reach the oocytes, rather than engulfment and transportation by carrier cells towards the oocyte.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 413–426.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号