首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
CLIC-1 is a member of a family of proteins related to the bovine intracellular chloride channel p64 which has been proposed to function as a chloride channel. We expressed CLIC-1 as a glutathione S-transferase fusion protein in bacteria. The fusion protein was purified by glutathione affinity, and CLIC-1 was released from its fusion partner by digestion with thrombin. After further purification, CLIC-1 was reconstituted into phospholipid vesicles by detergent dialysis. Chloride permeability of reconstituted vesicles was assessed using a valinomycin dependent chloride efflux assay, demonstrating increased vesicular chloride permeability with CLIC-1 compared with control. CLIC-1-dependent chloride permeability was inhibited by indanyloxyacetic acid-94 with an apparent IC(50) of 8.6 micrometer. The single channel properties of CLIC-1 were determined using the planar lipid bilayer technique. We found that CLIC-1 forms a voltage-dependent, Cl-selective channel with a rectifying current-voltage relationship and single channel conductances of 161 +/- 7.9 and 67.5 +/- 6.9 picosiemens in symmetric 300 and 150 mm KCl, respectively. The anion selectivity of this activity is Br approximately Cl > I. The open probability of CLIC-1 channels in planar bilayers was decreased by indanyloxyacetic acid-94 with an apparent IC(50) of 86 micrometer at 50 mV. These data convincingly demonstrate that CLIC-1 is capable of forming a novel, chloride-selective channel in the absence of other subunits or proteins.  相似文献   

2.
Reactive disulfide compounds (RDSs) with a pyridyl ring adjacent to a disulfide bond, 2,2'dithiodipyridine (2,2' DTDP) and 4,4' dithiodipyridine (4,4' DTDP), induce Ca2+ release from isolated canine cardiac sarcoplasmic reticulum (SR) vesicles. RDSs are absolutely specific to free sulfhydryl (SH) groups and oxidize SH sites of low pKa via a thiol-disulfide exchange reaction, with the stoichiometric production of thiopyridone in the medium. As in skeletal SR, this reaction caused large increases in the Ca2+ permeability of cardiac SR and the number of SH sites oxidized by RDSs was kinetically and quantitatively measured through the absorption of thiopyridone. RDS-induced Ca2+ release from cardiac SR was characterized and compared to the action of RDSs on skeletal SR and to Ca2(+)-induced Ca2+ release. (i) RDS-induced Ca2+ release from cardiac SR was dependent on ionized Mg2+, with maximum rates of release occurring at 0.5 and 1 mM Mg2+free for 2,2' DTDP and 4,4' DTDP, respectively. (ii) In the presence of adenine nucleotides (0.1-1 mM), the oxidation of SH sites in cardiac SR by exogenously added RDS was inhibited, which, in turn, inhibited Ca2+ release induced by RDSs. (iii) Conversely, when the oxidation reaction between RDSs and cardiac SR was completed and Ca2+ release pathways were opened, subsequent additions of adenine nucleotides stimulated Ca2+ efflux induced by RDSs. (iv) Sulfhydryl reducing agents (e.g., dithiothreitol, DTT, 1-5 mM) inhibited RDS-induced Ca2+ efflux in a concentration-dependent manner. (v) RDSs elicited Ca2+ efflux from passively loaded cardiac SR vesicles (i.e., with nonfunctional Ca2+ pumps in the absence of Mg-ATP) and stimulated Ca2(+)-dependent ATPase activity, which indicated that RDS uncoupled Ca2+ uptake and did not act at the Ca2+, Mg2(+)-ATPase. These results indicate that RDSs selectively oxidize critical sulfhydryl site(s) on or adjacent to a Ca2+ release channel protein channel and thereby trigger Ca2+ release. Conversely, reduction of these sites reverses the effects of RDSs by closing Ca2+ release channels, which results in active Ca2+ reuptake by Ca2+, Mg2(+)-ATPase. These compounds can thus provide a method to covalently label and identify the protein involved in Ca2+ release from cardiac SR.  相似文献   

3.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is capable of inducing global Ca2+ increases via a lysosome-associated mechanism, but the mechanism mediating NAADP-induced intracellular Ca2+ release remains unclear. The present study reconstituted and characterized a lysosomal NAADP-sensitive Ca2+ release channel using purified lysosomes from rat liver. Furthermore, the identity of lysosomal NAADP-sensitive Ca2+ release channels was also investigated. It was found that NAADP activates lysosomal Ca2+ release channels at concentrations of 1 nM to 1 microM, but this activating effect of NAADP was significantly reduced when the concentrations used increased to 10 or 100 microM. Either activators or blockers of Ca2+ release channels on the sarcoplasmic reticulum (SR) had no effect on the activity of these NAADP-activated Ca2+ release channels. Interestingly, the activity of this lysosomal NAADP-sensitive Ca2+ release channel increased when the pH in cis solution decreased, but it could not be inhibited by a lysosomal H+-ATPase antagonist, bafilomycin A1. However, the activity of this channel was significantly inhibited by plasma membrane L-type Ca2+ channel blockers such as verapamil, diltiazem, and nifedipine, or the nonselective Ca2+,Na+ channel blocker, amiloride. In addition, blockade of TRP-ML1 (transient receptor potential-mucolipin 1) protein by anti-TRP-ML1 antibody markedly attenuated NAADP-induced activation of these lysosomal Ca2+ channels. These results for the first time provide direct evidence that a NAADP-sensitive Ca2+ release channel is present in the lysosome of native liver cells and that this channel is associated with TRP-ML1, which is different from ER/SR Ca2+ release channels.  相似文献   

4.
In skeletal and cardiac muscle cells, specific isoforms of the Ryanodine receptor channels mediate Ca2+ release from the sarcoplasmic reticulum. These channels are highly susceptible to redox modifications, which regulate channel activity. In this work, we studied the effects of Ca2+ (endogenous agonist) and Mg2+ (endogenous inhibitor) on the kinetics of Ca2+ release from sarcoplasmic reticulum vesicles isolated from skeletal or cardiac mammalian muscle. Native skeletal vesicles exhibited maximal stimulation of release kinetics by 10-20 microM [Ca2+], whereas in native cardiac vesicles, maximal stimulation of release required only 1 microM [Ca2+]. In 10 microM [Ca2+], free [Mg2+] < 0.1 mM produced marked inhibition of release from skeletal vesicles but free [Mg2+] < or = 0.8 mM did not affect release from cardiac vesicles. Incubation of skeletal or cardiac vesicles with the oxidant thimerosal increased their susceptibility to stimulation by Ca2+ and decreased the inhibitory effect of Mg2+ in skeletal vesicles. Sulfhydryl-reducing agents fully reversed the effects of thimerosal. The endogenous redox species, glutathione disulfide and S-nitrosoglutathione, also stimulated release from skeletal sarcoplasmic reticulum vesicles. In 10 microM [Ca2+], 35S-nitrosoglutathione labeled a protein fraction enriched in release channels through S-glutathiolation. Free [Mg2+] 1 mM or decreasing free [Ca2+] to the nM range prevented this reaction. Possible physiological and pathological consequences of redox modification of release channels on Ca2+ signaling in heart and muscle cells are discussed.  相似文献   

5.
We constructed an expression plasmid (pMAMCRR51) that carried the entire protein-coding sequence of the rabbit cardiac ryanodine receptor cDNA, linked to the dexamethasone-inducible mouse mammary tumor virus promoter and Escherichia coli xanthine-guanine phosphoribosyltransferase (gpt). Chinese hamster ovary (CHO) cells were transfected with pMAMCRR51 and mycophenolic acid-resistant cells showing caffeine-induced intracellular Ca2+ transients were selected. Immunoprecipitation with a monoclonal antibody against the canine cardiac ryanodine receptor revealed that the cell clones thus selected exhibited Ca(2+)-dependent [3H]ryanodine binding activity, which was stimulated by 5 mM ATP or 1 M KCl. The apparent dissociation constant (Kd) for [3H]ryanodine was 6.6 nM in 1 M KCl, which was similar to the Kd obtained with cardiac microsomes. Immunoprecipitation also demonstrated that these cell clones expressed a protein indistinguishable in M(r) from the ryanodine receptor in canine cardiac microsomes. The ryanodine binding activity expressed in CHO cells increased significantly after dexamethasone induction. In saponin-skinned CHO cells transfected with pMAMCRR51, micromolar Ca2+ or millimolar caffeine evoked rapid Ca2+ release from the intracellular Ca2+ stores. In skinned control CHO cells, we did not observe such Ca2+ release activity. These results clearly demonstrate that the cardiac ryanodine receptor is stably expressed in internal membranes of CHO cells and functions as Ca(2+)-induced Ca2+ release channels.  相似文献   

6.
GH3 cells showed spontaneous rhythmic oscillations in intracellular calcium concentration ([Ca2+]i) and spontaneous prolactin release. The L-type Ca2+ channel inhibitor nimodipine reduced the frequency of Ca2+ oscillations at lower concentrations (100nM-1 microM), whereas at higher concentrations (10 microM), it completely abolished them. Ca2+ oscillations persisted following exposure to thapsigargin, indicating that inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ stores were not required for spontaneous activity. The K+ channel inhibitors Ba2+, Cs+, and tetraethylammonium (TEA) had distinct effects on different K+ currents, as well as on Ca2+ oscillations and prolactin release. Cs+ inhibited the inward rectifier K+ current (KIR) and increased the frequency of Ca2+ oscillations. TEA inhibited outward K+ currents activated at voltages above -40 mV (grouped within the category of Ca2+ and voltage-activated currents, KCa,V) and increased the amplitude of Ca2+ oscillations. Ba2+ inhibited both KIR and KCa,V and increased both the amplitude and the frequency of Ca2+ oscillations. Prolactin release was increased by Ba2+ and Cs+ but not by TEA. These results indicate that L-type Ca2+ channels and KIR channels modulate the frequency of Ca2+ oscillations and prolactin release, whereas TEA-sensitive KCa,V channels modulate the amplitude of Ca2+ oscillations without altering prolactin release. Differential regulation of these channels can produce frequency or amplitude modulation of calcium signaling that stimulates specific pituitary cell functions.  相似文献   

7.
Histamine stimulates catecholamine release and tyrosine hydroxylase activity in a Ca(2+)-dependent manner in bovine adrenal chromaffin cells. The role of voltage-sensitive Ca2+ channels in these two responses has been investigated. Using an EC50 concentration of histamine, 1 microM, catecholamine release was enhanced by (+/-)BayK8644, and partially inhibited by nitrendipine and omega-agatoxin IVA, blockers of L- and P/Q-type Ca2+ channels. omega-Conotoxin GVIA gave small and variable inhibitory effects. With a maximal histamine concentration, 10 microM, similar results were obtained except that now omega-conotoxin GVIA reliably reduced release. In contrast, neither (+/-)BayK8644 nor any of the individual Ca2+ channel antagonists had any significant effect on tyrosine hydroxylase (TOH) activation induced by either an EC50 or a maximal concentration of histamine. When high concentrations of nitrendipine, omega-conotoxin GVIA and omega-agatoxin IVA were combined with omega-conotoxin MVIIC (a non-selective blocker of N, P and Q channels) to block voltage-sensitive Ca2+ channels in these cells, release induced by K+ depolarization was completely blocked. Release caused by histamine, however, was substantially reduced but not abolished. The combination of antagonists also only partially inhibited TOH activation by histamine. The results show that the G protein-coupled receptor agonist histamine activates several different types of voltage-sensitive Ca2+ channels in chromaffin cells to mediate its cellular effects. Histamine may also activate additional pathways for Ca2+ entry. The results also suggest that the manner by which Ca2+ controls release and TOH activation once it has entered chromaffin cells through these channels are different.  相似文献   

8.
Single ryanodine-sensitive sarcoplasmic reticulum (SR) Ca2+ release channels isolated from rabbit skeletal and canine cardiac muscle were reconstituted in planar lipid bilayers. Single channel activity was measured in simple solutions (no ATP or Mg2+) with 250 mM symmetrical Cs+ as charge carrier. A laser flash was used to photolyze caged-Ca2+ (DM-nitrophen) in a small volume directly in front of the bilayer. The free [Ca2+] in this small volume and in the bulk solution was monitored with Ca2+ electrodes. This setup allowed fast, calibrated free [Ca2+] stimuli to be applied repetitively to single SR Ca2+ release channels. A standard photolytically induced free [Ca2+] step (pCa 7-->6) was applied to both the cardiac and skeletal release channels. The rate of channel activation was determined by fitting a single exponential to ensemble currents generated from at least 50 single channel sweeps. The time constants of activation were 1.43 +/- 0.65 ms (mean +/- SD; n = 5) and 1.28 +/- 0.61 ms (n = 5) for cardiac and skeletal channels, respectively. This study presents a method for defining the fast Ca2+ regulation kinetics of single SR Ca2+ release channels and shows that the activation rate of skeletal SR Ca2+ release channels is consistent with a role for CICR in skeletal muscle excitation-contraction coupling.  相似文献   

9.
10.
We have studied the effects of the antithrombitic agent PCA 4230 on the entry of Mn2+, used here as a Ca2+ surrogate for Ca2+ channels, and on the release of Ca2+ from the intracellular stores in stimulated human platelets loaded with fura-2. PCA 4230 prevented receptor-operated calcium entry activated by thrombin, ADP and collagen with no modification of the Ca2+ release from the intracellular stores. PCA 4230 also inhibited cytochrome P-450-mediated O-dealkylase activity with the same concentration-dependence as the thrombin-induced Mn2+ entry. These results suggest that the inhibitory effects of PCA 4230 on Ca2+ influx may be due to its interaction with cytochrome P-450, which has been proposed recently to be involved in the activation of receptor-operated Ca2+ channels. In addition, PCA 4230 inhibited both PAF-induced Ca2+ entry and Ca2+ release, behaving as a PAF-antagonist. All these effects contribute to explain the antithrombitic action of PCA 4230.  相似文献   

11.
Alkalinization-induced Ca2+ release from isolated frog or rabbit sarcoplasmic reticulum vesicles appears to consist of two distinct components: 1) a direct activation of ruthenium red-sensitive Ca2+ release channels in terminal cisternae and 2) an increased ruthenium red-insensitive Ca2+ efflux through some other efflux pathway distributed throughout the sarcoplasmic reticulum. The first of these releases exhibits an alkalinization-induced inactivation process and does not depend on the ruthenium red-insensitive form of Ca2+ release as a triggering agent for secondary Ca(2+)-induced Ca2+ release. Both releases are inhibited when the extravesicular (i.e. cytoplasmic) free [Ca2+] is reduced. This may reflect an increased sensitivity of the Ca2+ release channels to Ca2+ at alkaline pH. The pH sensitivity of the ruthenium red-sensitive Ca2+ release channels could be of significance during excitation-contraction coupling. The ruthenium red-insensitive form of Ca2+ release is less likely to be physiologically relevant, but it probably has contributed greatly to reports of alkalinization-induced decreases in net sarcoplasmic reticulum Ca2+ uptake, particularly under conditions where oxalate supported Ca2+ uptake is much less affected, as here.  相似文献   

12.
Ca2+-induced Ca2+ release (CICR) is a well characterized activity in skeletal and cardiac muscles mediated by the ryanodine receptors. The present study demonstrates CICR in the non-excitable parotid acinar cells, which resembles the mechanism described in cardiac myocytes. Partial depletion of internal Ca2+ stores leads to a minimal activation of Ca2+ influx. Ca2+ influx through this pathway results in an explosive mobilization of Ca2+ from the majority of the stores by CICR. Thus, stimulation of parotid acinar cells in Ca2+ -free medium with 0.5 microm carbachol releases approximately 5% of the Ca2+ mobilizable by 1 mm carbachol. Addition of external Ca2+ induced the same Ca2+ release observed in maximally stimulated cells. Similar results were obtained by a short treatment with 2.5-10 microm cyclopiazonic acid, an inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase pump. The Ca2+ release induced by the addition of external Ca2+ was largely independent of IP(3)Rs because it was reduced by only approximately 30% by the inhibition of the inositol 1,4,5-trisphosphate receptors with caffeine or heparin. Measurements of Ca2+ -activated outward current and [Ca2+](i) suggested that most CICR triggered by Ca2+ influx occurred away from the plasma membrane. Measurement of the response to several concentrations of cyclopiazonic acid revealed that Ca2+ influx that regulates CICR is associated with a selective portion of the internal Ca2+ pool. The minimal activation of Ca2+ influx by partial store depletion was confirmed by the measurement of Mn2+ influx. Inhibition of Ca2+ influx with SKF96365 or 2-aminoethoxydiphenyl borate prevented activation of CICR observed on addition of external Ca2+. These findings provide evidence for activation of CICR by Ca2+ influx in non-excitable cells, demonstrate a previously unrecognized role for Ca2+ influx in triggering CICR, and indicate that CICR in non-excitable cells resembles CICR in cardiac myocytes with the exception that in cardiac cells Ca2+ influx is mediated by voltage-regulated Ca2+ channels whereas in non-excitable cells Ca2+ influx is mediated by store-operated channels.  相似文献   

13.
Store-operated Ca2+ entry (SOCE) is the Ca2+ influx that is activated on depletion of intracellular Ca2+ stores. Although SOCE is found in a variety of cell types, its activation mechanism and molecular identity remain to be clarified. Current experimental results suggest that SOCE channels are activated by direct coupling with Ca2+ release channels on depleted stores. Here we report SOCE in cardiac myocytes, that was prominently sensitive to Zn2+ but resistant to inhibitors for voltage-dependent Ca2+ channels and Na+/Ca2+ exchangers. The SOCE activity may be developmentally regulated, because the SOCE was easily detected during embryonic and neonatal stages but not in mature myocytes from adult hearts. In cardiac myocytes, ryanodine receptor type 2 (RyR-2) is thought to be the sole Ca2+ release channel on the intracellular store, and junctophilin type 2 (JP-2) contributes to formation of the junctional complex between the cell surface and store membranes. Using the knockout mice, we also examined possible involvement of the Ca2+ release channel and junctional membrane complex in cardiac SOCE. Apparently normal SOCE activities were retained in mutant myocytes lacking RyR-2 or JP-2, suggesting that neither the Ca2+ release channel nor junctional membrane complex is involved in activation of cardiac SOCE.  相似文献   

14.
Ca2+-induced Ca2+ release and pH-induced Ca2+ release activities were identified in sarcoplasmic-reticulum (SR) vesicles isolated from adult- and fetal-sheep hearts. Ca2+-induced Ca2+ release and pH-induced Ca2+ release appear to proceed via the same channels, since both phenomena are similarly inhibited by Ruthenium Red. Ca2+ release from fetal SR vesicles is inhibited by higher concentrations of Ruthenium Red than is that from adult membranes. Both fetal and adult SR vesicles bind ryanodine. Fetal SR shows higher ryanodine-binding capacity than adult SR vesicles. Scatchard analysis of ryanodine binding revealed only one high-affinity binding site (Kd 6.7 nM) in fetal SR vesicles compared with two distinct binding sites (Kd 6.6 and 81.5 nM) in the adult SR vesicles. SR vesicles isolated from fetal and adult hearts were separated on discontinuous sucrose gradients into light (free) and heavy (junctional) SR vesicles. Heavy SR vesicles isolated from adult hearts exhibited most of the Ca2+ release activities. In contrast, Ca2+-induced Ca2+ release, pH-induced Ca2+ release and ryanodine receptors were detected in both light and heavy fetal SR. These results suggest that fetal SR may not be morphologically and functionally as well differentiated as that of adult cardiac muscle and that it may contain a greater number of Ca2+-release channels than that present in adult SR membranes.  相似文献   

15.
We report transient expression of a full-length cDNA encoding the Ca2+ release channel of rabbit skeletal muscle sarcoplasmic reticulum (ryanodine receptor) in HEK-293 cells. The single-channel properties of the 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate-solubilized and sucrose gradient-purified recombinant Ca2+ release channels were investigated by using single-channel recordings in planar lipid bilayers. The recombinant Ca2+ release channel exhibited a K+ conductance of 780 pS when symmetrical 250 mM KCl was used as the conducting ion and a Ca2+ conductance of 116 pS in 50 mM luminal Ca2+. Opening events of the recombinant channels were brief, with an open time constant of approximately 0.22 ms. The recombinant Ca2+ release channel was more permeable to Ca2+ than to K+, with a pCa2+/pK+ ratio of 6.8. The response of the recombinant Ca2+ release channel to various concentrations of Ca2+ was biphasic, with the channel being activated by micromolar Ca2+ and inhibited by millimolar Ca2+. The recombinant channels were activated by ATP and caffeine, inhibited by Mg2+ and ruthenium red, and modified by ryanodine. Most recombinant channels were asymmetrically blocked, conducting current unidirectionally from the luminal to the cytoplasmic side of the channel. These data demonstrate that the properties of recombinant Ca2+ release channel expressed in HEK-293 cells are very similar, if not identical, to those of the native channel.  相似文献   

16.
The regulation of the Ca2+ -induced Ca2+ release (CICR) from intracellular stores is a critical step in the cardiac cycle. The inherent positive feedback of CICR should make it a self-regenerating process. It is accepted that CICR must be governed by some negative control, but its nature is still debated. We explore here the importance of the Ca2+ released from sarcoplasmic reticulum (SR) on the mechanisms that may control CICR. Specifically, we compared the effect of replacing Ca2+ with Sr2+ on intracellular Ca2+ signaling in intact cardiac myocytes as well as on the function of single ryanodine receptor (RyR) Ca2+ release channels in panar bilayers. In cells, both CICR and Sr2+ -induced Sr2+ release (SISR) were observed. Action potential induced Ca2+ -transients and spontaneous Ca2+ waves were considerably faster than their Sr2+ -mediated counterparts. However, the kinetics of Ca2+ and Sr2+ sparks was similar. At the single RyR channel level, the affinities of Ca2+ and Sr2+ activation were different but the affinities of Ca2+ and Sr2+ inactivation were similar. Fast Ca2+ and Sr2+ stimuli activated RyR channels equally fast but adaptation (a spontaneous slow transition back to steady-state activity levels) was not observed in the Sr2+ case. Together, these results suggest that regulation of the RyR channel by cytosolic Ca2+ is not involved in turning off the Ca2+ spark. In contrast, cytosolic Ca2+ is important in the propagation global Ca2+ release events and in this regard single RyR channel sensitivity to cytosolic Ca2+ activation, not low-affinity cytosolic Ca2+ inactivation, is a key factor. This suggests that the kinetics of local and global RyR-mediated Ca2+ release signals are affected in a distinct way by different divalent cations in cardiac muscle cells.  相似文献   

17.
Purified canine cardiac sarcoplasmic reticulum vesicles were passively loaded with 45CaCl2 and assayed for Ca2+ releasing activity according to a rapid quench protocol. Ca2+ release from a subpopulation of vesicles was found to be activated by micromolar Ca2+ and millimolar adenine nucleotides, and inhibited by millimolar Mg2+ and micromolar ruthenium red. 45Ca2+ release in the presence of 10 microM free Ca2+ gave a half-time for efflux of 20 ms. Addition of 5 mM ATP to 10 microM free Ca2+ increased efflux twofold (t1/2 = 10 ms). A high-conductance calcium-conducting channel was incorporated into planar lipid bilayers from the purified cardiac sarcoplasmic reticulum fractions. The channel displayed a unitary conductance of 75 +/- 3 pS in 53 mM trans Ca2+ and was selective for Ca2+ vs. Tris+ by a ratio of 8.74. The channel was dependent on cis Ca2+ for activity and was also stimulated by millimolar ATP. Micromolar ruthenium red and millimolar Mg2+ were inhibitory, and reduced open probability in single-channel recordings. These studies suggest that cardiac sarcoplasmic reticulum contains a high-conductance Ca2+ channel that releases Ca2+ with rates significant to excitation-contraction coupling.  相似文献   

18.
Members of the glutathione transferase (GST) structural family are novel regulators of cardiac ryanodine receptor (RyR) calcium channels. We present the first detailed report of the effect of endogenous muscle GST on skeletal and cardiac RyRs. An Mu class glutathione transferase is specifically expressed in human muscle. An hGSTM2-2-like protein was isolated from rabbit skeletal muscle and sheep heart, at concentrations of approximately 17-93 microM. When added to the cytoplasmic side of RyRs, hGSTM2-2 and GST isolated from skeletal or cardiac muscle, modified channel activity in an RyR isoform-specific manner. High activity skeletal RyR1 channels were inactivated at positive potentials or activated at negative potentials by hGSTM2-2 (8-30 microM). Inactivation became faster as the positive voltage was increased. Channels recovered from inactivation when the voltage was reversed, but recovery times were significantly slowed in the presence of hGSTM2-2 and muscle GSTs. Low activity RyR1 channels were activated at both potentials. In contrast, hGSTM2-2 and GSTs isolated from muscle (1-30 microM) in the cytoplasmic solution, caused a voltage-independent inhibition of cardiac RyR2 channels. The results suggest that the major GST isoform expressed in muscle regulates Ca2+ signalling in skeletal and cardiac muscle and conserves Ca2+ stores in the sarcoplasmic reticulum.  相似文献   

19.
A subpopulation of canine cardiac sarcoplasmic reticulum vesicles has been found to contain a "Ca2+ release channel" which mediates the release of intravesicular Ca2+ stores with rates sufficiently rapid to contribute to excitation-contraction coupling in cardiac muscle. 45Ca2+ release behavior of passively and actively loaded vesicles was determined by Millipore filtration and with the use of a rapid quench apparatus using the two Ca2+ channel inhibitors, Mg2+ and ruthenium red. At pH 7.0 and 5-20 microM external Ca2+, cardiac vesicles released half of their 45Ca2+ stores within 20 ms. Ca2+-induced Ca2+ release was inhibited by raising and lowering external Ca2+ concentration, by the addition of Mg2+, and by decreasing the pH. Calmodulin reduced the Ca2+-induced Ca2+ release rate 3-6-fold in a reaction that did not appear to involve a calmodulin-dependent protein kinase. Under various experimental conditions, ATP or the nonhydrolyzable ATP analog, adenosine 5'-(beta, gamma-methylene)triphosphate (AMP-PCP), and caffeine stimulated 45Ca2+ release 2-500-fold. Maximal release rates (t1/2 = 10 ms) were observed in media containing 10 microM Ca2+ and 5 mM AMP-PCP or 10 mM caffeine. An increased external Ca2+ concentration (greater than or equal to 1 mM) was required to optimize the 45Ca2+ efflux rate in the presence of 8 mM Mg2+ and 5 mM AMP-PCP. These results suggest that cardiac sarcoplasmic reticulum contains a ligand-gated Ca2+ channel which is activated by Ca2+, adenine nucleotide, and caffeine, and inhibited by Mg2+, H+, and calmodulin.  相似文献   

20.
Oscillations of Ca2+ in heart cells are a major underlying cause of important cardiac arrhythmias, and it is known that Ca2+-induced release of Ca2+ from intracellular stores (the sarcoplasmic reticulum) is fundamental to the generation of such oscillations. There is now evidence that cADP-ribose may be an endogenous regulator of the Ca2+ release channel of the sarcoplasmic reticulum (the ryanodine receptor), raising the possibility that cADP-ribose may influence arrhythmogenic mechanisms in the heart. 8-Amino-cADP-ribose, an antagonist of cADP-ribose, suppressed oscillatory activity associated with overloading of intracellular Ca2+ stores in cardiac myocytes exposed to high doses of the beta-adrenoreceptor agonist isoproterenol or the Na+/K+-ATPase inhibitor ouabain. The oscillations suppressed by 8-amino-cADP-ribose included intracellular Ca2+ waves, spontaneous action potentials, after-depolarizations, and transient inward currents. Another antagonist of cADP-ribose, 8-bromo-cADP-ribose, was also effective in suppressing isoproterenol-induced oscillatory activity. Furthermore, in the presence of ouabain under conditions in which there was no arrhythmogenesis, exogenous cADP-ribose was found to be capable of triggering spontaneous contractile and electrical activity. Because enzymatic machinery for regulating the cytosolic cADP-ribose concentration is present within the cell, we propose that 8-amino-cADP-ribose and 8-bromo-cADP-ribose suppress cytosolic Ca2+ oscillations by antagonism of endogenous cADP-ribose, which sensitizes the Ca2+ release channels of the sarcoplasmic reticulum to Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号