首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most insects harbour a variety of maternally inherited endosymbionts, the most widespread being Wolbachia pipientis that commonly induce cytoplasmic incompatibility (CI) and reduced hatching success in crosses between infected males and uninfected females. High temperature and increasing male age are known to reduce the level of CI in a variety of insects. In Drosophila simulans, infected males have been shown to mate at a higher rate than uninfected males. By examining the impact of mating rate independent of age, this study investigates whether a high mating rate confers an advantage to infected males through restoring their compatibility with uninfected females over and above the effect of age. The impact of Wolbachia infection, male mating rate and age on the number of sperm transferred to females during copulation and how it relates to CI expression was also assessed. As predicted, we found that reproductive compatibility was restored faster in males that mate at higher rate than that of low mating and virgin males, and that the effect of mating history was over and above the effect of male age. Nonvirgin infected males transferred fewer sperm than uninfected males during copulation, and mating at a high rate resulted in the transfer of fewer sperm per mating irrespective of infection status. These results indicate that the advantage to infected males of mating at a high rate is through restoration of reproductive compatibility with uninfected females, whereas uninfected males appear to trade off the number of sperm transferred per mating with female encounter rate and success in sperm competition. This study highlights the importance Wolbachia may play in sexual selection by affecting male reproductive strategies.  相似文献   

2.
Comparing the reproductive output of intra- and inter-population matings is the most common way to assess whether post-mating reproductive isolation is caused by genetic incompatibilities. Such genetic incompatibility can however, only assume that the quantity of the post-mating signals involved does not differ between intra- and inter-population matings. This assumption may not be true because sexual selection predicts reduced mating effort towards low-quality mates and in many circumstances, allopatric partners are low-quality mates. Post-mating efforts may, therefore, be reduced in inter- compared to intra-population matings. Here, I test this crucial assumption by studying variation in one post-mating trait, sperm number, in crosses of two parapatric grasshopper populations. In both populations, males transferred fewer sperm to allopatric than sympatric females. If such plasticity with respect to population is common in other post-mating traits, differences between inter- and intra-population crosses may be more frequently caused by differences in sperm number rather than gamete incompatibility. Additionally, I found that sperm numbers declined less rapidly in the female storage organ of allopatric than sympatric females but its rate differed markedly between populations. This is discussed with respect to female adaptations to male traits.  相似文献   

3.
Evolutionary consequences of sperm cell aging   总被引:2,自引:0,他引:2  
Animal breeding research, reproductive biology, and cellular biogerontology show that fertilization rates and zygote viability critically depend on sperm age. Sexual selection research focuses on differences between male genotypes in sperm performance, such as motility, competitive ability, or compatibility with eggs, but without considering sperm age. A combined view (that the thermodynamically inevitable decline in sperm performance selects for traits in diploid individuals to prevent fertilization with aged sperm) has received very little attention. In this paper, I correct this bias and show that many male and female traits affect sperm aging or the sperm age distribution at any reproductive event. Such traits coincide well with condition-dependent traits considered sexually selected: multiple mating by both sexes, high sperm production rates, the delivery of dense ejaculates containing many sperm (including nonfertilizing types), the packaging of sperm into spermatophores, male and female sperm ejection, sexual coercion, as well as the production of showy antioxidants and various cellular and nuclear repair mechanisms. I conclude that altering the sperm age distribution at any step during reproduction can be an origin of sexually selected traits, and may explain presently observed paternity variation without assuming genetic incompatibility of gametes.  相似文献   

4.
It is widely accepted that the genetic divergence and reproductive incompat- ibility between closely related species and/or populations is often viewed as an important step toward speciation. In this study, sexual compatibility in crosses between the southern XS population and the northern TA population of the polyandrous cabbage beetle Co- laphellus bowringi was investigated by testing their mating preferences, mating latency, copulation duration, and reproductive performances of post-mating. In choice mating ex- periments, the percentages ofmatings were significantly higher in intra-population crosses than in inter-population crosses. Both isolation index (/) and index of pair sexual isolation (/PSi) indicated partial mating incompatibility or assortative mating in crosses between the two different geographical populations. In single pair mating experiments, XS females in inter-population crosses mated significantly later and copulated significantly shorter than those in intra-population crosses. However, TA females in inter-population crosses mated significantly earlier and copulated longer than those in intra-population crosses, suggesting that larger XS males may enhance heterotypic mating. The lifetime fecundity was highest in XS homotypic matings, lowest in TA homotypic matings, and intermedi- ate in heterotypic rnatings between their parents. The inter-population crosses resulted in significantly lower egg hatching rate and shorter female longevity than intra-population crosses. These results demonstrated that there exist some incompatibilities in premating, postmating-prezygotic, and postzygotic stages between the southern XS population and northern TA population of the cabbage beetle Colaphellus bowringi.  相似文献   

5.
Intense reproductive competition often continues long after animals finish mating. In many species, sperm from one male compete with those from others to find and fertilize oocytes. Since this competition occurs inside the female reproductive tract, she often influences the outcome through physical or chemical factors, leading to cryptic female choice. Finally, traits that help males compete with each other are sometimes harmful to females, and female countermeasures may thwart the interests of males, which can lead to an arms race between the sexes known as sexually antagonistic coevolution. New studies from Caenorhabditis nematodes suggest that males compete with each other by producing sperm that migrate aggressively and that these sperm may be more likely to win access to oocytes. However, one byproduct of this competition appears to be an increased probability that these sperm will go astray, invading the ovary, prematurely activating oocytes, and sometimes crossing basement membranes and leaving the gonad altogether. These harmful effects are sometimes observed in crosses between animals of the same species but are most easily detected in interspecies crosses, leading to dramatically lowered fitness, presumably because the competitiveness of the sperm and the associated female countermeasures are not precisely matched. This mismatch is most obvious in crosses involving individuals from androdioecious species (which have both hermaphrodites and males), as predicted by the lower levels of sperm competition these species experience. These results suggest a striking example of sexually antagonistic coevolution and dramatically expand the value of nematodes as a laboratory system for studying postcopulatory interactions. On the Origin of Species focused almost exclusively on the role of natural selection in evolution [1], but Darwin realized that animals also compete for mates and described the process of sexual selection at length in a later book [2]. The simplest examples involve combat like that between male elephant seals fighting for access to females. However, sexual selection also includes many other types of interactions. For example, some male birds have elaborate plumage because females favor this trait when choosing mates (reviewed in [3]). In their simplest form, these interactions can be thought of as parts of a triangle—competition between two males forming the base and the interactions between each of the males and the female forming the two legs.  相似文献   

6.
Spatial relationship, male size and genetic interaction were manipulated to determine their effects on fecundity variation in the dioecious ephemeral liverwortSphaerocarpos texanus Aust. Genetically identical male individuals and genetically identical female individuals were used within inter-mate distance and male size experiments. Thus, any treatment effects within these experiments cannot be attributed to genetic effects. For the genetic interaction experiment, three males and three females were mated in a factorial design resulting in nine unique crosses. Each of these nine crosses was replicated eight times. In addition, 182 pairs (13 males and 14 females) were crossed to detect general trends across many pairings. I found that both increasing inter-mate distance and decreasing male size reduce sporophyte production, thus suggesting sperm limitation. One of the nine pairs had very low levels of sporophyte production. The male and female individuals involved in this pairing did not have lower fecundity levels when their successful coatings were compared with the other two individuals of similar sex. Of the 182 pairs, 13 were not fecund. This fecundity pattern must have an underlying genetic mechanism since the individuals involved were fecund in other crosses. This novel result provides evidence that genetic interactions may contribute to the low levels of sexual reproduction observed among dioecious bryophytes.  相似文献   

7.
In Drosophila species of the obscura group, males exhibit sperm-heteromorphism, simultaneously producing both long sperm, capable of fertilization, and short sperm that are not. The production of multiple sperm types calls into question whether mating system correlates, such as sperm length and number trade-offs and female remating behavior, are the same as previously described in sperm-monomorphic systems. We examine three obscura group species, D. pseudoobscura, D. persimilis, and D. affinis that differ significantly in the lengths of their long fertilizing sperm, to test predictions about the relationship between sperm length and four mating system characters: male age at sexual maturity; sperm number; female remating; and male reproductive output. In D. affinis, where males produce the longest fertilizing sperm, their sexual maturity is delayed and they produce fewer long sperm compared to the other two species, as predicted if long sperm are costly to produce. Female D. affinis, although they receive fewer sperm than females of the other two species, do not remate more frequently or produce fewer progeny from a single mating. Different responses between sperm-heteromorphic and sperm-monomorphic systems underscore the complex nature of the coevolution between male and female mating system characters.  相似文献   

8.
Among anuran amphibians (frogs and toads), there are two types of polyandry: simultaneous polyandry, where sperm from multiple males compete to fertilize eggs, and sequential polyandry, where eggs from a single female are fertilized by multiple males in a series of temporally separate mating events, and sperm competition is absent. Here we review the occurrence of sequential polyandry in anuran amphibians, outline theoretical explanations for the evolution of this mating system and discuss potential evolutionary implications. Sequential polyandry has been reported in a limited number of anurans, but its widespread taxonomic and geographic distribution suggests it may be common. There have been no empirical studies that have explicitly investigated the evolutionary consequences of sequential polyandry in anurans, but species with this mating pattern share an array of behavioural, morphological and physiological characteristics, suggesting that there has been common sexual selection on their reproductive system. Sequential polyandry may have a number of adaptive benefits, including spreading the risk of brood failure in unpredictable environments, insuring against male infertility, or providing genetic benefits, either through good genes, intrinsic compatibility or genetic diversity effects. Anurans with sequential polyandry provide untapped opportunities for innovative research approaches that will contribute significantly to understanding anuran evolution and also, more broadly, to the development of sexual‐selection and life‐history theory.  相似文献   

9.
The steps by which isolated populations acquire reproductive incompatibilities remain poorly understood. One potentially important process is postcopulatory sexual selection because it can generate divergence between populations in traits that influence fertilization success after copulation. Here we present a comprehensive analysis of this form of reproductive isolation by conducting reciprocal crosses between variably diverged populations of stalk‐eyed flies (Teleopsis dalmanni). First, we measure seven types of reproductive incompatibility between copulation and fertilization. We then compare fertilization success to hatching success to quantify hybrid inviability. Finally, we determine if sperm competition acts to reinforce or counteract any incompatibilities. We find evidence for multiple incompatibilities in most crosses, including failure to store sperm after mating, failure of sperm to reach the site of fertilization, failure of sperm to fertilize eggs, and failure of embryos to develop. Local sperm have precedence over foreign sperm, but this effect is due mainly to differences in sperm transfer and reduced hatching success. Crosses between recently diverged populations are asymmetrical with regard to the degree and type of incompatibility. Because sexual conflict in these flies is low, postcopulatory sexual selection, rather than antagonistic coevolution, likely causes incompatibilities due to mismatches between male and female reproductive traits.  相似文献   

10.
This review highlights the potential role that post-copulatory sexual selection plays in elasmobranch reproductive systems and the utility of this group to further understanding of evolutionary responses to the post-copulatory processes of sperm competition and cryptic female choice. The growing genetic evidence for female multiple mating (polyandry) in elasmobranchs is summarized. While polyandry appears to be common in this group, rates of multiple paternity are highly variable between species suggesting that there is large variance in the strength of post-copulatory sexual selection among elasmobranchs. Possible adaptations of traits important for post-copulatory sexual selection are then considered. Particular emphasis is devoted to explore the potential for sperm competition and cryptic female choice to influence the evolution of testes size, sperm morphology, genital morphology and sperm storage organs. Finally, it is argued that future work should take advantage of the wealth of information on these reproductive traits already available in elasmobranchs to gain a better understanding of how post-copulatory sexual selection operates in this group.  相似文献   

11.
The experimental evolution under different levels of sexual conflict have been used to demonstrate antagonistic coevolution in muscids, but among other taxa a similar approach has not been employed. Here, we describe the results of 37 generations of evolution under either experimentally enforced monogamy or polygamy in the bulb mite Rhizoglyphus robini. Three replicates were maintained for each treatment. Monogamy makes male and female interests congruent; thus selection is expected to decrease harmfulness of males to their partners. Our results were consistent with this prediction in that females from monogamous lines achieved lower fecundity when housed with males from polygamous lines. Fecundity of polygamous females was not affected by mating system under which their partners evolved, which suggests that they were more resistant to male-induced harm. As predicted by the antagonistic coevolution hypothesis, the decrease in harmfulness of monogamous males was accompanied by a decline in reproductive competitiveness. In contrast, female fecundity and embryonic viability, which were not expected to be correlated with male harmfulness, did not differ between monogamous and polygamous lines. None of the fitness components assayed differed between individuals obtained from crosses between parents from the same line and those obtained from crosses between parents from different lines within the same mating system. This indicates that inbreeding depression did not confound our results. However, interpretation of our results is complicated by the fact that both males and females from monogamous lines evolved smaller body size compared to individuals from polygamous lines. Although a decrease in reproductive performance of males from monogamous lines was still significant when body size was taken into account, we were not able to separate the effects of male body size and mating system in their influence on fecundity of their female partners.  相似文献   

12.
Divergent reproductive interests of males and females often cause sexual conflict . Males of many species manipulate females by transferring seminal fluids that boost female short-term fecundity while decreasing their life expectancy and future reproductivity . The life history of ants, however, is expected to reduce sexual conflict; whereas most insect females show repeated phases of mating and reproduction, ant queens mate only during a short period early in life and undergo a lifelong commitment to their mates by storing sperm . Furthermore, sexual offspring can only be reared after a sterile worker force has been built up . Therefore, the males should also profit from a long female lifespan. In the ant Cardiocondyla obscurior, mating indeed has a positive effect on the lifetime reproductive success of queens. Queens that mated to either one fertile or one sterilized male lived considerably longer and started laying eggs earlier than virgin queens. Only queens that received viable sperm from fertile males showed increased fecundity. The lack of a trade-off between fecundity and longevity is unexpected, given evolutionary theories of aging . Our data instead reveal the existence of sexual cooperation in ants.  相似文献   

13.
Understanding the processes underlying the origin of new species is a fundamental problem in evolutionary research. Whilst it has long been recognised that closely related taxa often differ markedly in reproductive characteristics, only relatively recently has sexual selection been evoked as a key promoter of speciation through its ability to generate reproductive isolation (RI). Sexual selection potentially can influence the probability that individuals from the same or different populations will reproduce successfully since it shapes precisely those traits involved in mating and reproduction. If reproductive characters diverge along different trajectories, then sexual selection can impact on the evolution of reproductive barriers operating both before and after mating. In this perspective, we consider some new advances in our understanding of the coevolution of male and female sexual signals and receptors and suggest how these developments may provide heretofore neglected insights into the mechanisms by which isolating barriers may emerge. Specifically, we explore how selfish genetic elements (SGEs) can mediate pre- and post-copulatory mate choice, thereby influencing gene flow and ultimately population divergence; we examine evidence from studies of intracellular sperm–egg interactions and propose that intracellular gametic incompatibilities may arise after sperm entry into the egg, and thus contribute to RI; we review findings from genomic studies demonstrating rapid, adaptive evolution of reproductive genes in both sexes and discuss whether such changes are causal in determining RI or simply associated with it; and finally, we consider genetic, developmental and functional mechanisms that might constrain reproductive trait diversification, thereby limiting the scope for reproductive barriers to arise via sexual selection. We hope to stimulate work that will further the understanding of the role sexual selection plays in generating RI and ultimately speciation.  相似文献   

14.
In polyandrous species, male reproductive success will at least partly be determined by males' success in sperm competition. To understand the potential for post‐mating sexual selection, it is therefore important to assess the extent of female remating. In the lekking moth Achroia grisella, male mating success is strongly determined by female choice based on the attractiveness of male ultrasonic songs. Although observations have indicated that some females will remate, only little is known about the level of sperm competition. In many species, females are more likely to remate if their first mating involved an already mated male than if the first male was virgin. Potentially, this is because mated males are less well able to provide an adequate sperm supply, nutrients, or substances inhibiting female remating. This phenomenon will effectively reduce the strength of pre‐copulatory sexual selection because attractive males with high mating success will be more susceptible to sperm competition. We therefore performed an experiment designed both to provide a more precise estimate of female remating probability and simultaneously to test the hypothesis that female remating is influenced by male mating history. Overall, approximately one of five females remated with a second male. Yet, although females mated to non‐virgin males were somewhat more prone to remate, the effect of male mating history was not significant. The results revealed, however, that heavier females were more likely to remate. Furthermore, we found that females' second copulations were longer, suggesting that, in accordance with theory, males may invest more sperm in situations with an elevated risk of sperm competition.  相似文献   

15.
Sexual conflict can promote rapid evolution of male and female reproductive traits. Males of many polyandrous butterflies transfer nutrients at mating that enhances female fecundity, but generates sexual conflict over female remating due to sperm competition. Butterflies produce both normal fertilizing sperm and large numbers of non-fertile sperm. In the green-veined white butterfly, Pieris napi, non-fertile sperm fill the females'' sperm storage organ, switching off receptivity and thereby reducing female remating. There is genetic variation in the number of non-fertile sperm stored, which directly relates to the female''s refractory period. There is also genetic variation in males'' sperm production. Here, we show that females'' refractory period and males'' sperm production are genetically correlated using quantitative genetic and selection experiments. Thus selection on male manipulation may increase the frequency of susceptible females to such manipulations as a correlated response and vice versa.  相似文献   

16.
There is considerable variation in structures known to function in the transfer and storage of sperm in female decapod crustaceans. The thelycum is a secondary sexual character that forms from the posterior thoracic sterna of female shrimps (especially penaeoids and sergestoids). Females in the caridean shrimp family Processidae have a thelycum‐like structure which rarely occurs in other caridean females. We tested the hypothesis that the processid thelycum serves as a spermatheca for either short‐term attachment or long‐term sperm storage. When inseminated females of the processid Ambidexter symmetricus were isolated after mating, newly spawned and then incubated embryos hatched, but in the continued absence of a male, females were unable to fertilize a subsequent spawn. Our observations on A. symmetricus show that sperm were not retained after female spawning, and thus the thelycum is not used for long‐term sperm storage as in many penaeoids. In A. symmetricus, the thelycum may serve as an external median spermatheca (seminal receptacle) for temporary attachment and storage of a sperm mass during the 2–3 h interval between mating and spawning. Observations on mating behavior support the hypothesis of a pure‐search (promiscuous) mating system in A. symmetricus, with males showing little interest before, and copulating with females only after, the female parturial molt. Mating encounters were short (<2 min). This mating system is like that of other caridean shrimps with populations structured similarly to those in A. symmetricus: a relatively high density of mobile individuals and sexual dimorphism in body size (reproductive females larger than males) but not in cheliped weaponry (similar in males and females).  相似文献   

17.
Oliver Otti 《Insect Science》2015,22(3):325-339
In sexual reproduction different types of symbiotic relationships between insects and microbes have become established. For example, some bacteria have evolved almost exclusive vertical transmission and even define the compatibility of insect mating partners. Many strictly sexually transmitted diseases have also been described in insects. Apart from such rather specific relationships the role of opportunistic infections in the reproductive process has been widely neglected. Opportunistic microbes transmitted passively during mating might impose an energetic cost, as the immune system will need to be alert and will use resources to fight potential intruders. Through mating wounds and contaminated reproductive organs opportunistic microbes might be transferred to mating partners and even enter the body cavity. Females as the “receiving” sex are particularly likely to have evolved adaptations to avoid or reduce opportunistic infections. Males of several species show highly complex seminal fluids, which as well as containing components that influence a males’ fertilization success, also possess antimicrobial substances. The role of antimicrobials in the reproductive process is not well understood. Some evidence hints at the protection of sperm against microbes, indicating a role for natural selection in shaping the evolution of reproductive traits. By highlighting the potential importance of microbes in sexual selection and their role in reproduction in general I will make a case for studies in sexual selection, especially the ones investigating postcopulatory processes, that should incorporate environmental, as well as genotypic variation, in reproductive traits.  相似文献   

18.
Parentage analyses of baleen whales are rare, and although mating systems have been hypothesized for some species, little data on realized male reproductive success are available and the patterns of male reproductive success have remained elusive for most species. Here we combine over 20 years of photo-identification data with high-resolution genetic data for the majority of individual North Atlantic right whales to assess paternity in this endangered species. There was significant skew in male reproductive success compared to what would be expected if mating was random (P < 0.001). The difference was due to an excess of males assigned zero paternities, a deficiency of males assigned one paternity, and an excess of males assigned as fathers for multiple calves. The variance in male reproductive success was high relative to other aquatically mating marine mammals, but was low relative to mammals where the mating system is based on resource- and/or mate-defence polygyny. These results are consistent with previous data suggesting that the right whale mating system represents one of the most intense examples of sperm competition in mammals, but that sperm competition on its own does not allow for the same degree of polygyny as systems where males can control access to resources and/or mates. The age distribution of assigned fathers was significantly biased towards older males (P < 0.05), with males not obtaining their first paternity until approximately 15 years of age, which is almost twice the average age of first fertilization in females (8 years), suggesting that mate competition is preventing younger males from reproducing. The uneven distribution of paternities results in a lower effective population size in this species that already has one of the lowest reported levels of genetic diversity, which may further inhibit reproductive success through mate incompatibility of genetically similar individuals.  相似文献   

19.
Investigating the mating system of a population provides insight into the evolution of reproductive patterns, and can inform conservation management of threatened or endangered species. Combining behavioural and genetic data is necessary to fully understand the mating system and factors affecting male reproductive success, yet behavioural data are often difficult to collect for threatened species. In the present study, we use behavioural data and paternity analyses to characterize the mating system of a high density population of a long-lived, ancient reptile (tuatara, Sphenodon punctatus ). We further investigate the phenotypic traits (including body size, body condition, tail length, and ectoparasite load) that affect male reproductive success. Our behavioural data reflect a seasonally monogamous system with low levels of polyandry and polygyny that are consistent with male mate guarding. Male reproduction is highly skewed (only 25–30% of males are successful), and body size is the primary predictor of male reproductive success. Based on the genetic data, multiple paternity was found in only 8% of clutches, and the results of the paternity analyses showed monandrous clutches from socially polyandrous females. Our behavioural and genetic results revealed complexities in female mating patterns that support the potential for cryptic female choice or sperm competition. This warrants further experimental investigation into the mechanisms underlying reptile fertilization and the disparities between social and genetic polyandry in wild populations.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 161–170.  相似文献   

20.
The outcome of sexual selection on males may depend on female mate choice and male–male competition as well as postcopulatory processes such as cryptic female choice and sperm competition. We studied the outcome of sexual selection in the spotted salamander ( Ambystoma maculatum ), specifically examining the role of body size and relatedness on male reproductive success. Using controlled mating experiments in the field, we gave females access to three males of different sizes. We used seven microsatellite loci to determine paternity in the resulting larvae, estimate relatedness ( r ) between females and their mates, and calculate md 2 (a measure of within-individual genomic divergence), heterozygosity, and standardized heterozygosity in the larvae. Both body size and relatedness to the female were significant predictors of male reproductive success. The relatedness of the males available to a female did not influence the amount of stored sperm she used to sire her larvae. Nonetheless, computer simulations showed that the average md 2, heterozygosity, and standardized heterozygosity of the offspring were lower than expected by random mating. These differences are due to the use of stored sperm to fertilize some eggs; md 2, heterozygosity, and standardized heterozygosity of larvae sired by stored sperm were significantly lower than those of larvae sired by the experimental males. These results suggest that relatedness may further influence a male's long-term reproductive success by determining whether his sperm is stored for later breeding seasons. Sexual selection in this salamander likely involves a complex interaction among many factors and may act over many seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号