首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yamada A  Ishikura T  Yamato T 《Proteins》2004,55(4):1063-1069
We show the unexpectedly important role of the protein environment in the primary step of the photoreaction of the yellow protein after light illumination. The driving force of the trans-to-cis isomerization reaction was analyzed by a computational method. The force was separated into two different components: the term due to the protein-chromophore interaction and the intrinsic term of the chromophore itself. As a result, we found that the contribution from the interaction term was much greater than that coming from the intrinsic term. This accounts for the efficiency of the isomerization reaction in the protein environment in contrast to that in solution environments. We then analyzed the relaxation process of the chromophore on the excited-state energy surface and compared the process in the protein environment and that in a vacuum. Based on this analysis, we found that the bond-selectivity of the isomerization reaction also comes from the interaction between the chromophore and the protein environment.  相似文献   

2.
The blue light receptor photoactive yellow protein (PYP) displays rhodopsin-like photochemistry based on the trans to cis photoisomerization of its p-coumaric acid chromophore. Here, we report that protein refolding from the acid-denatured state of PYP mimics the last photocycle transition in PYP. This implies a direct link between transient protein unfolding and photosensory signal transduction. We utilize this link to study general issues in protein folding. Chromophore trans to cis photoisomerization in the acid-denatured state strongly decelerates refolding, and converts the pH dependence of the barrier for refolding from linear to nonlinear. We propose transition state movement to explain this phenomenon. The cis chromophore significantly stabilizes the acid-denatured state, but acidification of PYP results in the accumulation of the acid-denatured state containing a trans chromophore. This provides a clear example of kinetic control in a protein unfolding reaction. These results demonstrate the power of PYP as a light-triggered model system to study protein folding.  相似文献   

3.
All chemical and biological reactions involve atomic motion, embodied in dynamic structural changes. Identifying these changes is the goal of time-resolved crystallography. The "raw" output of a time-resolved macromolecular crystallography experiment is the time-dependent set of difference electron density maps that span the desired time range and display the time-dependent changes in density (and underlying structure) as the reaction progresses. The goal is to interpret such data in terms of a small number of crystallographically refinable, time-independent structures, each associated with a reaction intermediate; to establish the pathways and rate coefficients by which the intermediates interconvert; and thus to establish a chemical kinetic mechanism. We review briefly the various strategies that may be used to achieve this goal and concentrate on two promising advances: singular value decomposition and cluster analysis. The strategies are illustrated by using data on the photocycle of the bacterial blue light photoreceptor, photoactive yellow protein.  相似文献   

4.
Molecular dynamics simulation techniques, together with semiempirical PM3 calculations, have been used to investigate the effect of photoisomerization of the 4-hydroxy-cinnamic acid chromophore on the structural properties of the photoactive yellow protein (PYP) from Ectothiorodospira halophila. In this bacteria, exposure to blue light leads to a negative photoactic response. The calculations suggest that the isomerization does not directly destabilize the protein. However, because of the isomerization, a proton transfer from a glutamic acid residue (Glu46) to the phenolate oxygen atom of the chromophore becomes energetically favorable. The proton transfer initiates conformational changes within the protein, which are in turn believed to lead to signaling.  相似文献   

5.
PAS (PER-ARNT-SIM) domains are a family of sensor protein domains involved in signal transduction in a wide range of organisms. Recent structural studies have revealed that these domains contain a structurally conserved alpha/beta-fold, whereas almost no conservation is observed at the amino acid sequence level. The photoactive yellow protein, a bacterial light sensor, has been proposed as the PAS structural prototype yet contains an N-terminal helix-turn-helix motif not found in other PAS domains. Here we describe the atomic resolution structure of a photoactive yellow protein deletion mutant lacking this motif, revealing that the PAS domain is indeed able to fold independently and is not affected by the removal of these residues. Computer simulations of currently known PAS domain structures reveal that these domains are not only structurally conserved but are also similar in their conformational flexibilities. The observed motions point to a possible common mechanism for communicating ligand binding/activation to downstream transducer proteins.  相似文献   

6.
Snyder DA  Montelione GT 《Proteins》2005,59(4):673-686
An important open question in the field of NMR-based biomolecular structure determination is how best to characterize the precision of the resulting ensemble of structures. Typically, the RMSD, as minimized in superimposing the ensemble of structures, is the preferred measure of precision. However, the presence of poorly determined atomic coordinates and multiple "RMSD-stable domains"--locally well-defined regions that are not aligned in global superimpositions--complicate RMSD calculations. In this paper, we present a method, based on a novel, structurally defined order parameter, for identifying a set of core atoms to use in determining superimpositions for RMSD calculations. In addition we present a method for deciding whether to partition that core atom set into "RMSD-stable domains" and, if so, how to determine partitioning of the core atom set. We demonstrate our algorithm and its application in calculating statistically sound RMSD values by applying it to a set of NMR-derived structural ensembles, superimposing each RMSD-stable domain (or the entire core atom set, where appropriate) found in each protein structure under consideration. A parameter calculated by our algorithm using a novel, kurtosis-based criterion, the epsilon-value, is a measure of precision of the superimposition that complements the RMSD. In addition, we compare our algorithm with previously described algorithms for determining core atom sets. The methods presented in this paper for biomolecular structure superimposition are quite general, and have application in many areas of structural bioinformatics and structural biology.  相似文献   

7.
Outward currents through inward rectifier K+ channels (Kir) play a pivotal role in determining resting membrane potential and in controlling excitability in many cell types. Thus, the regulation of outward Kir current (IK1) is important for appropriate physiological functions. It is known that outward IK1 increases with increasing extracellular K+ concentration ([K+]o), but the underlying mechanism is not fully understood. A "K+-activation of K+-channel" hypothesis and a "blocking-particle" model have been proposed to explain the [K+]o-dependence of outward IK1. Yet, these mechanisms have not been examined at the single-channel level. In the present study, we explored the mechanisms that determine the amplitudes of outward IK1 at constant driving forces [membrane potential (Vm) minus reversal potential (EK)]. We found that increases in [K+]o elevated the single-channel current to the same extent as macroscopic IK1 but did not affect the channel open probability at a constant driving force. In addition, spermine-binding kinetics remained unchanged when [K+]o ranged from 1 to 150 mM at a constant driving force. We suggest the regulation of K+ permeation by [K+]o as a new mechanism for the [K+]o-dependence of outward IK1.  相似文献   

8.
We report a comparative study of the isomerization reaction in native and denatured photoactive yellow protein (PYP) and in various chromophore analogues in their trans deprotonated form. The excited-state relaxation dynamics was followed by subpicosecond transient absorption and gain spectroscopy. The free p-hydroxycinnamate (pCA(2-)) and its amide analogue (pCM(-)) are found to display a quite different transient spectroscopy from that of PYP. The excited-state deactivation leads to the formation of the ground-state cis isomer without any detectable intermediate with a mechanism comparable to trans-stilbene photoisomerization. On the contrary, the early stage of the excited-state deactivation of the free thiophenyl-p-hydroxycinnamate (pCT(-)) and of the denatured PYP is similar to that of the native protein. It involves the formation of an intermediate absorbing in the spectral region located between the bleaching and gain bands in less than 2 ps. However, in these two cases, the formation of the cis isomer has not been proved yet. This difference with pCA(-) and pCM(-) might result from the fact that, in the thioester substituted chromophore, simultaneous population of two quasi-degenerate excited states occurs upon excitation. This comparative study highlights the determining role of the chromophore structure and of its intrinsic properties in the primary molecular events in native PYP.  相似文献   

9.
We review recent new insights on reaction dynamics of photoreceptors proteins gained from ultrafast spectroscopy. In Blue Light sensing Using FAD (BLUF) domains, a hydrogen-bond rearrangement around the flavin chromophore proceeds through a radical-pair mechanism, by which light-induced electron and proton transfer from the protein to flavin result in rotation of a conserved glutamine that switches the hydrogen bond network. Femtosecond infrared spectroscopy has shown that in photoactive yellow protein (PYP), breaking of a hydrogen bond that connects the p-coumaric acid chromophore to the backbone is crucial for trans-cis isomerization and successful entry into the photocycle. Furthermore, isomerization reactions of phycocyanobilin in phytochrome and retinal in the rhodopsins have been revealed in detail through application of femtosecond infrared and femtosecond-stimulated Raman spectroscopy.  相似文献   

10.
This work describes a theoretical approach to the substitution reaction mechanism involving the conversion of cholesterol to cholesteryl chloride. Two chlorosulfite ester molecules were formed as intermediates. An iso-steroid was found as the transition state. The final product was cholesteryl chloride and the side products were HCl and SO2. Calculations were carried out at high level Hartree–Fock theory, using the 6–31G* basis set. From the electronic structure of the reactants, the most important physicochemical properties involved in the reaction pathway were used. Thus, to determine the participation of each molecule and to explain the mechanism of reaction; the total energy, HOMO and LUMO, atomic orbital contribution to frontier orbitals formation, electrostatic potentials, atomic charges, hardness and dipole moment were used. Characterization of intermediates and transition state was supported by their respective energy minima, fundamental frequencies and equilibrium geometry.Figure Synopsis of the reaction pathway. The reaction starts when the lone pair of the Ch oxygen interacts with the sulfur atom, releasing a chloride ion. As a result, the first intermediate is formed. Next, in the first intermediate the nucleophilic chloride ion bonds the electrophilic hydrogen atom, releasing HCl and yielding the second intermediate. In the second intermediate, the electrophilic H-atom from HCl bonds with the lone pair of the Cl atom adjacent to the sulfur atom, restoring HCl. Concurrently, SO2 is liberated and causes the formation of the C3-C5 partial bond and breaking of the C5-C6 -bond leading to the transition state. In the transition state, the electrophilic H from HCl bonds with the Cl lone pair at C6-Cl, forming HCl again and leaving the C6 atom electron-deficient, which restores the C5-C6 -bond and breaks the C3-C5 partial bond. Finally, the electrophilic C3 atom and the nucleophilic Cl atom form a bond, yielding cholesteryl chloride. HCl and SO2 are also formed as side products. The arrows show the rearrangement of electrons.  相似文献   

11.
The light-induced isomerization of a double bond is the key event that allows the conversion of light energy into a structural change in photoactive proteins for many light-mediated biological processes, such as vision, photosynthesis, photomorphogenesis, and photo movement. Cofactors such as retinals, linear tetrapyrroles, and 4-hydroxy-cinnamic acid have been selected by nature that provide the essential double bond to transduce the light signal into a conformational change and eventually, a physiological response. Here we report the first events after light excitation of the latter chromophore, containing a single ethylene double bond, in a low temperature crystallographic study of the photoactive yellow protein. We measured experimental phases to overcome possible model bias, corrected for minimized radiation damage, and measured absorption spectra of crystals to analyze the photoproducts formed. The data show a mechanism for the light activation of photoactive yellow protein, where the energy to drive the remainder of the conformational changes is stored in a slightly strained but fully cis-chromophore configuration. In addition, our data indicate a role for backbone rearrangements during the very early structural events.  相似文献   

12.
Mirzaie M  Sadeghi M 《Proteins》2012,80(3):683-690
We have recently introduced a novel model for discriminating the correctly folded proteins from well-designed decoy structures using mechanical interatomic forces. In the model, we considered a protein as a collection of springs and the force imposed to each atom was calculated by using the relation between the potential energy and the force. A mean force potential function is obtained from statistical contact preferences within the known protein structures. In this article, the interatomic forces are calculated by numerical derivation of the potential function. For assessing the knowledge-based force function we consider an optimal structure and define a score function on the 3D structure of a protein. We compare the force imposed to each atom of a protein with the corresponding atom in the optimum structure. Afterwards we assign larger scores to those atoms with the lower forces. The total score is the sum of partial scores of atoms. The optimal structure is assumed to be the one with the highest score in the dataset. Finally, several decoy sets are applied in order to evaluate the performance of our model.  相似文献   

13.
Membrane proteins are among the most functionally important proteins in cells. Unlike soluble proteins, they only possess two translational degrees of freedom on cell surfaces, and experience significant constraints on their rotations. As a result, it is currently challenging to characterize the in situ binding of membrane proteins. Using the membrane receptors CD2 and CD58 as a testing system, we developed a multiscale simulation framework to study the differences of protein binding kinetics between 3D and 2D environments. The association and dissociation processes were implemented by a coarse‐grained Monte‐Carlo algorithm, while the dynamic properties of proteins diffusing on lipid bilayer were captured from all‐atom molecular dynamic simulations. Our simulations show that molecular diffusion, linker flexibility and membrane fluctuations are important factors in adjusting binding kinetics. Moreover, by calibrating simulation parameters to the measurements of 3D binding, we derived the 2D binding constant which is quantitatively consistent with the experimental data, indicating that the method is able to capture the difference between 3D and 2D binding environments. Finally, we found that the 2D dissociation between CD2 and CD58 is about 100‐fold slower than the 3D dissociation. In summary, our simulation framework offered a generic approach to study binding mechanisms of membrane proteins.  相似文献   

14.
The purpose of this article is to introduce a novel model for discriminating correctly folded proteins from well designed decoy structures using mechanical interatomic forces. In our model, we consider a protein as a collection of springs and the force imposed to each atom is calculated. A potential function is obtained from statistical contact preferences within known protein structures. Combining this function with the spring equation, the interatomic forces are calculated. Finally, we consider a structure and define a score function on the 3D structure of a protein. We compare the force imposed to each atom of a protein with the corresponding atom in the other structures. We then assign larger scores to those atoms with lower forces. The total score is the sum of partial scores of atoms. The optimal structure is assumed to be the one with the highest score in the data set. To evaluate the performance of our model, we apply it on several decoy sets. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The hydrogen bond (HB) between 4‐hydroxycinnamic acid (HC4) and glutamic acid E46 of photoactive yellow protein is exceptionally strong. In the 0.82‐å resolution X‐ray structure for this protein (PDB ID: 1NWZ ), the O? H…O distance is only 2.57 å. The position of the H atom between these two O atoms has not been determined in that structure, and in the absence of that information, it is impossible to determine whether or not this HB is a low‐barrier HB (LBHB), as was proposed recently based on neutron structures of this protein (Yamaguchi et al., Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 440–444). Residual electron density maps computed using the 1NWZ data reveal that this H atom is 0.92 å from the Oε2 atom of E46 and 1.67 å from the O4′ of HC4, and that the O? H…O bond angle is 167°. These observations indicate that E46 is protonated, and HC4 is deprotonated, as was originally suggested, and that the HB in question is not an LBHB.  相似文献   

16.
The present paper describes a theoretical approach to the catalytic reaction mechanism involved in the conversion of 5-androstene-3,17-dione to 4-androstene-3,17-dione. The model incorporates the side chains of the residues tyrosine (Tyr(14)), aspartate (Asp(38)) and aspartic acid (Asp(99)) of the enzyme Delta(5)-3-ketosteroid isomerase (KSI; EC 5.3.3.1). The reaction involves two steps: first, Asp(38) acts as a base, abstracting the 4beta-H atom (proton) from C-4 of the steroid to form a dienolate as the intermediate; next, the intermediate is reketonized by proton transfer to the 6beta-position. Each step goes through its own transition state. Functional groups of the Tyr(14) and Asp(99) side chains act as hydrogen bond donors to the O1 atom of the steroid, providing stability along the reaction coordinate. Calculations were assessed at high level Hartree-Fock theory, using the 6-31G(*) basis set and the most important physicochemical properties involved in each step of the reaction, such as total energy, hardness, and dipole moment. Likewise, to explain the mechanism of reaction, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), atomic orbital contributions to frontier orbitals formation, encoded electrostatic potentials, and atomic charges were used. Energy minima and transition state geometries were confirmed by vibrational frequency analysis. The mechanism described herein accounts for all of the properties, as well as the flow of atomic charges, explaining both catalytic mechanism and proficiency of KSI.  相似文献   

17.
We have studied the unfolding by force of one of the immunoglobulin domains of the muscle protein titin using molecular dynamics simulations at 300 K. Previous studies, done at constant pulling rates, showed that under the effect of the force two strands connected to each other by six backbone H-bonds are pulled apart. No details about the mechanism of H-bond breaking were provided. Our simulation protocol "pull and wait" was designed to correspond to very slow pulling, more similar to the rates used in experiments than are the protocols used in previous computational studies. Under these conditions interstrand backbone H-bonds are not "ripped apart" by the application of the force. Instead, small elongations produced by the force weaken specific backbone H-bonds with respect to water-backbone H-bonds. These weakened bonds allow a single water molecule to make H-bonds to the CO and the NH of the same backbone H-bond while they are still bound to each other. The backbone H-bond then breaks (distance > 3.6 A), but its donor and acceptor atoms remain bound to the same water molecule. Further separation of the chains takes place when a second water molecule makes an H-bond with either the protein backbone donor or acceptor atom. Thus, the force does not directly break the main chain H-bonds: it destabilizes them in such a way that they are replaced by H-bonds to water. With this mechanism, the force necessary to break all the H-bonds required to separate the two strands will be strongly dependent on the pulling speed. Further simulations carried out at low forces but long waiting times (> or = 500 ps, < or = 10 ns) show that, given enough time, even a very small pulling force (< 400 pN) is sufficient to destabilize the interstrand H-bonds and allow them to be replaced by H-bonds to two water molecules. As expected, increasing the temperature to 350 K allows the interstrand H-bonds to break at lower forces than those required at 300 K.  相似文献   

18.
Thrombin aptamer binding strength and stability is dependent on sterical parameters when used for atomic force microscopy sensing applications. Sterical improvements on the linker chemistry were developed for high-affinity binding. For this we applied single molecule force spectroscopy using two enhanced biotinylated thrombin aptamers, BFF and BFA immobilized on the atomic force microscopy tip via streptavidin. BFF is a dimer composed of two single-stranded aptamers (aptabody) connected to each other by a complementary sequence close to the biotinylated end. In contrast, BFA consists of a single DNA strand and a complementary strand in the supporting biotinylated part. By varying the pulling velocity in force-distance cycles the formed thrombin-aptamer complexes were ruptured at different force loadings allowing determination of the energy landscape. As a result, BFA aptamer showed a higher binding force at the investigated loading rates and a significantly lower dissociation rate constant, koff, compared to BFF. Moreover, the potential of the aptabody BFF to form a bivalent complex could clearly be demonstrated.  相似文献   

19.
Singular value decomposition (SVD) is a technique commonly used in the analysis of spectroscopic data that both acts as a noise filter and reduces the dimensionality of subsequent least-squares fits. To establish the applicability of SVD to crystallographic data, we applied SVD to calculated difference Fourier maps simulating those to be obtained in a time-resolved crystallographic study of photoactive yellow protein. The atomic structures of one dark state and three intermediates were used in qualitatively different kinetic mechanisms to generate time-dependent difference maps at specific time points. Random noise of varying levels in the difference structure factor amplitudes, different extents of reaction initiation, and different numbers of time points were all employed to simulate a range of realistic experimental conditions. Our results show that SVD allows for an unbiased differentiation between signal and noise; a small subset of singular values and vectors represents the signal well, reducing the random noise in the data. Due to this, phase information of the difference structure factors can be obtained. After identifying and fitting a kinetic mechanism, the time-independent structures of the intermediates could be recovered. This demonstrates that SVD will be a powerful tool in the analysis of experimental time-resolved crystallographic data.  相似文献   

20.
A detailed mechanistic understanding of how a protein functions requires knowledge not only of its static structure, but also how its conformation evolves as it executes its function. The recent development of picosecond time-resolved X-ray crystallography has allowed us to visualize in real time and with atomic detail the conformational evolution of a protein. Here, we report the photolysis-induced structural evolution of wild-type and L29F myoglobin over times ranging from 100 ps to 3 micros. The sub-ns structural rearrangements that accompany ligand dissociation in wild-type and the mutant form differ dramatically, and lead to vastly different ligand migration dynamics. The correlated protein displacements provide a structural explanation for the kinetic differences. Our observation of functionally important protein motion on the sub-ns time scale was made possible by the 150-ps time resolution of the measurement, and demonstrates that picosecond dynamics are relevant to protein function. To visualize subtle structural changes without modeling, we developed a novel method for rendering time-resolved electron density that depicts motion as a color gradient across the atom or group of atoms that move. A sequence of these time-resolved images have been stitched together into a movie, which allows one to literally "watch" the protein as it executes its function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号