首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The flavoenzyme acyl‐CoA oxidase (ACX) catalyzes the first committed step in β‐oxidation and is required for the biosynthesis of jasmonic acid, a signaling molecule involved in plant defense. Recently, a mutant in tomato was identified that is deficient in jasmonic acid production and compromised in its wound response. This results from a single point mutation in acx1, which causes the conserved residue Thr138 to be substituted by isoleucine. To understand the structural basis for this mutation, the crystal structure of LeACX1 was determined to 2.74 Å resolution by molecular replacement. Unexpectedly, an unusual packing arrangement was observed in which three monomers of LeACX1 are present in the asymmetric unit. Although the tertiary structure of LeACX1 is essentially similar to the previously determined structures of ACX enzymes, the packing within the unit cells is distinctly different.  相似文献   

2.
    
Most soluble proteins targeted to the peroxisomal matrix contain a C‐terminal peroxisome targeting signal type 1 (PTS1) or an N‐terminal PTS2 that is recognized by the receptors Pex5p and Pex7p, respectively. These receptors cycle between the cytosol and peroxisome and back again for multiple rounds of cargo delivery to the peroxisome. A small number of peroxisomal matrix proteins, including all six isozymes of peroxisomal fatty acyl‐CoA oxidase (Aox) of the yeast Yarrowia lipolytica, contain neither a PTS1 nor a PTS2. Pex20p has been shown to function as a co‐receptor for Pex7p in the import of PTS2 cargo into peroxisomes. Here we show that cells of Y. lipolytica deleted for the PEX20 gene fail to import not only the PTS2‐containing protein 3‐ketoacyl‐CoA thiolase (Pot1p) but also the non‐PTS1/non‐PTS2 Aox isozymes. Pex20p binds directly to Aox isozymes Aox3p and Aox5p, which requires the C‐terminal Wxxx(F/Y) motif of Pex20p. A W411G mutation in the C‐terminal Wxxx(F/Y) motif causes Aox isozymes to be mislocalized to the cytosol. Pex20p interacts physically with members of the peroxisomal import docking complex, Pex13p and Pex14p. Our results are consistent with a role for Pex20p as the receptor for import of the non‐PTS1/non‐PTS2 Aox isozymes into peroxisomes.  相似文献   

3.
    
A recombinant form of the flavoenzyme acyl‐CoA oxidase from rat liver has been crystallized by the hanging‐drop vapour‐diffusion technique using PEG 20 000 as a precipitating agent. The crystals grew as yellow prisms, with unit‐cell parameters a = 71.05, b = 87.29, c = 213.05 Å, α = β = γ = 90°. The crystals exhibit the symmetry of space group P212121 and are most likely to contain a dimer in the asymmetric unit, with a VM value of 2.21 Å3 Da−1. The crystals diffract to a resolution of 2.5 Å at beamline BL6A of the Photon Factory. Two heavy‐atom derivatives have been identified.  相似文献   

4.
    
Anatoxin‐a and homoanatoxin‐a are two potent cyanobacterial neurotoxins biosynthesized from L‐proline by a short pathway involving polyketide synthases. Proline is first loaded onto AnaD, an acyl carrier protein, and prolyl‐AnaD is then oxidized to 1‐pyrroline‐5‐carboxyl‐AnaD by a flavoprotein, AnaB. Three polyketide synthases then transform this imine into anatoxin‐a or homoanatoxin‐a. AnaB was crystallized in its holo form and its three‐dimensional structure was determined by X‐ray diffraction at 2.8 Å resolution. AnaB is a homotetramer and its fold is very similar to that of the acyl‐CoA dehydrogenases (ACADs). The active‐site base of AnaB, Glu244, superimposed very well with that of human isovaleryl‐CoA dehydrogenase, confirming previous site‐directed mutagenesis experiments and mechanistic proposals. The substrate‐binding site of AnaB is small and is likely to be fitted for the pyrrolidine ring of proline. However, in contrast to ACADs, which use an electron‐transport protein, AnaB uses molecular oxygen as the electron acceptor, as in acyl‐CoA oxidases. Calculation of the solvent‐accessible surface area around the FAD in AnaB and in several homologues showed that it is significantly larger in AnaB than in its homologues. A protonated histidine near the FAD in AnaB is likely to participate in oxygen activation. Furthermore, an array of water molecules detected in the AnaB structure suggests a possible path for molecular oxygen towards FAD. This is consistent with AnaB being an oxidase rather than a dehydrogenase. The structure of AnaB is the first to be described for a prolyl‐ACP oxidase and it will contribute to defining the structural basis responsible for oxygen reactivity in flavoenzymes.  相似文献   

5.
The first committed step in the -oxidation of fatty acids is catalyzed by the enzyme acyl-CoA oxidase (ACOX), which oxidizes a fatty acyl-CoA to a 2-trans-enoyl-CoA. To understand the role of -oxidation during seedling growth in soybean, two ACOX cDNAs were isolated by screening a seedling library with a DNA fragment obtained by RT-PCR by using degenerate oligonucleotides. The two cDNAs (ACX1;1 and ACX1;2) are 86% identical to each other at the nucleotide and the amino acid level. Their deduced amino acid sequences share significant homology with known acyl-CoA oxidases, including the conserved CGGHGY motif, a putative flavin mononucleotide binding site. In both sequences, the last three amino acids, ARL, represent a putative peroxisome targeting signal. The mRNA and protein of both cDNAs accumulated in all seedling tissues, with relatively stronger expression in the growing seedling axis and hypocotyl, and weaker expression in the cotyledon. Immunolocalization studies indicated that the two proteins were localized in the phloem cells of hypocotyl tissue. The two cDNAs were expressed in Escherichia coli and shown to possess acyl-CoA oxidase activity. With fatty acyl-CoA substrates of varying chain lengths, it was demonstrated that both ACX1;1 and ACX1;2 have broad substrate specificities (C8–C18). The stronger expression of ACX1;1 and ACX1;2 in the axis and hypocotyl tissue, the weaker expression in the oil-rich cotyledon tissue, and the broad substrate specificities suggest that the two acyl-CoA oxidases might play a general house-keeping role during soybean seedling growth, such as the turnover of membrane lipids.  相似文献   

6.
    
Objective: Obesity is associated with lower rates of skeletal muscle fatty acid oxidation (FAO), which is linked to insulin resistance. FAO is reduced further in obese African‐American (AAW) vs. white women (CW) and may also be lower in lean AAW vs. CW. In lean CW, endurance exercise training (EET) elevates the oxidative capacity of skeletal muscle. Therefore, we determined whether EET would elevate skeletal muscle FAO similarly in AAW and CW with a lower lipid oxidative capacity. Research Methods and Procedures: In vitro rates of FAO were assessed in rectus abdominus muscle strips using [1‐14C] palmitate (Pal) from lean AAW [BMI = 24.2 ± 0.9 (standard error) kg/m2] and CW (23.6 ± 0.8 kg/m2) undergoing voluntary abdominal surgery. Lean AAW (22 ± 0.9 kg/m2) and CW (24 ± 0.8 kg/m2) and obese AAW (36 ± 1.2 kg/m2) and CW (40 ± 1.3 kg/m2) underwent 10 consecutive days of EET on a cycle ergometer (60 min/d, 75% peak oxygen uptake). FAO was measured in vastus lateralis homogenates as captured 14CO2 using [1‐14C] Pal, palmitoyl‐CoA (Pal‐CoA), and palmityl‐carnitine (Pal‐Car). Results: Muscle strip experiments showed suppressed rates of FAO (p = 0.03) in lean AAW vs. CW. EET increased the rates of skeletal muscle Pal oxidation (p = 0.05) in both lean AAW and CW. In obese subjects, Pre‐EET Pal (but not Pal‐CoA or Pal‐Car) oxidation was lower (p = 0.05) in AAW vs. CW. EET increased Pal oxidation 100% in obese AAW (p < 0.05) and 59% (p < 0.05) in obese CW. Similar increases (p < 0.05) in post‐EET FAO were observed for Pal‐CoA and Pal‐Car in both groups. Discussion: Both lean and obese AAW possess a lower capacity for skeletal muscle FAO, but EET increases FAO similarly in both AAW and CW. These data suggest the use of EET for treatment against obesity and diabetes for both AAW and CW.  相似文献   

7.
The significance of disturbances of lipid metabolism caused by xenobiotic acyl-CoAs as possible causes of peroxisomal proliferation has been studied with the enantiomers of 2-phenylpropionic acid (2-PPA), the (R)-enantiomer of which is converted to the acyl-CoA in rats while its (S)-antipode is not. rac-2-PPA (250 mg/kg/day ip × 3) was shown to be an hepatic peroxisomal proliferator in male Sprague–Dawley rats on the basis of increases in microsomal cytochrome P-450 content and lauric acid hydroxylation and hepatic CN?-insensitive palmitoyl-CoA oxidation, a peroxisomal marker activity, while electron microscopy revealed a rise in the peroxisome/mitochondria ratio in hepatocytes. Further studies established the dose–response relationships for these biochemical changes. The (R)- and (S)-enantiomers were administered at a dose of 50 mg/kg/day ip × 3 and both were peroxisome proliferators of very similar potency. The effects of 100 mg/kg/day ip × 3 of the racemate, a dose giving ca. 75% of maximal response, were essentially additive of those of 50 mg/kg/day ip × 3 of its two component isomers. The stereoselectivity of acyl-CoA formation from the enantiomers of 2-PPA was confirmed by their differential inhibition of microsomal palmitoyl-CoA synthesis. Taken together, these data indicate that it is very unlikely that the acyl-CoA of 2-PPA plays any role in the peroxisomal proliferation which this compound causes in the rat. © 1994 Wiley-Liss, Inc.  相似文献   

8.
    
Succinyl‐CoA synthetase (SCS) catalyzes the only step of the tricarboxylic acid cycle that leads to substrate‐level phosphorylation. Some forms of SCS are specific for ADP/ATP or for GDP/GTP, while others can bind all of these nucleotides, generally with different affinities. The theory of `gatekeeper' residues has been proposed to explain the nucleotide‐specificity. Gatekeeper residues lie outside the binding site and create specific electrostatic interactions with incoming nucleotides to determine whether the nucleotides can enter the binding site. To test this theory, the crystal structure of the nucleotide‐binding domain in complex with Mg2+‐ADP was determined, as well as the structures of four proteins with single mutations, K46βE, K114βD, V113βL and L227βF, and one with two mutations, K46βE/K114βD. The crystal structures show that the enzyme is specific for ADP/ATP because of interactions between the nucleotide and the binding site. Nucleotide‐specificity is provided by hydrogen‐bonding interactions between the adenine base and Gln20β, Gly111β and Val113β. The O atom of the side chain of Gln20β interacts with N6 of ADP, while the side‐chain N atom interacts with the carbonyl O atom of Gly111β. It is the different conformations of the backbone at Gln20β, of the side chain of Gln20β and of the linker that make the enzyme ATP‐specific. This linker connects the two subdomains of the ATP‐grasp fold and interacts differently with adenine and guanine bases. The mutant proteins have similar conformations, although the L227βF mutant shows structural changes that disrupt the binding site for the magnesium ion. Although the K46βE/K114βD double mutant of Blastocystis hominis SCS binds GTP better than ATP according to kinetic assays, only the complex with Mg2+‐ADP was obtained.  相似文献   

9.
    
Wax biosynthetic pathways proceed via the elongation of 16:0 acyl-CoA to very long-chain fatty acids (VLCFA), and by further modifications that include reduction to primary alcohols and formation of alkyl esters. We have analyzed the alkyl esters in the stem wax of ten cer mutants of Arabidopsis thaliana together with the corresponding wild types. Alkyl esters with chain lengths between C(38) and C(52) were identified, and the levels of esters ranged from 0.15 microg cm(-2) in Wassilewskija (WS) to 1.20 microg cm(-2) in cer2. Esters with even numbers of carbons prevailed, with C(42), C(44) and C(46) favoured in the wild types, a predominance of C(42) in cer2 and cer6 mutants, and a relative shift towards C(46) in cer3 and cer23 mutants. The esters of all mutants and wild types were dominated by 16:0 acyl moieties, whereas the chain lengths of esterified alcohols were between C(20) and C(32). The alkyl chain-length distributions of the wild-type esters had a maximum for C(28) alcohol, similar to the free alcohols accompanying them in the wax mixtures. The esterified alcohols of cer2, cer6 and cer9 had largely increased levels of C(26) alcohol, closely matching the patterns of the corresponding free alcohols and, therefore, differing drastically from the corresponding wild type. In contrast, cer1, cer3, cer10, cer13 and cer22 showed ester alcohol patterns with increased levels of C(30), only partially following the shift in chain lengths of the free alcohols in stem wax. These results provide information on the composition of substrate pools and/or the specificity of the ester synthase involved in wax ester formation. We conclude that alcohol levels at the site of biosynthesis are mainly limiting the ester formation in the Arabidopsis wild-type epidermis.  相似文献   

10.
11.
    
The aliphatic waxes sealing plant surfaces against environmental stress are generated by fatty acid elongase complexes, each containing a β‐ketoacyl‐CoA synthase (KCS) enzyme that catalyses a crucial condensation forming a new C─C bond to extend the carbon backbone. The relatively high abundance of C35 and C37 alkanes derived from C36 and C38 acyl‐CoAs in Arabidopsis leaf trichomes (relative to other epidermis cells) suggests differences in the elongation machineries of different epidermis cell types, possibly involving KCS16, a condensing enzyme expressed preferentially in trichomes. Here, KCS16 was found expressed primarily in Arabidopsis rosette leaves, flowers and siliques, and the corresponding protein was localized to the endoplasmic reticulum. The cuticular waxes on young leaves and isolated leaf trichomes of ksc16 loss‐of‐function mutants were depleted of C35 and C37 alkanes and alkenes, whereas expression of Arabidopsis KCS16 in yeast and ectopic overexpression in Arabidopsis resulted in accumulation of C36 and C38 fatty acid products. Taken together, our results show that KCS16 is the sole enzyme catalysing the elongation of C34 to C38 acyl‐CoAs in Arabidopsis leaf trichomes and that it contributes to the formation of extra‐long compounds in adjacent pavement cells.  相似文献   

12.
    
Mycobacterium tuberculosis (Mtb) acyl‐CoA carboxylase is involved in the biosynthesis of mycolic acids, which are a key component of the bacillus cell wall. The Mtb genome encodes six acyl‐CoA carboxylase β subunits (ACCD1–6), three of which (ACCD4–6) are essential for survival of the pathogen on minimal medium. Mtb ACCD6 has been expressed, purified and crystallized. The two forms of Mtb ACCD6 crystals belonged to space groups P41212 and P212121 and diffracted to 2.9 and 2.5 Å resolution, respectively, at a synchrotron‐radiation source.  相似文献   

13.
  总被引:2,自引:0,他引:2  
Peroxisomes are metabolic organelles with enzymatic content that are found in virtually all cells and are involved in β-oxidation of fatty acids, hydrogen peroxide-based respiration and defence against oxidative stress. The steps of their biogenesis involves \"peroxins\", proteins encoded by PEX genes. Peroxins are involved in three key stages of peroxisome development: (1) import of peroxisomal membrane proteins; (2) import of peroxisomal matrix proteins and (3) peroxisome proliferation. Of these three areas, peroxisomal matrix-protein import is by far the best understood and accounts for most of the available published data on peroxisome biogenesis. Defects in peroxisome biogenesis result in peroxisome biogenesis disorders (PBDs), which although rare, have no known cure to-date. This review explores current understanding of each key area in peroxisome biogenesis, paying particular attention to the role of protein import.  相似文献   

14.
    
Peroxisome biogenesis requires various complex processes including organelle division, enlargement and protein transport. We have been studying a number of Arabidopsis apm mutants that display aberrant peroxisome morphology. Two of these mutants, apm2 and apm4, showed green fluorescent protein fluorescence in the cytosol as well as in peroxisomes, indicating a decrease of efficiency of peroxisome targeting signal 1 (PTS1)-dependent protein transport to peroxisomes. Interestingly, both mutants were defective in PTS2-dependent protein transport. Plant growth was more inhibited in apm4 than apm2 mutants, apparently because protein transport was more severely decreased in apm4 than in apm2 mutants. APM2 and APM4 were found to encode proteins homologous to the peroxins PEX13 and PEX12, respectively, which are thought to be involved in transporting matrix proteins into peroxisomes in yeasts and mammals. We show that APM2/PEX13 and APM4/PEX12 are localized on peroxisomal membranes, and that APM2/PEX13 interacts with PEX7, a cytosolic PTS2 receptor. Additionally, a PTS1 receptor, PEX5, was found to stall on peroxisomal membranes in both mutants, suggesting that PEX12 and PEX13 are components that are involved in protein transport on peroxisomal membranes in higher plants. Proteins homologous to PEX12 and PEX13 have previously been found in Arabidopsis but it is not known whether they are involved in protein transport to peroxisomes. Our findings reveal that APM2/PEX13 and APM4/PEX12 are responsible for matrix protein import to peroxisomes in planta.  相似文献   

15.
    
The X‐ray structure of the tetragonal form of apo acyl‐CoA‐binding protein (ACBP) from the Harderian gland of the South American armadillo Chaetophractus villosus has been solved. ACBP is a carrier for activated long‐chain fatty acids and has been associated with many aspects of lipid metabolism. Its secondary structure is highly similar to that of the corresponding form of bovine ACBP and exhibits the unique flattened α‐helical bundle (up–down–down–up) motif reported for animal, yeast and insect ACBPs. Conformational differences are located in loops and turns, although these structural differences do not suffice to account for features that could be related to the unusual biochemistry and lipid metabolism of the Harderian gland.  相似文献   

16.
    
Malonyl‐coenzymeA:acyl‐carrier protein transacylase (MCAT), which catalyzes the transfer of the malonyl group from malonyl‐CoA to acyl‐carrier protein (ACP), is an essential enzyme in type II fatty‐acid synthesis. The enzyme MCAT from Synechocystis sp. PCC 6803 (spMCAT), the first MCAT counterpart from a cyanobacterium, was cloned, purified and crystallized in order to determine its three‐dimensional crystal structure. A higher‐quality crystal with better diffraction was obtained by crystallization optimization. The crystal diffracted to 1.8 Å resolution and belonged to the orthorhombic space group P21212, with unit‐cell parameters a = 43.22, b = 149.21, c = 40.59 Å. Matthews coefficient calculations indicated that the crystal contained one spMCAT molecule in the asymmetric unit with a Matthews coefficient of 2.18 Å3 Da−1 and a solvent content of 43.65%.  相似文献   

17.
    
Mycobacteria display a unique and unusual cell‐wall architecture, central to which is the membrane‐proximal mycolyl‐arabinogalactan‐peptidoglycan core (mAGP). The biosynthesis of mycolic acids, which form the outermost layer of the mAGP core, involves malonyl‐CoA:acyl carrier protein transacylase (MCAT). This essential enzyme catalyses the transfer of malonyl from coenzyme A to acyl carrier protein AcpM, thus feeding these two‐carbon units into the chain‐elongation cycle of the type II fatty‐acid synthase. The crystal structure of M. tuberculosis mtFabD, the mycobacterial MCAT, has been determined to 3.0 Å resolution by multi‐wavelength anomalous dispersion. Phasing was facilitated by Ni2+ ions bound to the 20‐residue N‐terminal affinity tag, which packed between the two independent copies of mtFabD.  相似文献   

18.
    
Piwi‐interacting RNAs (piRNAs) are thought to be germline‐specific and to be involved in maintaining genome stability during development. Recently, piRNA expression has been identified in somatic cells in diverse organisms. However, the roles of piRNAs in pulmonary arterial smooth muscle cell (PASMC) proliferation and the molecular mechanism underlying the hypoxia‐regulated pathological process of pulmonary hypertension are not well understood. Using hypoxic animal models, cell and molecular biology, we obtained the first evidence that the expression of piRNA‐63076 was up‐regulated in hypoxia and was positively correlated with cell proliferation. Subsequently, we showed that acyl‐CoA dehydrogenase (Acadm), which is negatively regulated by piRNA‐63076 and interacts with Piwi proteins, was involved in hypoxic PASMC proliferation. Finally, Acadm inhibition under hypoxia was partly attributed to DNA methylation of the Acadm promoter region mediated by piRNA‐63076. Overall, these findings represent invaluable resources for better understanding the role of epigenetics in pulmonary hypertension associated with piRNAs.  相似文献   

19.
  总被引:2,自引:1,他引:2  
Peroxisome targeting signal (PTS)2 directs proteins from their site of synthesis in the cytosol to the lumen of the peroxisome. Unlike PTS1 which is present in the great majority of peroxisomal matrix proteins and whose import mechanics have been dissected in considerable detail, PTS2 is a relatively rare topogenic signal whose import mechanisms are far less well understood. However, as is the case for PTS1 proteins, an inability to import PTS2 proteins leads to human disease. In this report, we describe the biochemical characterization of mammalian PTS2 protein import using a semi-permeabilized cell system. We show that a PTS2-containing reporter molecule is taken up by peroxisomes in a reaction that is time-, temperature-, ATP-, and cytosol-dependent. Furthermore, the import process is specific, saturable, and requires action of the chaperone Hsc70, the cochaperone Hsp40, and the peroxins Pex5p and Pex14p. We also demonstrate peroxisomal translocation of PTS2 reporter/antibody complexes confirming the import competence of higher order structures. Importantly, cultured fibroblasts from patients with the rhizomelic form of chondrodysplasia punctata (RCDP) which are deficient for the PTS2 receptor protein, Pex7p, are unable to import the PTS2 reporter in this assay. The ability to monitor PTS2 import in vitro will permit, for the first time, a detailed comparison of the biochemical properties of PTS1 and PTS2 protein import.  相似文献   

20.
    
Toxoplasma gondii relies on apicoplast‐localised FASII pathway and endoplasmic reticulum‐associated fatty acid elongation pathway for the synthesis of fatty acids, which flow through lipid metabolism mainly in the form of long‐chain acyl‐CoA (LCACoAs) esters. Functions of Toxoplasma acyl‐CoA transporters in lipid metabolism remain unclear. Here, we investigated the roles of acyl‐CoA‐binding protein (TgACBP1) and a sterol carrier protein‐2 (TgSCP2) as cytosolic acyl‐CoA transporters in lipid metabolism. The fluormetric binding assay and yeast complementation confirmed the acyl‐CoA binding activities of TgACBP1 and TgSCP2, respectively. Disruption of either TgACBP1 or TgSCP2 caused no obviously phenotypic changes, whereas double disruption resulted in defects in intracellular growth and virulence to mice. Gas chromatography coupled with mass spectrometry (GC–MS) results showed that TgACBP1 or TgSCP2 disruption alone led to decreased abundance of C18:1, whereas double disruption resulted in reduced abundance of C18:1, C22:1, and C24:1. 13C labelling assay combined with GC–MS showed that double disruption of TgACBP1 and TgSCP2 led to reduced synthesis rates of C18:0, C22:1, and C24:1. Furthermore, high performance liquid chromatography coupled with high resolution mass spectrometry (HPLC‐HRMS) was used for lipidomic analysis of parasites and indicated that loss of TgACBP1 and TgSCP2 caused serious defects in production of glycerides and phospholipids. Collectively, TgACBP1 and TgSCP2 play synergistic roles in lipid metabolism in T. gondii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号