首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tight junction defines epithelial organization. Structurally, the tight junction is comprised of transmembrane and membrane-associated proteins that are thought to assemble into stable complexes to determine function. In this study, we measure tight junction protein dynamics in live confluent Madin-Darby canine kidney monolayers using fluorescence recovery after photobleaching and related methods. Mathematical modeling shows that the majority of claudin-1 (76 +/- 5%) is stably localized at the tight junction. In contrast, the majority of occludin (71 +/- 3%) diffuses rapidly within the tight junction with a diffusion constant of 0.011 microm(2)s(-1). Zonula occludens-1 molecules are also highly dynamic in this region, but, rather than diffusing within the plane of the membrane, 69 +/- 5% exchange between membrane and intracellular pools in an energy-dependent manner. These data demonstrate that the tight junction undergoes constant remodeling and suggest that this dynamic behavior may contribute to tight junction assembly and regulation.  相似文献   

2.
Harder JL  Margolis B 《Cell》2008,133(6):1118, 1118.e1-1118, 1118.e2
  相似文献   

3.
The actin-related proteins (Arps) constitute a recently characterized family of proteins, many of which function as members of multiprotein complexes. The discovery that two family members, Arp2 and Arp3, act as multifunctional organizers of actin filaments in all eukaryotes has generated much excitement. Over the past two years, newly discovered properties of the Arp2/3 complex have suggested a central role in the control of actin polymerization. First, it promotes actin assembly on the surface of the motile intracellular pathogen Listeria monocytogenes. Second, it can nucleate and cross-link actin filaments in vitro. Third, it localizes with dynamic actin-rich spots of mammalian cells suggesting a role in protrusion; it is found in cortical actin patches in the budding and fission yeasts where it may control patch movement and cortical actin function. Clearly, the complex has a central role in actin cytoskeletal function and will be the subject of much research in the coming years.  相似文献   

4.
Phospholipase C-gamma (PLC-gamma) is stimulated by epidermal growth factor via activation of the epidermal growth factor receptors. The PLC inhibitor, 3-nitrocoumarin (3-NC), selectively inhibited PLC-gamma in Madin-Darby canine kidney cells without affecting the activity of PLC-beta. In contrast, inhibitors of PLC-beta, hexadecylphosphocholine and, had no effect on the activity of PLC-gamma. Inhibition of PLC-gamma by 3-NC was associated with an increase in tight junction permeability across Madin-Darby canine kidney cell monolayers, as evidenced by 3-NC-induced decrease in transepithelial electrical resistance and increase in mannitol flux over a concentration range that was inhibitory to PLC-gamma. An analog of 3-NC, 7-hydroxy-3-NC (7-OH-3-NC), which was inactive as an inhibitor of PLC-gamma, also had no effect on tight junction permeability. Treatment with 3-NC caused punctate disruption in the cortical actin filaments. The PLC-gamma inhibitor, 3-NC, but not the inactive analog, 7-OH-3-NC, caused hyperphosphorylation of the tight junction proteins, occludin, ZO-1, and ZO-2. The serine/threonine kinase inhibitor, staurosporine (50-200 nm), significantly attenuated 3-NC-induced hyperphosphorylation of ZO-2. This corresponded with attenuation by staurosporine of 3-NC-induced increase in tight junction permeability, suggesting a relationship between ZO-2 phosphorylation and tight junction permeability.  相似文献   

5.
6.
Filipin has been used to test several models of continuity or flow of lipid components through the tight junction. Cultured canine kidney cells (MDCK) were fixed and incubated in the presence of filipin. Freeze-fracture replicas were analyzed and densities of filipin-cholesterol complexes measured. Fractures of membranes linked with tight junctions were compared statistically to determine whether filipin-cholesterol complexes (protrusions and pits, independently) were randomly distributed between the two membranes of cells separated by the tight junction. The results indicate that filipin-cholesterol complexes are not randomly distributed across the tight junction. If the density of filipin-cholesterol complexes is an accurate indication of membrane cholesterol concentration, then there is a difference in the cholesterol concentration between leaflets of membranes joined by tight junctions and models of the tight junction which suggest leaflet continuity across the junction are in error.  相似文献   

7.
8.
The tight junction forms a barrier that limits paracellular movement of water, ions, and macromolecules. The permeability properties of this barrier are regulated in response to both physiological and pathophysiological stimuli, and this regulation has been modeled by pharmacological agents. Although it is now known that vesicular traffic plays important roles in tight junction assembly, the molecular mechanisms by which vesicular traffic contributes to tight junction regulation remain to be defined. This review summarizes recent progress in understanding mechanisms and pathways of tight junction protein internalization and the relevance of these to tight junction regulation.  相似文献   

9.
Summary The tight junction, or zonula occludens (ZO), forms a semi-permeable barrier in the paracellular pathway in most vertebrate epithelia. The ZO is the apical-most member of a series of intercellular junctions, collectively known as the junctional complex, found at the interface of the apical and lateral cell surface. This structure not only restricts movement of substances around the cells, but may also serve as a fence acting to maintain the cell surface compositional polarity characteristic of epithelial cells. The morphology and physiology of the ZO have been well documented and are briefly reviewed here. The biochemistry of this important intercellular junction remains largely unknown, although a tight junction-specific polypeptide called ZO-1 has recently been identified. Preliminary observations regarding the role of this peripheral phosphoprotein in the biology of the ZO are presented.  相似文献   

10.
11.
Renal ischemia and in vitro ATP depletion result in disruption of the epithelial tight junction barrier, which is accompanied by breakdown of plasma membrane polarity. Tight junction formation is regulated by evolutionarily conserved complexes, including that of atypical protein kinase C (aPKC), Par3, and Par6. The aPKC signaling complex is activated by Rac and regulated by protein phosphorylation and associations with other tight junction regulatory proteins, for example, mLgl. In this study, we examined the role of aPKC signaling complex during ATP depletion and recovery in Madin-Darby canine kidney cells. ATP depletion reduced Rac GTPase activity and induced Par3, aPKC, and mLgl-1 redistribution from sites of cell-cell contact, which was restored following recovery from ATP depletion. Zonula occludens (ZO)-1 and Par3 phosphorylation was reduced and association of aPKC with its substrates Par3 and mLgl-1 was stabilized in ATP-depleted Madin-Darby canine kidney cells. ATP depletion also induced a stable association of Par3 with Tiam-1, a Rac GTPase exchange factor, which explains how aPKC and Rac activities were suppressed. Experimental inhibition of aPKC during recovery from ATP depletion interfered with reassembly of ZO-1 and Par3 at cell junctions. These data indicate that aPKC signaling is impaired during ATP depletion, participates in tight junction disassembly during cell injury and is important for tight junction reassembly during recovery. ischemia; atypical PKC; Par3; zonula occludens-1; mLgl-1  相似文献   

12.
13.
Tight junction (TJ) permeability responds to changes of extracellular Ca(2+) concentration. This can be gauged through changes of the transepithelial electrical conductance (G) determined in the absence of apical Na(+). The early events of TJ dynamics were evaluated by the fast Ca(2+) switch assay (FCSA) (Lacaz-Vieira, 2000), which consists of opening the TJs by removing basal calcium (Ca(2+)(bl)) and closing by returning Ca(2+)(bl) to normal values. Oscillations of TJ permeability were observed when Ca(2+)(bl) is removed in the presence of apical calcium (Ca(2+)(ap)) and were interpreted as resulting from oscillations of a feedback control loop which involves: (a) a sensor (the Ca(2+) binding sites of zonula adhaerens), (b) a control unit (the cell signaling machinery), and (c) an effector (the TJs). A mathematical model to explain the dynamical behavior of the TJs and oscillations was developed. The extracellular route (ER), which comprises the paracellular space in series with the submucosal interstitial fluid, was modeled as a continuous aqueous medium having the TJ as a controlled barrier located at its apical end. The ER was approximated as a linear array of cells. The most apical cell is separated from the apical solution by the TJ and this cell bears the Ca(2+) binding sites of zonula adhaerens that control the TJs. According to the model, the control unit receives information from the Ca(2+) binding sites and delivers a signal that regulates the TJ barrier. Ca(2+) moves along the ER according to one-dimensional diffusion following Fick's second law. Across the TJ, Ca(2+) diffusion follows Fick's first law. Our first approach was to simulate the experimental results in a semiquantitative way. The model tested against experiment results performed in the frog urinary bladder adequately predicts the responses obtained in different experimental conditions, such as: (a) TJ opening and closing in a FCSA, (b) opening by the presence of apical Ca(2+) and attainment of a new steady-state, (c) the escape phase which follows the halt of TJ opening induced by apical Ca(2+), (d) the oscillations of TJ permeability, and (e) the effect of Ca(2+)(ap) concentration on the frequency of oscillations.  相似文献   

14.
Breaking through the tight junction barrier   总被引:20,自引:8,他引:12       下载免费PDF全文
《The Journal of cell biology》1993,123(6):1631-1633
  相似文献   

15.
DNA replication is strictly regulated through a sequence of steps that involve many macromolecular protein complexes. One of them is the replicative helicase, which is required for initiation and elongation phases. A MCM helicase found as a prophage in the genome of Bacillus cereus is fused with a primase domain constituting an integrative arrangement of two essential activities for replication. We have isolated this helicase-primase complex (BcMCM) showing that it can bind DNA and displays not only helicase and primase but also DNA polymerase activity. Using single-particle electron microscopy and 3D reconstruction, we obtained structures of BcMCM using ATPγS or ADP in the absence and presence of DNA. The complex depicts the typical hexameric ring shape. The dissection of the unwinding mechanism using site-directed mutagenesis in the Walker A, Walker B, arginine finger and the helicase channels, suggests that the BcMCM complex unwinds DNA following the extrusion model similarly to the E1 helicase from papillomavirus.  相似文献   

16.
Endothelial cells of the blood-brain barrier form complex tight junctions, which are more frequently associated with the protoplasmic (P-face) than with the exocytoplasmic (E-face) membrane leaflet. The association of tight junctional particles with either membrane leaflet is a result of the expression of various claudins, which are transmembrane constituents of tight junction strands. Mammalian brain endothelial tight junctions exhibit an almost balanced distribution of particles and lose this morphology and barrier function in vitro. Since it was shown that the brain endothelial tight junctions of submammalian species form P-face-associated tight junctions of the epithelial type, the question of which molecular composition underlies the morphological differences and how do these brain endothelial cells behave in vitro arose. Therefore, rat and chicken brain endothelial cells were investigated for the expression of junctional proteins in vivo and in vitro and for the morphology of the tight junctions. In order to visualize morphological differences, the complexity and the P-face association of tight junctions were quantified. Rat and chicken brain endothelial cells form tight junctions which are positive for claudin-1, claudin-5, occludin and ZO-1. In agreement with the higher P-face association of tight junctions in vivo, chicken brain endothelia exhibited a slightly stronger labeling for claudin-1 at membrane contacts. Brain endothelial cells of both species showed a significant alteration of tight junctions in vitro, indicating a loss of barrier function. Rat endothelial cells showed a characteristic switch of tight junction particles from the P-face to the E-face, accompanied by the loss of claudin-1 in immunofluorescence labeling. In contrast, chicken brain endothelial cells did not show such a switch of particles, although they also lost claudin-1 in culture. These results demonstrate that the maintenance of rat and chicken endothelial barrier function depends on the brain microenvironment. Interestingly, the alteration of tight junctions is different in rat and chicken. This implies that the rat and chicken brain endothelial tight junctions are regulated differently.  相似文献   

17.
On December 11, 2005, Shoichiro Tsukita died at the young age of 52, after 14 months of treatment for cancer. Early in his career, Tsukita succeeded in isolating and purifying the adherens junction with his wife Sachiko, an accomplishment that he followed up with an impressive series of discoveries of cell adhesion and cytoskeletal molecules, including what may have been his greatest contribution to the field, the identification of occludin and the claudin family of molecules, which were watershed discoveries in the study of the molecular nature of tight junctions.  相似文献   

18.
Symplekin, a novel type of tight junction plaque protein   总被引:18,自引:11,他引:7       下载免费PDF全文
《The Journal of cell biology》1996,134(4):1003-1018
Using a monoclonal antibody we have identified and cDNA-cloned a novel type of protein localized, by light and electron microscopy, to the plaque associated with the cytoplasmic face of the tight junction- containing zone (zonula occludens) of polar epithelial cells and of Sertoli cells of testis, but absent from the junctions of vascular endothelia. The approximately 3.7-kb mRNA encodes a polypeptide of 1142 amino acids (calculated molecular weight 126.5 kD, pI 6.25), for which the name "symplekin" (from Greek sigma upsilon mu pi lambda epsilon kappa epsilon iota, nu, to tie together, to weave, to be intertwined) is proposed. However, both the mRNA and the protein can also be detected in a wide range of cell types that do not form tight junctions or are even completely devoid of any stable cell contacts. Careful analyses have revealed that the protein occurs in all these diverse cells in the nucleoplasm, and only in those cells forming tight junctions is it recruited, partly but specifically, to the plaque structure of the zonula occludens. We discuss symplekin as a representative of a group of dual residence proteins which occur and probably function in the nucleus as well as in the plaques exclusive for either tight junctions, adherens junctions, or desmosomes.  相似文献   

19.
Entamoeba (E.) histolytica trophozoites initiate amebiasis through invasion into the enteric mucosa. It was our aim to understand the molecular interactions between amebic trophozoites and enterocytes during the early steps of invasion. Trophozoites of E. histolytica strain HM1:IMSS were seeded on the apical side of enteric T84 cell layers, which were established on filters in two-compartment culture chambers. Cocultures were analyzed for paracellular permeability by measurement of transepithelial electrical resistance (TER) and for the tight junction proteins ZO-1, ZO-2, occludin, and cingulin by immunocytochemistry and immunoprecipitation. On direct contact with the apical side of the enteric cells, trophozoites caused an increase in paracellular permeability as evidenced by a decrease of TER associated with an increase in [(3)H]mannitol flux. Immunoprecipitation of cocultures revealed dephosphorylation of ZO-2, loss of ZO-1 from ZO-2, and degradation of ZO-1 but less so of ZO-2 and none of occludin or E-cadherin. In conclusion, trophozoite-associated increase in paracellular permeability of enteric cell layers is ascribed to disturbance of the molecular organization of tight junction proteins.  相似文献   

20.
The exact sites, structures, and molecular mechanisms of interaction between junction organizing zona occludence protein 1 (ZO-1) and the tight junction protein occludin or the adherens junction protein alpha-catenin are unknown. Binding studies by surface plasmon resonance spectroscopy and peptide mapping combined with comparative modeling utilizing crystal structures led for the first time to a molecular model revealing the binding of both occludin and alpha-catenin to the same binding site in ZO-1. Our data support a concept that ZO-1 successively associates with alpha-catenin at the adherens junction and occludin at the tight junction. Strong spatial evidence indicates that the occludin C-terminal coiled-coil domain dimerizes and interacts finally as a four-helix bundle with the identified structural motifs in ZO-1. The helix bundle of occludin406-521 and alpha-catenin509-906 interacts with the hinge region (ZO-1591-632 and ZO-1591-622, respectively) and with (ZO-1726-754 and ZO-1756-781) in the GuK domain of ZO-1 containing coiled-coil and alpha-helical structures, respectively. The selectivity of both protein-protein interactions is defined by complementary shapes and charges between the participating epitopes. In conclusion, a common molecular mechanism of forming an intermolecular helical bundle between the hinge region/GuK domain of ZO-1 and alpha-catenin and occludin is identified as a general molecular principle organizing the association of ZO-1 at adherens and tight junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号