首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The British distribution of the butterfly Gonepteryx rhamni (L.) follows closely the range of its natural host plants, Rhamnus catharticus L. and Frangula alnus Miller, suggesting that it is one of the few British butterflies that has a host‐limited distribution. In North Wales, this species has its range margin, and it was recorded only occasionally in a 35‐km2 area prior to the 1980s. Frangula alnus bushes were planted in the area in about 1986, allowing the hypothesis that G. rhamni would expand its range following increased host plant availability to be tested. 2. From 1996 to 1998, the distribution of the butterfly and its host plants, R. catharticus (native), Rhamnus alaternus L. (introduced), and F. alnus (introduced to the area but native to Britain), was mapped in the study area. It was found that the butterfly was more widespread than any of its host plants. Frangula alnus was the most widespread of the host plants, and received most eggs, suggesting that the carrying capacity of the habitat would have increased substantially following the planting of this species. Gonepteryx rhamni was able to complete its lifecycle on both introduced species in the study area. 3. A mark–release–recapture study showed that adult G. rhamni moved an average of 512 m, and 50% of movements were further than 400 m; these values are underestimates. The relatively high mobility of this species suggests that it probably perceives host plants and nectar sources as resource patches (patchy population) in this fragmented landscape, and this population now represents a satellite population of the butterfly's main distribution in Britain. 4. The results presented here confirm empirically the host‐limited distribution of G. rhamni, which expanded following the planting of extra host plants.  相似文献   

2.
Herbivores that have recently expanded their host plant ranges provide opportunities to test hypotheses about the evolution of host plant specialization. Here, we take advantage of the contemporary global range expansion of the monarch butterfly (Danaus plexippus) and conduct a reciprocal rearing experiment involving monarch populations with divergent host plant assemblages. Specifically, we ask the following questions: (1) Do geographically disparate populations of monarch butterflies show evidence for local adaptation to their host plants? If so, what processes contribute to this pattern? (2) How is dietary breadth related to performance across multiple host species in monarch populations? (3) Does the coefficient of variation in performance vary across sympatric versus allopatric hosts? We find evidence for local adaptation in larval growth rate and survival based on sympatric/allopatric contrasts. Migratory North American monarchs, which have comparatively broad host breadth, have higher mean performance than derived nonmigratory populations across all host plant species. Monarchs reared on their sympatric host plants show lower coefficient of variation in performance than monarchs reared on allopatric hosts. We focus our discussion on possible mechanisms contributing to local adaptation to novel host plants and potential explanations for the reduction in performance that we observed in derived monarch populations.  相似文献   

3.
There is an increasing need for conservation programmes to make quantitative predictions of biodiversity responses to changed environments. Such predictions will be particularly important to promote species recovery in fragmented landscapes, and to understand and facilitate distribution responses to climate change. Here, we model expansion rates of a test species (a rare butterfly, Hesperia comma) in five landscapes over 18 years (generations), using a metapopulation model (the incidence function model). Expansion rates increased with the area, quality and proximity of habitat patches available for colonization, with predicted expansion rates closely matching observed rates in test landscapes. Habitat fragmentation constrained expansion, but in a predictable way, suggesting that it will prove feasible both to understand variation in expansion rates and to develop conservation programmes to increase rates of range expansion in such species.  相似文献   

4.
Aim Apparent anthropogenic warming has been underway in South Africa for several decades, a period over which significant range shifts have been observed in some indigenous bird species. We asked whether these range shifts by birds are clearly consistent with either climate change or land use change being the primary driver. Location South Africa. Methods We categorized recent range changes among 408 South African terrestrial bird species and, using generalized linear mixed models, analysed ecological attributes of those species that have and have not changed their ranges. Results Fifty‐six of the 408 taxa studied have undergone significant range shifts. Most extended their ranges towards the south (towards cooler latitudes, consistent with climate‐change drivers) or west (towards drier and warmer habitats, inconsistent with climate drivers but consistent with land use drivers); very few moved east or north. Both southward and westward movers were habitat generalists. Furthermore, southward movers were mobile taxa (migrants and nomads), whereas westward movers were associated with human‐modified elements in the landscape, such as croplands, plantations or buildings. Main conclusions The results suggest that both land use changes and climate change may simultaneously be influencing dynamic range shifts by South African birds, but separating the relative strengths of these two drivers is challenging, not least because both are operating concurrently and may influence some species simultaneously. Those species that respond to land use change by contracting their ranges are likely to be among the species that will be most impacted by climate change if land use practices with negative impacts are occurring in areas anticipated to become climatic refugia for these species. This highlights a pressing need to develop dynamic models of species’ potential range shifts and changing abundances that incorporate population and dispersal processes, as well as ecological processes that influence habitat suitability.  相似文献   

5.
A northward shift of range margins in British Odonata   总被引:4,自引:0,他引:4  
Many species are predicted to shift their ranges to higher latitudes and altitudes in response to climate warming. This study presents evidence for 37 species of nonmigratory British dragonflies and damselflies shifting northwards at their range margins over the past 40 years, seemingly as a result of climate change. This response by an exemplar group of insects associated with fresh water, parallels polewards range changes observed in terrestrial invertebrates and other taxa.  相似文献   

6.
1 Populations of the spruce bark beetle, Ips typographus (L.), are known to grow rapidly in storm‐disturbed stands as a result of relaxation from intraspecific competition. In the present study, it was tested whether a second mechanism, escape in space from natural enemies, also contributes to the rapid population increase. 2 The experiment was conducted during the initiation phase of five local outbreaks of I. typographus triggered by a storm‐disturbance in November 1995 in southern Sweden. 3 The impact of natural enemies on the ratio of increase (number of daughters per mother) of I. typographus was compared pairwise between disturbed stands with high numbers of storm‐felled trees and undisturbed stands without wind‐felled trees. 4 Enemy impact was assessed by comparing the ratio of increase in uncaged (exposed to enemies) and caged (protected from enemies) bolts colonized by I. typographus prior to being placed in the stands. The experiment was conducted in the second and third summers after the storm‐felling. 5 Enemy impact was about twice as high in stands without wind‐felled trees compared with in stands with wind‐felled trees in the second summer whereas there was no significant difference between the stand types in the third summer. 6 The result demonstrates that spatial escape from enemies contributes to the rapid population growth of I. typographus after storm‐disturbances.  相似文献   

7.
1. Some species have expanded their ranges during recent climate warming and the availability of breeding habitat and species' dispersal ability are two important factors determining expansions. The exploitation of a wide range of larval host plants should increase an herbivorous insect species' ability to track climate by increasing habitat availability. Therefore we investigated whether the performance of a species on different host plants changed towards its range boundary, and under warmer temperatures. 2. We studied the polyphagous butterfly Polygonia c-album, which is currently expanding its range in Britain and apparently has altered its host plant preference from Humulus lupulus to include other hosts (particularly Ulmus glabra and Urtica dioica). We investigated insect performance (development time, larval growth rate, adult size, survival) and adult flight morphology on these host plants under four rearing temperatures (18-28.5 degrees C) in populations from core and range margin sites. 3. In general, differences between core and margin populations were small compared with effects of rearing temperature and host plant. In terms of insect performance, host plants were generally ranked U. glabra > or = U. dioica > H. lupulus at all temperatures. Adult P. c-album can either enter diapause or develop directly and higher temperatures resulted in more directly developing adults, but lower survival rates (particularly on the original host H. lupulus) and smaller adult size. 4. Adult flight morphology of wild-caught individuals from range margin populations appeared to be related to increased dispersal potential relative to core populations. However, there was no difference in laboratory reared individuals, and conflicting results were obtained for different measures of flight morphology in relation to larval host plant and temperature effects, making conclusions about dispersal potential difficult. 5. Current range expansion of P. c-album is associated with the exploitation of more widespread host plants on which performance is improved. This study demonstrates how polyphagy may enhance the ability of species to track climate change. Our findings suggest that observed differences in climate-driven range shifts of generalist vs. specialist species may increase in the future and are likely to lead to greatly altered community composition.  相似文献   

8.
Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its original range in comparison with soil from the expansion range. Tragopogon dubius is currently expanding from southern into north-western Europe and we examined how this plant species responds to soil communities from its original and expansion ranges. We compared the performance of T. dubius with that of the closely related Tragopogon pratensis , which has a natural occurrence along the entire latitudinal gradient. Inoculation with the rhizosphere soil from T. dubius populations of the original range had a more negative effect on plant biomass production than inoculation with rhizosphere soil from the expansion range. Interestingly, the nonrange expander T. pratensis experienced a net negative soil effect throughout this entire range. The effects observed in this species pair may be due to release from soil born enemies or accumulation of beneficial soil born organisms. If this phenomenon applies broadly to other species, then range expansion may enable plants species to show enhanced performance.  相似文献   

9.
It is prevalent to use ecological niche models in the analysis of species expansion and niche changes. However, it is difficult to estimate the niche when alien species fail to establish in exotic areas. Here, we applied the tolerance niche concept, which means that niche of species can live and grow but preclude a species from establishing self‐sustaining populations, in such fail‐to‐establish events. Taking the rapidly expanded bird, Asian openbill (Anastomus oscitans), as a model species, we investigated niche dynamics and its potential effects on the population by Niche A and ecospat, predicted potential distribution by biomod2. Results showed that niche expansion has occurred in two non‐native populations caused by the tolerance of colder and wetter environments, and potential distribution mainly concentrated on equatorial islands. Our study suggested that the expanded niche belongs to tolerance niche concept according to the populations'' dynamics and GPS tracking evidence. It is essential to consider source populations when we analyze the alien species. We recommended more consideration to the application of tolerance niche in alien species research, and there is still a need for standard measurement frameworks for analyzing the tolerance niche.  相似文献   

10.
Control measures aiming at reducing bark beetle populations and preserving their natural enemies require a sound knowledge on their overwintering and emergence behaviour. These behavioural traits were investigated in univoltine and bivoltine populations of the European spruce bark beetle (Ips typographus [L.], Coleoptera: Scolytinae) and its predators and parasitoids over several consecutive years. In univoltine populations, roughly 50% of the bark beetles left their brood trees in fall together with most parasitoids and some significant predatory flies and beetles. In bivoltine populations, <10% of the second bark beetle generation emerged in fall and the remainder overwintered under the bark of their brood trees. Likewise, most predatory beetles and flies spent wintertime with their prey under the bark, while most parasitic wasps emerged in fall. The spring emergence of bivoltine predatory beetles was found to occur up to 3 weeks earlier than that of I. typographus, while that of the predatory flies and the parasitoids was delayed by up to 1 month. In univoltine populations, the bark beetles emerged several weeks prior to most antagonistic taxa. In the heat year 2003, three I. typographus generations were produced at the lower location, 36% of the third generation emerged in fall, while the proportions of overwintering predators remained largely the same as in previous years. Similar to their host, more parasitoids left their brood trees in fall after warm years. The results show that sanitation felling during winter probably kills most bark beetles in bivoltine populations, but also eliminates many natural enemies. In univoltine populations, sanitation felling might be less detrimental to both I. typographus and natural enemies because a fair fraction of their populations will already have left the trees before cutting. Warmer climates may affect the interactions of bark beetles and natural enemies and thus the impact of control measures.  相似文献   

11.
Climate is an important factor limiting species distributions. Historic climate‐change related range movements have modified the genetic diversity of species by the merging and splitting of gene pools and by the effects associated with recurrent founder events. These effects are often inferred, either from retrospective analyses of current genetic patterns or from simulations. Rarely has it been possible for the population genetic effects of range expansion to be examined with contemporaneous demographic data. We characterized the genetic signature of rapid range expansion by southern flying squirrels (Glaucomys volans) and compared these results to a stationary population of the closely related northern flying squirrel (Glaucomys sabrinus) in Ontario, Canada. Samples were taken during an approximately 200 km range expansion by G. volans (1994–2003) and genotyped at 6 (G. sabrinus) and 8 (G. volans) microsatellite loci. For G. volans, but not G. sabrinus, we found evidence of a latitudinal gradient in allele frequencies and a decrease in allelic richness along the axis of expansion. We found no evidence of isolation‐by‐distance in either species or of genetic bottlenecks in the area of G. volans expansion. These results suggest that serial founder events can cause an immediate reduction in genetic diversity following rapid range expansion with high levels of gene flow giving rise to heterogeneity within what would classically be termed panmixia. Given the pace of anthropogenic climate change, and the increasing incidence of range movements in response, this may be an important, immediate consequence of climate change.  相似文献   

12.
Species ranges are expected to expand along their cooler boundaries in response to rising temperatures associated with current global climate change. However, this ‘fingerprint’ of climate change is yet to be assessed for an entire flora. Here, we examine patterns of altitudinal range change in the complete native vascular flora of sub‐Antarctic Marion Island. We demonstrate a rapid mean upslope expansion in the flora since 1966, in response to 1.2 °C warming on the island. The 3.4±0.8 m yr?1 (mean±SE) upslope expansion rate documented is amongst the highest estimates from partial floras. However, less than half of the species in the flora were responsible for the expansion trend, demonstrating that the global fingerprint of warming may be driven by a highly responsive subset of the species pool. Individual range expansion rates varied greatly, with species‐specific niche requirements explaining some of this variation. As a result of the idiosyncratic expansion rates, altitudinal patterns of species richness and community composition changed considerably, with the formation of no‐analog communities at high and intermediate altitudes. Therefore, both species‐ and community‐level changes have occurred in the flora of Marion Island over a relatively short period of rapid warming, demonstrating the sensitivity of high latitude communities to climate change. Patterns of change within this flora illustrate the range of variation in species responses to climate change and the consequences thereof for species distributions and community reorganization.  相似文献   

13.
Poleward range expansions are widespread responses to recent climate change and are crucial for the future persistence of many species. However, evolutionary change in traits such as colonization history and habitat preference may also be necessary to track environmental change across a fragmented landscape. Understanding the likelihood and speed of such adaptive change is important in determining the rate of species extinction with ongoing climate change. We conducted an amplified fragment length polymorphism (AFLP)‐based genome scan across the recently expanded UK range of the Brown Argus butterfly, Aricia agestis, and used outlier‐based (DFDIST and BayeScan) and association‐based (Isolation‐By‐Adaptation) statistical approaches to identify signatures of evolutionary change associated with range expansion and habitat use. We present evidence for (i) limited effects of range expansion on population genetic structure and (ii) strong signatures of selection at approximately 5% AFLP loci associated with both the poleward range expansion of A. agestis and differences in habitat use across long‐established and recently colonized sites. Patterns of allele frequency variation at these candidate loci suggest that adaptation to new habitats at the range margin has involved selection on genetic variation in habitat use found across the long‐established part of the range. Our results suggest that evolutionary change is likely to affect species’ responses to climate change and that genetic variation in ecological traits across species’ distributions should be maximized to facilitate range shifts across a fragmented landscape, particularly in species that show strong associations with particular habitats.  相似文献   

14.
Aim The spatial extent of western Canada’s current epidemic of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae), is increasing. The roles of the various dispersal processes acting as drivers of range expansion are poorly understood for most species. The aim of this paper is to characterize the movement patterns of the mountain pine beetle in areas where range expansion is occurring, in order to describe the fine‐scale spatial dynamics of processes associated with mountain pine beetle range expansion. Location Three regions of Canada’s Rocky Mountains: Kicking Horse Pass, Yellowhead Pass and Pine Pass. Methods Data on locations of mountain pine beetle‐attacked trees of predominantly lodgepole pine (Pinus contorta var. latifolia) were obtained from annual fixed‐wing aircraft surveys of forest health and helicopter‐based GPS surveys of mountain pine beetle‐damaged areas in British Columbia and Alberta. The annual (1999–2005) spatial extents of outbreak ranges were delineated from these data. Spatial analysis was conducted using the spatial–temporal analysis of moving polygons (STAMP), a recently developed pattern‐based approach. Results We found that distant dispersal patterns (spot infestations) were most often associated with marginal increases in the areal size of mountain pine beetle range polygons. When the mountain pine beetle range size increased rapidly relative to the years examined, local dispersal patterns (adjacent infestation) were more common. In Pine Pass, long‐range dispersal (> 2 km) markedly extended the north‐east border of the mountain pine beetle range. In Yellowhead Pass and Kicking Horse Pass, the extension of the range occurred incrementally via ground‐based spread. Main conclusions Dispersal of mountain pine beetle varies with geography as well as with host and beetle population dynamics. Although colonization is mediated by habitat connectivity, during periods of low overall habitat expansion, dispersal to new distant locations is common, whereas during periods of rapid invasion, locally connected spread is the dominant mode of dispersal. The propensity for long‐range transport to establish new beetle populations, and thus to be considered a driver of range expansion, is likely to be determined by regional weather patterns, and influenced by local topography. We conclude that STAMP appears to be a useful approach for examining changes in biogeograpical ranges, with the potential to reveal both fine‐ and large‐scale patterns.  相似文献   

15.
During recent decades, many species have responded to global warming by poleward range expansions. We require a better mechanistic understanding of the nature and extent of such processes to assess how climate change might affect biodiversity. Wing-dimorphic bush-crickets are excellent objects to study dispersal and colonization processes at the range margin because the long-winged morphs (macropters) represent dispersal units of otherwise flightless species. Moreover, these insects produce noisy songs and can easily be mapped. The present study comprised a detailed investigation of the population dynamics and genetics at the edge of the range of Roesel's bush-cricket, Metrioptera roeselii . We mapped the distribution of this insect in a previously unoccupied area of 185 km2 and examined the genetic structure at the range margin using four polymorphic microsatellite loci. The results obtained demonstrate that the European heat wave in 2003 induced a strong immigration of macropters in the area stemming from multiple sources, whereas only few immigrants were recorded in the two subsequent years. Macropters were genotyped in a distance of up to 19.1 km from their origin, considerably exceeding the known dispersal distances for this species. Moreover, the data show that strong local founder effects are equalized on a large scale by the high number of immigrants from multiple sources. The present study demonstrates that macropters are of high significance for the range expansion of wing-dimorphic insects because a single-year climatic anomaly can induce strong dispersal processes.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 118–127.  相似文献   

16.
Recent investigations have shown how chance, long-range dispersal events can allow tree populations to migrate rapidly in response to changes in climate. However, this apparent solution to Reid's paradox applies solely within the context of single species models, while the rapid migration rates seen in pollen records occurred within multispecies communities. Ecologists are therefore presented with a new challenge: reconciling the macroscopic dynamics of spread seen in the pollen record with the rules and interactions governing plant community assembly. A case that highlights this issue is the rapid spread of Beech during the Holocene into a landscape already dominated by a close competitor, Hemlock. In this study, we analyse a simple model of plant community assembly incorporating competition for space and dispersal dynamics, showing how, even when a species is capable of rapid migration into an empty landscape, the presence of an ecologically similar competitor causes Reid's paradox to re-emerge because of the dramatic slowing effect of competitive interactions on a species' rate of spread. We then show how the answer to the question of how tree species dispersed rapidly into occupied landscapes may lie in secondary interactions with host-specific pathogens and parasites. Inclusion of host-specific pathogens into the simple community assembly model illustrates how tree species undergoing range expansions can temporarily outstrip specialist predators, giving rise to a transient Jansen-Connell effect, in which the invader acts as temporary 'super-species' that spreads rapidly into communities already occupied by competitors at rates consistent with those observed in the paleo-record.  相似文献   

17.
Species range expansions are crucial for understanding niche formation and the interaction with the environment. Here, we studied the bumblebee Bombus haematurus Kriechbaumer, 1870, a species historically distributed from northern Serbia through northern Iran which has very recently started expanding northwestward into Central Europe without human-mediated dispersal (i.e., it is a natural spread). After updating the global distribution of this species, we investigated if niche shifts took place during this range expansion between newly colonized and historical areas. In addition, we have explored which climatic factors may have favored the natural range expansion of the species. Our results indicated that Bombus haematurus has colonized large territories in 7 European countries outside the historical area in the period from the 1980s to 2018, a natural expansion over an area that equals 20% of the historical distribution. In addition, this bumblebee performs generalism in flower visitation and it occurs in different habitats, although a preference for forested areas clearly emerges. The land-use associated with the species in the colonized areas is similar to the historical distribution, indicating that no major niche shifts occurred during the spread. Furthermore, in recently colonized localities, the range expansion was associated with warming temperatures during the winter and also during both queen overwintering and emergence phases. These findings document a case of natural range expansion due to environmental change rather than due to niche shifts, and specifically they suggest that warmer winters could be linked to the process of natural colonization of new areas.  相似文献   

18.
Poleward range expansions are observed for an increasing number of species, which may be an effect of global warming during the past decades. However, it is still not clear in how far these expansions reflect simple geographical shifts of species ranges, or whether new genetic adaptations play a role as well. Here, we analyse the expansion of the wasp spider Argiope bruennichi into Northern Europe during the last century. We have used a range‐wide sampling of contemporary populations and historical specimens from museums to trace the phylogeography and genetic changes associated with the range shift. Based on the analysis of mitochondrial, microsatellite and SNP markers, we observe a higher level of genetic diversity in the expanding populations, apparently due to admixture of formerly isolated lineages. Using reciprocal transplant experiments for testing overwintering tolerance, as well as temperature preference and tolerance tests in the laboratory, we find that the invading spiders have possibly shifted their temperature niche. This may be a key adaptation for survival in Northern latitudes. The museum samples allow a reconstruction of the invasion's genetic history. A first, small‐scale range shift started around 1930, in parallel with the onset of global warming. A more massive invasion of Northern Europe associated with genetic admixture and morphological changes occurred in later decades. We suggest that the latter range expansion into far Northern latitudes may be a consequence of the admixture that provided the genetic material for adaptations to new environmental regimes. Hence, global warming could have facilitated the initial admixture of populations and this resulted in genetic lineages with new habitat preferences.  相似文献   

19.
We are limited in our ability to predict climate-change-induced range shifts by our inadequate understanding of how non-climatic factors contribute to determining range limits along putatively climatic gradients. Here, we present a unique combination of observations and experiments demonstrating that seed predation and soil properties strongly limit regeneration beyond the upper elevational range limit of sugar maple, a tree species of major economic importance. Most strikingly, regeneration beyond the range limit occurred almost exclusively when seeds were experimentally protected from predators. Regeneration from seed was depressed on soil from beyond the range edge when this soil was transplanted to sites within the range, with indirect evidence suggesting that fungal pathogens play a role. Non-climatic factors are clearly in need of careful attention when attempting to predict the biotic consequences of climate change. At minimum, we can expect non-climatic factors to create substantial time lags between the creation of more favourable climatic conditions and range expansion.  相似文献   

20.
1. The changing climate is altering species distributions with consequences for population dynamics, resulting in winners and losers in the Anthropocene. 2. Agraulis vanillae, the gulf fritillary butterfly, has expanded its range in the past 100 years in the western U.S.A. Time series analysis is combined with species distribution modelling to investigate factors limiting the distribution of A. vanillae and to predict future shifts under warming scenarios. 3. Time series analyses from the western U.S.A. show that urban development has a positive association with year of colonisation (the host plant Passiflora is an ornamental in gardens). Colonisation was also associated positively and to a lesser extent with winter maximum temperatures, whereas a negative impact of minimum temperatures and precipitation was apparent on population growth rates after establishment. 4. Species distribution models vary by region. In the eastern U.S.A., the butterfly is primarily limited by minimum temperatures in the winter and host availability later in the season. Eastern U.S. projected expansion broadly follows the expectation of poleward distributional shifts, especially for the butterfly's maximum annual extent. Western U.S. distributions are limited by the host plant, which in turn is dependent on urban centres. Projected western U.S. expansion is not limited to a single direction and is driven by urban centres becoming more suitable for the host plant. 5. These results demonstrate the value of combining time series with spatial modelling, at the same time as incorporating biotic interactions, aiming to understand and predict shifting geographical ranges in the Anthropocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号