首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The influence of dobutamine on glucoregulation has been assessed in the rat during and after an intravenous infusion given at the following doses: 0, 0.1, 1.0, 10, 100, and 1000 micrograms X kg-1 X min-1. Plasma glucose, insulin, and glucagon levels were measured at 15-min intervals in unanesthetized previously cannulated rats. Basal glucose levels were preserved with the less than or equal to 10 micrograms X kg-1 X min-1 doses. At the greater than or equal to 100 micrograms X kg-1 X min-1 doses, a marked hyperglycemic effect was observed, partly attributable to some inhibitory effect of dobutamine on glucose-induced insulin secretion and to its stimulatory effect on glucagon secretion. Such data suggest that dobutamine may disturb the normal glucose homeostasis, particularly in situations of deficient insulin reserve.  相似文献   

2.
Our objectives were to investigate the pulmonary vascular effects of exogenously administered bradykinin at normal and reduced levels of cardiac index in intact conscious dogs and to assess the extent to which the pulmonary vascular response to bradykinin is the result of either cyclooxygenase pathway activation or reflex activation of sympathetic beta-adrenergic and -cholinergic receptors. Multipoint pulmonary vascular pressure-cardiac index (P/Q) plots were constructed during normoxia in conscious dogs by step-wise constriction of the thoracic inferior vena cava to reduce Q. In intact dogs, bradykinin (2 micrograms X kg-1 X min-1 iv) caused systemic vasodilation, i.e., systemic arterial pressure was slightly decreased (P less than 0.05), Q was markedly increased (P less than 0.01), and mixed venous PO2 and oxygen saturation (SO2) were increased (P less than 0.01). Bradykinin decreased (P less than 0.01) the pulmonary vascular pressure gradient (pulmonary arterial pressure-pulmonary capillary wedge pressure) over the entire range of Q studied (140-60 ml X min-1 X kg-1) in intact dogs. During cyclooxygenase pathway inhibition with indomethacin, bradykinin again decreased (P less than 0.05) pulmonary arterial pressure-pulmonary capillary wedge pressure at every level of Q, although the magnitude of the vasodilator response was diminished at lower levels of Q (60 ml X min-1 X kg-1). Following combined administration of sympathetic beta-adrenergic and -cholinergic receptor antagonists, bradykinin still decreased (P less than 0.01) pulmonary arterial pressure-pulmonary capillary wedge pressure over the range of Q from 160 to 60 ml X min-1 X kg-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The influence of dopamine as compared with dobutamine on glucose homeostasis has been assessed in thyroidectomized euthyroid rats. Both sympathomimetic agents were given intravenously over 6 h at four dosages, varying from 2 to 30 micrograms.kg-1.min-1. Immediately before the end of the infusion period, serum concentrations of glucose and insulin as well as plasma glucagon concentrations were measured. Dobutamine infusions did not exert any influence on these parameters. At a dose of 7.5 micrograms.kg-1.min-1, dopamine infusion caused a decrease in glucose concentrations, accompanied by a rise of glucagon and insulin levels. Glucose levels were significantly increased in the presence of unaltered insulin and decreasing glucagon levels at higher dopamine doses. The rise in glucose levels was reversed by 8 micrograms.kg-1.min-1 and inverted to a decrease by 12 micrograms.kg-1.min-1 of the alpha-adrenergic blocking agent phentolamine, simultaneously infused with 15 micrograms.kg-1.min-1 dopamine, while the insulin levels were increased and glucagon levels remained elevated. These findings demonstrate that dopamine acts on glucoregulation divergently, according to the dosage applied. The data suggest that dopamine rather than dobutamine treatment may disturb glucose homeostasis.  相似文献   

4.
Continuous intracerebroventricular (ICV) infusion of CCK-octapeptide (CCK8) was performed in ewes fitted with a permanent cannula into the lateral cerebral ventricle and Nichrome electrodes on the reticulum in order to record its electrical activity. In the first series of experiments, subsequently repeated in 12 h fasted animals, CCK8 was infused during the first hour of a 3 hour period of feeding at 2.5, 5 and 10 ng.kg-1.min-1. The same series of infusion were performed 20 min after ICV injection of 2.4 and 10 micrograms.kg-1 of naloxone. CCK8 reduced significantly in a dose related manner the food intake (r = 0.95; P less than 0.01) and the frequency of cyclic spike bursts associated to biphasic contractions of the reticulum observed during feeding (r = 0.89; P less than 0.01). At 5 and 10 ng.kg-1.min-1, the reduction of food intake reached 46.2 and 52.6% during the period of infusion; the basal and stimulated (feeding) frequency of reticular contractions were nearly halved. Previous ICV administration of naloxone (2.4 micrograms.kg-1) partially blocked the effects of CCK8 infusion on both food intake (72%) and reticular frequency (54% basal, 67% stimulated). The CCK8 induced effects on both food intake and frequency of reticular contraction were completely abolished after a previous 10 micrograms.kg-1 injection of naloxone. These results suggest that the central effects of CCK8 on feeding behavior and forestomach motility involve similar central structures and are mediated through opiate receptor structures.  相似文献   

5.
We compared the cardiovascular effects evoked in conscious dogs by 1) submaximal exercise; 2) infusion of dobutamine (40 micrograms X kg-1 X min-1); and 3) infusion of a combination of atropine (0.15 mg/kg), norepinephrine (0.19 micrograms X kg-1 X min-1), and epinephrine (0.05 micrograms X kg-1 X min-1). Myocardial O2 demand, as estimated by the double product (heart rate X systolic blood pressure), was similar during all three interventions. Cardiac output and heart rate increased significantly (P less than 0.05) during each of the three interventions. Arteriovenous O2 difference and total body O2 consumption, however, increased only during submaximal exercise. Although myocardial blood flow increased similarly during each of the three interventions, blood flow to skeletal muscle and the tongue increased only during exercise. Exercise and the combined infusion of atropine, norepinephrine, and epinephrine produced similar increases in blood flow to the diaphragm and similar decreases in blood flow to the stomach. These changes in blood flow were associated with appropriate changes in vascular resistance. Additionally, blood flow to the brain, kidney, adrenal glands, liver, and intestine did not change during any of the three interventions. Thus, in dogs, submaximal exercise, infusion of dobutamine, and infusion of a combination of atropine, norepinephrine, and epinephrine to evoke a given level of estimated myocardial O2 consumption produce similar increases in cardiac output, heart rate, and myocardial blood flow. In contrast, the changes in total body O2 consumption, arteriovenous O2 difference, regional blood flow, and regional vascular resistance that occur during each of these three interventions are different.  相似文献   

6.
The objective of this study was to determine the direct actions of atrial natriuretic factor (ANF) on the pulmonary vascular bed and to compare these actions with those of sodium nitroprusside (SNP). The responses to incremental infusion rates of 1, 5, 10, and 50 ng.kg-1.min-1 synthetic human ANF and to 1-2 micrograms.kg-1.min-1 SNP were examined in the in situ autoperfused lung lobe of open-chest anesthetized pigs under conditions of normal and elevated pulmonary vascular tone. During basal conditions, ANF and SNP caused small but significant reductions in pulmonary artery pressure (Ppa) and pulmonary venous pressure (Ppv) with no change in lobar vascular resistance (LVR). When pulmonary vascular tone was increased by prostaglandin F2 alpha (20 micrograms/min), ANF infusion at doses greater than 1 ng.kg-1.min-1 decreased Ppa and LVR in a dose-related fashion. Infusion of 50 ng.kg-1.min-1 ANF and of 2 micrograms.kg-1.min-1 SNP maximally decreased Ppa, from 33 +/- 3 to 20 +/- 2 mmHg (P less than 0.001) and from 31 +/- 4 to 18 +/- 1 mmHg (P less than 0.001), respectively. At these doses, ANF reduced systemic arterial pressure by only 11.5 +/- 3% compared with 34 +/- 4% decreased with SNP (P less than 0.001). The results indicate that ANF, similarly to SNP, exerts a direct potent vasodilator activity in the porcine pulmonary vascular bed, which is dependent on the existing level of vasoconstrictor tone.  相似文献   

7.
To investigate the influence of atrial natriuretic factor (ANF) on renal function during mechanical ventilation (MV), we examined the renal and hormonal responses to synthetic human ANF infusion in eight patients during MV with zero (ZEEP) or 10 cmH2O positive end-expiratory pressure (PEEP). Compared with ZEEP, MV with PEEP was associated with a reduction in diuresis (V) from 208 +/- 51 to 68 +/- 11 ml/h (P less than 0.02), in natriuresis (UNa) from 12.4 +/- 3.3 to 6.2 +/- 2.1 mmol/h (P less than 0.02), and in fractional excretion of sodium (FENa) from 1.07 +/- 0.02), 0.21 to 0.67 +/- 0.17% (P less than 0.02) and with an increase in plasma renin activity (PRA) from 4.83 +/- 1.53 to 7.85 +/- 3.02 ng.ml-1.h-1 (P less than 0.05). Plasma ANF levels markedly decreased during PEEP in four patients but showed only minor changes in the other four patients, and mean plasma ANF levels did not change (163 +/- 33 pg/ml during ZEEP and 126 +/- 30 pg/ml during PEEP). Glomerular filtration rate and renal plasma flow were unchanged. Infusion of ANF (5 ng.kg-1.min-1) during PEEP markedly increased V and UNa by 110 +/- 61 and 107 +/- 26%, respectively, whereas PRA decreased from 7.85 +/- 3.02 to 4.40 +/- 1.5 ng.ml-1.min-1 (P less than 0.05). In response to a 10 ng.kg-1.min-1 ANF infusion, V increased to 338 +/- 79 ml/h during ZEEP but only to 134 +/- 45 ml/h during PEEP (P less than 0.02), whereas UNa increased, respectively, to 23.8 +/- 5.3 and 11.3 +/- 3.3 mmol/h (P less than 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We investigated the effects of an intravenous (pentobarbital sodium) and an inhalational (halothane) general anesthetic on guanosine 3',5'-cyclic monophosphate- (cGMP) mediated pulmonary vasodilation compared with responses measured in the conscious state. Multipoint pulmonary vascular pressure-flow plots were generated in the same nine dogs in the fully conscious state, during pentobarbital sodium anesthesia (30 mg/kg iv), and during halothane anesthesia (approximately 1.2% end tidal). Continuous intravenous infusions of bradykinin (2 micrograms.kg-1.min-1) and sodium nitroprusside (5 micrograms.kg-1.min-1) were utilized to stimulate endothelium-dependent and -independent cGMP-mediated pulmonary vasodilation, respectively. In the conscious state, both bradykinin and nitroprusside decreased (P less than 0.01) the pulmonary vascular pressure gradient (pulmonary arterial pressure-pulmonary arterial wedge pressure) over the entire range of flows studied; i.e., bradykinin and nitroprusside caused active flow-independent pulmonary vasodilation. Pulmonary vasodilator responses to bradykinin (P less than 0.01) and nitroprusside (P less than 0.05) were also observed during pentobarbital anesthesia. In contrast, during halothane anesthesia, the pulmonary vasodilator responses to both bradykinin and nitroprusside were abolished. These results indicate that, compared with the conscious state, cGMP-mediated pulmonary vasodilation is preserved during pentobarbital anesthesia but is abolished during halothane anesthesia.  相似文献   

9.
Catecholamines were infused intravenously for 45 min into pentobarbital sodium-anesthetized rabbits. Physiologically low-dose epinephrine (0.125 microgram . min-1 . kg-1) decreased medial gastrocnemius (MG) surface pH (SpH) 0.16 +/- 0.03 (SD) (P less than 0.001) to a low of 7.25 +/- 0.11 and soleus (S) SpH 0.09 +/- 0.04 (P less than 0.01) to a low of 7.33 +/- 0.08 without changing blood pressure significantly. Surface temperature measurements suggested a statistically insignificant small increase in local blood flow in both muscles. With 1.25 microgram . min-1 . kg-1 epinephrine, MG SpH decreased 0.22 +/- 0.05 (P less than 0.001) to a low of 7.17 +/- 0.06 and S SpH decreased 0.10 +/- 0.05 (P less than 0.02) to a low of 7.26 +/- 0.04. The MG SpH decrease exceeded the S SpH decrease in each experiment for both epinephrine infusion levels, and the incremental difference was significantly greater (P less than 0.02) with the higher dose, demonstrating a dose-response effect more pronounced for glycolytic compared with oxidative fibers. Norepinephrine infusions of 1.25 and 2.5 micrograms . min-1 . kg-1 did not change SpH of either muscle significantly, despite increases in blood pressure of 10 +/- 3 (P less than 0.002) and 19 +/- 10 mmHg (P less than 0.02), respectively.  相似文献   

10.
Fetal oxygen uptake during uterine contractures   总被引:1,自引:0,他引:1  
During contractures there are decreases in fetal oxygen tension. In order to determine if there are concomitant changes in fetal oxygen consumption, we calculated the latter during contractures from measurements of the umbilical blood flow and venous arterial oxygen content differences across the umbilical circulation. There were decreases in both the umbilical venous (from 8.8 +/- 0.2 (SEM) to 8.5 +/- 0.2 ml.dl-1, P less than 0.01) and umbilical arterial (5.9 +/- 0.1 to 5.2 +/- 0.2 mg.dl-1, P less than 0.001) oxygen contents. The umbilical venous-arterial oxygen content difference increased from 2.9 +/- 0.1 to 3.3 +/- 0.2 ml.dl-1 (P less than 0.005). Umbilical blood flow was 194.3 +/- 4.5 ml.min-1 kg-1 during relaxation and was unchanged during contractures. Fetal oxygen uptake increased from 5.7 +/- 0.3 to 6.5 +/- 0.4 ml.min-1 kg-1 (P less than 0.005) during contractures. This observation is consistent with our previous speculation that there is increased muscular activity of tone associated with contractures.  相似文献   

11.
To evaluate the existence of functional renal dopaminergic innervation in the dog, we studied the effects of direct electrical stimulation of the renal nerves (RNS) with and without blockade of the dopamine receptor (DA1) that mediates the vasodilating and natriuretic response to intrarenal infusion of DA. Before infusion of the DA1 receptor antagonist, SCH 23390, RNS at 1 Hz did not change renal blood flow (RBF) but caused decreased urinary sodium excretion (-53 +/- 9%, P less than 0.01) and fractional excretion of sodium (-47 +/- 10%, P less than 0.01). Stimulation at 4 and 12 Hz elicited marked renal vasoconstriction (delta RBF = -37 +/- 12%, P less than 0.05 and -57 +/- 12%, P less than 0.01, respectively). When RNS (1 Hz) was performed during DA1 receptor blockade with SCH 23390, 0.5 microgram . kg-1 . min-1 iv, the responses were not different than those before SCh 23390 infusion (urinary sodium excretion: -54 +/- 7%, P less than 0.01 and fractional excretion of sodium: -46 +/- 5%, P less than 0.01). Renal vasoconstriction was also not influenced by SCH 23390 (delta RBF = -35 +/- 11%, P less than 0.05 during 4 Hz RNS and -58 +/- 12%, P less than 0.01 at 12 Hz RNS). Thus, the present study does not support the concept of functional dopaminergic innervation of the canine kidney.  相似文献   

12.
We produced pulmonary fibrin microembolism using an infusion of a prothrombin activator (Echis carinatus venom, 30 min, 0.5 NIH thrombin equivalent units/kg) in open-chest mongrel dogs. To determine the nonclotting effects of this venom on edemagenesis we infused an irreversible thrombin inhibitor, D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone (PPACK, 57 nmol X kg-1 X min-1 for 120 min), alone (n = 5) or with venom (Echis + PPACK, n = 5). The control group (n = 5) was given 1 ml of 0.9% NaCl. A decline in left atrial pressure (means +/- SE, 5.3 +/- 0.4 to 4.0 +/- 0.5 mmHg, P less than 0.05) and cardiac index (149 +/- 10 to 82 +/- 13 ml X min-1 X kg-1, P less than 0.01) in association with a marked increase in pulmonary arterial pressure (14.5 +/- 0.6 to 26.6 +/- 2.5 mmHg, P less than 0.001) and pulmonary vascular resistance (64 +/- 5 to 304 +/- 42 mmHg X ml-1 X min-1 X kg-1, P less than 0.001) was observed after 20 min of venom infusion. During this interval, pulmonary artery wedge pressure increased (4 +/- 1 to 12 +/- 4 mmHg, P less than 0.01) in four of eight animals. Fibrinogen declined below measurable levels and fibrin microemboli were seen in many pulmonary arterioles. These changes were not observed in the Echis + PPACK, PPACK, or control groups. Leukopenia and thrombocytopenia were observed in the Echis and Echis + PPACK groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
To evaluate the ontogeny of neonatal glucose homeostasis, glucose production and lactate production have been measured in nine prematurely born appropriate for gestational age neonates [birth weight 1985 +/- 100 g, (SEM) gestational age 33.6 +/- 0.7 weeks] and five full term appropriate for gestational age neonates [birth weight 3254 +/- 111 g, gestational age 40.8 +/- 0.4 wks] and compared to six non pregnant, nondiabetic adults [weight of 57.7 +/- 2.2 kg, age 32 +/- 2 years]. Ra glucose (preterm) averaged 27.7 +/- 2.8 mumol.kg-1 min-1 (5.0 +/- 0.5 mg.kg-1 min-1) and Ra glucose (term) averaged 28.9 +/- 3.9 mumol.kg-1 min-1 (5.2 +/- 0.7 mg.kg-1 min-1); both were higher than the Ra glucose of the adult controls (16.1 +/- 2.8 mumol.kg-1 min-1 (2.9 +/- 0.5 mg.kg-1 min-1) (P less than 0.05 vs preterm and P less than 0.05 vs. term). Ra lactate (preterm) averaged 100 +/- 11.9 mumol.kg-1 min-1 (9.1 +/- 1.1 mg.kg-1 min-1) and Ra lactate (term) average 77.2 +/- 13.0 mumol.kg-1 min-1 (7.1 +/- 1.2 mg.kg-1 min-1); both were higher than the Ra lactate of the adult controls 35.9 +/- 6.5 mumol.kg-1 min-1 (3.3 +/- 0.6 mg.kg-1 min-1) (P less than 0.01 vs preterm and P less than 0.05 vs. term). The potential for gluconeogenesis from lactate was estimated by determining the ratio of [Ra Lactate/Ra Glucose]. The [Ra Lactate/Ra Glucose] (preterm) (187 +/- 12 (x10(-2)) was similar to that of the [Ra Lactate/Ra Glucose] (term) (136 +/- 16) (x10(-2)).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The influence of endogenous and exogenous atrial natriuretic factor (ANF) on pulmonary hemodynamics was investigated in anesthetized pigs during both normoxia and hypoxia. Continuous hypoxic ventilation with 11% O2 was associated with a uniform but transient increase of plasma immunoreactive (ir) ANF that peaked at 15 min. Plasma irANF was inversely related to pulmonary arterial pressure (Ppa; r = -0.66, P less than 0.01) and pulmonary vascular resistance (PVR; r = -0.56, P less than 0.05) at 30 min of hypoxia in 14 animals; no such relationship was found during normoxia. ANF infusion after 60 min of hypoxia in seven pigs reduced the 156 +/- 20% increase in PVR to 124 +/- 18% (P less than 0.01) at 0.01 microgram.kg-1.min-1 and to 101 +/- 15% (P less than 0.001) at 0.05 microgram.kg-1.min-1. Cardiac output (CO) and systemic arterial pressure (Psa) remained unchanged, whereas mean Ppa decreased from 25.5 +/- 1.5 to 20.5 +/- 15 mmHg (P less than 0.001) and plasma irANF increased two- to nine-fold. ANF infused at 0.1 microgram.kg-1.min-1 (resulting in a 50-fold plasma irANF increase) decreased Psa (-14%) and reduced CO (-10%); systemic vascular resistance (SVR) was not changed, nor was a further decrease in PVR induced. No change in PVR or SVR occurred in normoxic animals at any ANF infusion rate. These results suggest that ANF may act as an endogenous pulmonary vasodilator that could modulate the pulmonary pressor response to hypoxia.  相似文献   

15.
Sixteen newly diagnosed non insulin dependent diabetic patients were treated for 3 months with an individual energy restricted diet. The effect on weight, hyperglycaemia and insulin response to oral glucose was measured in all subjects, and in 7, peripheral insulin resistance was estimated using a hyperinsulinaemic glucose clamp at two insulin infusion rates (40 and 400 mU m-2 X min-1). After diet, fasting plasma glucose fell from 12.0 +/- 0.7 mmol/l (mean +/- SEM) to 7.4 +/- 0.5 mmol/l (P less than 0.001) and weight fell from 92.9 +/- 4.2 kg to 85.0 +/- 3.1 kg (P less than 0.001). The plasma insulin response to oral glucose was unchanged after diet therapy. Insulin induced glucose disposal (M) was also unaffected by diet at insulin infusion rates of 40 mU m-2 X min-1 (12.5 +/- 1.5 mumol X kg-1 X min-1 vs 15.7 +/- 1.6 mumol X kg-1 X min-1) and 400 mU m-2 X min-1 (49.5 +/- 2.7 mumol X kg-1 X min-1 vs 55.1 +/- 2.5 mumol X kg-1 X min-1). These results show that 3 months reduction of energy consumption with weight loss in newly diagnosed non insulin dependent diabetics improves B-cell responsiveness to glucose but has no effect on liver glucose output or on peripheral insulin action.  相似文献   

16.
Adenosine infusion (100 micrograms X kg-1 X min-1) in humans stimulates ventilation but also causes abdominal and chest discomfort. To exclude the effects of symptoms and to differentiate between a central and peripheral site of action, we measured the effect of adenosine infused at a level (70-80 micrograms X kg-1 X min-1) below the threshold for symptoms. Resting ventilation (VE) and progressive ventilatory responses to isocapnic hypoxia and hyperoxic hypercapnia were measured in six normal men. Compared with a control saline infusion given single blind on the same day, adenosine stimulated VE [mean increase: 1.3 +/- 0.8 (SD) l/min; P less than 0.02], lowered resting end-tidal PCO2 (PETCO2) (mean fall: -3.9 +/- 0.9 Torr), and increased heart rate (mean increase: 16.1 +/- 8.1 beats/min) without changing systemic blood pressure. Adenosine increased the hypoxic ventilatory response (control: -0.68 +/- 0.4 l X min-1 X %SaO2-1, where %SaO2 is percent of arterial O2 saturation; adenosine: -2.40 +/- 1.2 l X min-1 X %SaO2-1; P less than 0.01) measured at a mean PETCO2 of 38.3 +/- 0.6 Torr but did not alter the hypercapnic response. This differential effect suggests that adenosine may stimulate ventilation by a peripheral rather than a central action and therefore may be involved in the mechanism of peripheral chemoreception.  相似文献   

17.
The use of low doses of dopamine in intensive care medicine   总被引:3,自引:0,他引:3  
The dopamine alpha- and beta-adrenoceptor dose-response curves are investigated in four patients who are exempt from cardiovascular disease. A dose-related increase in CO, HR and SV is observed with infusion rates of up to 3 micrograms kg-1 min-1. With concentrations greater than 10 micrograms kg-1 min-1, both BP and SVR increase. Low-dose dopamine infusion less than 3 micrograms kg-1 min-1 is investigated in ten other patients. With this infusion rate, a selective renal vasodilation is induced without peripheral or cardiac beta-adrenoceptor activation. Dopamine is responsible for an increase in diuresis FENa, GFR and RBF. These properties are indicated in renal failure, and when haemodynamic support is required in cardiac failure, if an infusion rate of up to 10 micrograms kg-1 min-1 is able to reverse cardiac insufficiency.  相似文献   

18.
Oxygen delivery and utilization in hypothermic dogs   总被引:7,自引:0,他引:7  
Hypothermia produces a decrease in metabolic rate that may be beneficial under conditions of reduced O2 delivery (Do2). Another effect of hypothermia is to increase the affinity of hemoglobin for O2, which can adversely affect the release of O2 to the tissues. To determine the overall effect of hypothermia on the ability of the peripheral tissues to extract O2 from blood, we compared the response to hypoxemia of hypothermic dogs (n = 8) and of normothermic controls (n = 8). The animals were anesthetized, mechanically ventilated, and paralyzed to prevent shivering. The inspired concentration of O2 was progressively reduced until the dogs died. The core temperatures of the control and hypothermic dogs were 37.7 +/- 0.3 and 30.5 +/- 0.1 degree C, respectively (P less than 0.01). The O2 consumption (VO2) of the control dogs was significantly greater than that of the hypothermic dogs (P less than 0.05), being 4.7 +/- 0.4 and 3.2 +/- 0.3 ml X min-1 X kg-1, respectively. Hypothermia produced a left shift of the oxyhemoglobin dissociation curve (ODC) to a PO2 at which hemoglobin is half-saturated with O2 of 19.8 +/- 0.7 Torr (control = 32.4 +/- 0.7 Torr, P less than 0.01). The O2 delivery at which the VO2 becomes supply dependent (DO2crit) was 8.5 ml X min-1 X kg-1 for control and 6.2 ml X min-1 X kg-1 for hypothermia. The hypothermic dogs maintained their base-line VO2's at lower arterial PO2's than control.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The stimulus-response characteristics of cardiopulmonary baroreflex control of forearm vascular resistance (FVR) were studied in five unfit [UF, maximal O2 consumption (VO2 max) = 38.5 ml X min-1 X kg-1] and six fit (F, VO2 max = 57.0 ml X min-1 X kg-1) subjects. We assessed the relationship between reflex stimulus, i.e., changes in central venous pressure (CVP) and response, i.e., FVR, during selective unloading of the cardiopulmonary mechanoreceptors with lower body negative pressure (0 to -20 mmHg). The linear relationship between FVR and CVP, the gain of this baroreflex, was significantly diminished in the F subjects, -2.42 +/- 0.57 U/mmHg, compared with the UF, -5.15 +/- 0.58 U/mmHg. Both groups, F and UF, had similar resting values for CVP and FVR; thus the diminished gain in F subjects was not simply an artifact resulting from a shift of the set point along the baroreflex stimulus-response curve. We also found a linear relationship between baroreflex gain and total blood volume (r = 0.59, P less than 0.05). We conclude that the gain of this vascular reflex is attenuated in trained individuals and is related to cardiovascular adaptations, such as an increased blood volume, associated with exercise training.  相似文献   

20.
Gut metabolism may become anaerobic before the whole body during progressive phlebotomy in dogs. Because dopamine has selective mesenteric vasodilator effects, we asked whether dopamine could delay onset of bowel ischemia during hemorrhagic shock. We studied whole body and gut O2 consumption (VO2) and O2 delivery (QO2) using progressive phlebotomy in anesthetized pigs. Nine pigs received a dopamine infusion of 2 micrograms.kg-1.min-1, whereas a control group of seven pigs received equivalent saline infusion. Onset of ischemia in whole body and gut was determined as critical O2 delivery (QO2c), the intersection point of biphasic regression on plots of VO2-QO2 relationships. Blood flow and O2 extraction were measured as mechanisms of gut ischemia for entire in situ small and large gut using a superior mesenteric venous fistula. Dopamine hastened onset of gut ischemia relative to onset of whole body ischemia (gut critical point in terms of whole body QO2 9.9 +/- 2.1 ml O2.kg-1.min-1, whole body QO2c 7.8 +/- 0.7 ml O2.kg-1.min-1, P less than 0.01). In contrast, onset of gut ischemia in control animals occurred at same time as onset of whole body ischemia (gut critical point in terms of whole body QO2 7.4 +/- 2.3 ml O2.kg-1.min-1, whole body QO2c 7.1 +/- 2.7 ml O2.kg-1.min-1, P = not significant). Hastening of onset of gut ischemia in dopamine-treated animals was associated with decreased ability of gut to extract O2. Low-dose dopamine was not protective against gut ischemia during shock but rather caused earlier onset of gut ischemia during hemorrhagic shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号