共查询到20条相似文献,搜索用时 15 毫秒
1.
Probes of catalytic site cooperativity during catalysis by the chloroplast adenosine triphosphate and the adenosine triphosphate synthase 总被引:2,自引:0,他引:2
During net nucleoside triphosphate synthesis by chloroplast ATP synthase the extent of water oxygen incorporation into each nucleoside triphosphate released increases with decrease in ADP, GDP or IDP concentration. Likewise, during net ATP hydrolysis by the Mg2+-activated chloroplast ATPase, the extent of water oxygen incorporation into each Pi released increases as the ATP, GTP, or ITP concentration is decreased. However, the concentration ranges in which substrate modulation occurs differs with each nucleotide. Modulation of oxygen exchange during synthesis and hydrolysis of adenine nucleotides, as measured by variation in the extent of water oxygen incorporation into products, occurs below 250 microM. In contrast, guanosine and inosine nucleotides alter the extent of exchange at higher and much wider concentration ranges. Activation of the chloroplast ATPase by either heat or trypsin results in similar catalytic behavior as monitored by ATP modulation of oxygen exchanges during hydrolysis in the presence of Mg2+. More exchange capacity is evident with octylglucoside-activated enzyme at all ATP concentrations. High levels of tentoxin were also found to alter the catalytic exchange parameters resulting in continued water oxygen exchange into Pi released during hydrolysis at high ATP concentrations. Little or no oxygen exchange accompanies ATP hydrolysis in the presence of Ca2+. The [18O]Pi species formed from highly gamma-18O-labeled ATP at lower ATP concentrations gives a distribution as expected if only one catalytic pathway is operative at a given ATP concentration. This and other results support the concept of catalytic cooperativity between alternating sites as explanation for the modulation of oxygen exchange by nucleotide concentration. 相似文献
2.
3.
Evidence for a two-electron transfer using the all-ferrous Fe protein during nitrogenase catalysis 总被引:1,自引:0,他引:1
The nitrogenase-catalyzed H(2) evolution and acetylene-reduction reactions using Ti(III) and dithionite (DT) as reductants were examined and compared under a variety of conditions. Ti(III) is known to make the all-ferrous Fe protein ([Fe(4)S(4)](0)) and lowers the amount of ATP hydrolyzed during nitrogenase catalysis by approximately 2-fold. Here we further investigate this behavior and present results consistent with the Fe protein in the [Fe(4)S(4)](0) redox state transferring two electrons ([Fe(4)S(4)](2+)/[Fe(4)S(4)](0)) per MoFe protein interaction using Ti(III) but transferring only one electron ([Fe(4)S(4)](2+)/[Fe(4)S(4)](1+)) using DT. MoFe protein specific activity was measured as a function of Fe:MoFe protein ratio for both a one- and a two-electron transfer reaction, and nearly identical curves were obtained. However, Fe protein specific activity curves as a function of MoFe:Fe protein ratio showed two distinct reactivity patterns. With DT as reductant, typical MoFe inhibition curves were obtained for operation of the [Fe(4)S(4)](2+)/[Fe(4)S(4)](1+) redox couple, but with Ti(III) as reductant the [Fe(4)S(4)](2+)/[Fe(4)S(4)](0) redox couple was functional and MoFe inhibition was not observed at high MoFe:Fe protein ratios. With Ti(III) as reductant, nitrogenase catalysis produced hyperbolic curves, yielding a V(max) for the Fe protein specific activity of about 3200 nmol of H(2) min(-1) mg(-1) Fe protein, significantly higher than for reactions conducted with DT as reductant. Lag phase experiments (Hageman, R. V., and Burris, R. H. (1978) Proc. Natl. Acad. Sci. U. S. A. 75, 2699-2702) were carried out at MoFe:Fe protein ratios of 100 and 300 using both DT and Ti(III). A lag phase was observed for DT but, with Ti(III) product formation, began immediately and remained linear for over 30 min. Activity measurements using Av-Cp heterologous crosses were examined using both DT and Ti(III) as reductants to compare the reactivity of the [Fe(4)S(4)](2+)/[Fe(4)S(4)](1+) and [Fe(4)S(4)](2+)/[Fe(4)S(4)](0) redox couples and both were inactive. The results are discussed in terms of the Fe protein transferring two electrons per MoFe protein encounter using the [Fe(4)S(4)](2+)/[Fe(4)S(4)](0) redox couple with Ti(III) as reductant. 相似文献
4.
The electron paramagnetic resonance spectra of azoferredoxin and molybdoferredoxin, components of the nitrogenase of Clostridium pasteurianum, disappear when the proteins are oxidized by certain dyes. When molybdoferredoxin and azoferredoxin were mixed in a 1 to 2 molar ratio, the electron paramagnetic resonance spectrum of the mixture was the sum of the two spectra with the exception of a slight change in the azoferredoxin signal. Addition of magnesium ATP and dithionite to this reconstituted nitrogenase resulted in a rapid change in the spectrum of both nitrogenase components; the molybdoferredoxin spectrum at all g-values decreased with a half-life less than 70 ms to 40% of its original size whereas the azoferredoxin signal changed in shape and size with a half-life of less than 40 ms. If an ATP-generating system was added instead of MgATP so that no ADP accumulated, then the molybdoferredoxin signal almost completely disappeared and the azoferredoxin signal changed in shape and slightly in size. These changes occurred at molar ratios of molybdoferredoxin to azoferredoxin from 1:14 to 1:0.2. If the reaction was allowed to consume the reductant, then the molybdoferredoxin signal(s) was restored but the azoferredoxin signal disappeared. The signal of azoferredoxin was restored and the signal of molybdoferredoxin again disappeared on addition of more reductant. The data suggest that for nitrogenase to catalyze the reduction of substrates, the magnesium ATP-reduced azoferredoxin complex is formed first and this complex then reacts with molybdoferredoxin to allow electron flow. In addition the data suggests that the rate-limiting reaction is an ATP-mediated electron flow from azoferredoxin to molybdoferredoxin. Finally the results show that no flow of electrons from azoferredoxin or molybdoferredoxin occurs when a mixture of ADP and ATP in a molar ratio of 2:1 is added initially or is reached by conversion of ATP to ADP and inorganic phosphate during reduction of protons. A mechanism consistent with these findings is proposed. 相似文献
5.
6.
Sen S Krishnakumar A McClead J Johnson MK Seefeldt LC Szilagyi RK Peters JW 《Journal of inorganic biochemistry》2006,100(5-6):1041-1052
In the present work, determination of the structure of the nitrogenase Leu 127 deletion variant Fe protein with MgATP bound is presented, along with density functional theory calculations, to provide insights into the roles of MgATP in the nitrogenase reaction mechanism. Comparison of the MgATP-bound structure of this Fe protein to the nucleotide-free form indicates that the binding of MgATP does not alter the overall structure of the variant significantly with only small differences in the conformation of amino acids in direct contact with the two bound MgATP molecules being seen. The earlier observation of splitting of the [4Fe-4S] cluster into two [2Fe-2S] clusters was observed to be unaltered upon binding MgATP. Density functional theory was used to probe the assignment of ligands to the two [2Fe-2S] rhombs. The Mg(2+) environment in the MgATP-bound structure of the Leu127 deletion Fe protein is similar to that observed for the Fe protein in the nitrogenase Fe protein: MoFe protein complex stabilized by MgADP and tetrafluoroaluminate suggesting that large scale conformational change implicated for the Fe protein may not be mediated by changes in the Mg(2+) coordination. The results presented here indicated that MgATP may enhance the stability of an open conformation and prohibit intersubunit interactions, which have been implicated in promoting nucleotide hydrolysis. This could be critical to the tight control of MgATP hydrolysis observed within the nitrogenase complex and may be important for maintaining unidirectional electron flow toward substrate reduction. 相似文献
7.
In order to study in greater detail the subunit interaction of the homodimeric soluble quinoprotein glucose dehydrogenase (PQQGDH-B), we developed an effective method of creating heterodimeric PQQGDH-B. Two different homodimers are combined, one of which has a polyarginine tail (Arg-tail), and subjected to a protein dissociation/redimerization procedure. Separation of the mixture by cation exchange chromatography results in three peaks showing GDH activity, eluting at 133, 231 and 273 mM NaCl concentration. These peaks were determined to correspond to the Arg-tailless homodimer, heterodimer, and Arg-tailed homodimer, respectively. To test this approach, we constructed and characterized heterodimeric PQQGDH-B composed of native (wild-type) and inactive mutant (His168Gln) subunits. The heterodimeric wild-type-His168Gln showed slightly decreased GDH activity and almost identical substrate specificity profile to the wild-type enzyme. Moreover, the Hill coefficient of the heterodimer was calculated as 1.13, indicating positive cooperativity. 相似文献
8.
9.
10.
Johnson JL Nyborg AC Wilson PE Tolley AM Nordmeyer FR Watt GD 《Biochimica et biophysica acta》2000,1543(1):24-35
Steady state kinetic measurements are reported for nitrogenase from Azotobacter vinelandii (Av) and Clostridium pasteurianum (Cp) under a variety of conditions, using dithionite as reductant. The specific activities of Av1 and Cp1 are determined as functions of Av2:Av1 and Cp2:Cp1, respectively, at component protein ratios from 0.4 to 50, and conform to a simple hyperbolic rate law for the interaction of Av2 with Av1 and Cp2 with Cp1. The specific activities of Av2 and Cp2 are also measured as a function of increasing Av1 and Cp1 concentrations, producing 'MoFe inhibition' at large MoFe:Fe ratios. When the rate of product formation under MoFe inhibited conditions is re-plotted as increasing Av2:Av1 or Cp2:Cp1 ratios, sigmoidal kinetic behavior is observed, suggesting that the rate constants in the Thorneley and Lowe (T&L) model are more dependent upon the oxidation level of MoFe protein than previously suspected [R.N.F. Thorneley, D.J. Lowe, Biochem. J. 224 (1984) 887-894], at least when applied to Av and Cp. Calculation of Hill coefficients gave values of 1.7-1.9, suggesting a highly cooperative Fe-MoFe protein interaction in both Av and Cp nitrogenase catalysis. The T&L model lacks analytical solutions [R.N.F. Thorneley, D.J. Lowe, Biochem. J. 215 (1983) 393-404], so the ease of its application to experimental data is limited. To facilitate the study of steady state kinetic data for H(2) evolution, analytical equations are derived from a different mechanism for nitrogenase activity, similar to that of Bergersen and Turner [Biochem. J. 131 (1973) 61-75]. This alternative cooperative model assumes that two Fe proteins interact with one MoFe protein active site. The derived rate laws for this mechanism were fitted to the observed sigmoidal behavior for low Fe:MoFe ratios (<0.4), as well as to the commonly observed hyperbolic behavior for high values of Fe:MoFe for both Av and Cp. 相似文献
11.
Regeneration of adenosine triphosphate from glycolytic intermediates for cell-free protein synthesis. 总被引:7,自引:0,他引:7
A new approach for adenosine triphosphate (ATP) regeneration in a cell-free protein synthesis system is described. We first show that pyruvate can be used as a secondary energy source to replace or supplement the conventional secondary energy source, phosphoenol pyruvate (PEP). We also report that glucose-6-phosphate, an earlier intermediate of the glycolytic pathway, can be used for ATP regeneration. These new methods provide more stable maintenance of ATP concentration during protein synthesis. Because pyruvate and glucose-6-phosphate are the first and last intermediates of the glycolytic pathway, respectively, the results also suggest the possibility of using any glycolytic intermediate, or even glucose, for ATP regeneration in a cell-free protein synthesis system. As a result, the methods described provide cell-free protein synthesis with greater flexibility and cost efficiency. 相似文献
12.
13.
14.
15.
Chevrier C Bourdon L Canini F 《American journal of physiology. Regulatory, integrative and comparative physiology》2006,290(3):R595-R600
Purines, that is, adenosine and ATP, are not only products of metabolism but are also neurotransmitters. Indeed, purinergic neurotransmission is involved in thermoregulatory processes that occur during normoxia. Exposure to severe hypoxia elicits a sharp decrease in body core temperature (T(CO)), and adenosinergic mechanisms have been suspected to be responsible for this hypothermia. Because ATP per se and its metabolite adenosine could have complex interactions in some neural networks, we hypothesize that both adenosine and ATP are involved in the central mechanism of hypoxia-induced hypothermia. Their role in the thermoregulatory process was therefore investigated in a 24-h hypobaric hypoxia (Fi(O2) = 10%), using CGS-15943, a nonselective antagonist of adenosine receptors, and suramin, an ATP receptor antagonist. T(CO) and spontaneous activity (A(S)) were monitored by telemetry in conscious rats, receiving CGS-15943 (10 mg/kg ip), suramin (7 nmol icv), or both. The same treatments were done in normoxia to evaluate the specificity of their thermoregulatory action observed in hypoxia. Suramin/CGS-15943 treatment blunted the profound hypothermia observed in control rats throughout the hypoxia exposure, whereas CGS-15943 treatment blunted hypothermia during only 3 h, and suramin treatment had no effect. These results suggest that suramin potentiates the CGS-15943 effects and consequently that adenosine and ATP signaling act in synergy. In normoxia, suramin/CGS-15943 induced an increase in T(CO) but to a far lesser extent than observed in hypoxia. Thus it might be suggested that the suramin/CGS-15943 blunting of hypoxia-induced hypothermia would be specific to hypoxia-induced mechanisms. 相似文献
16.
17.
Radioactive adenosine triphosphate was synthesized transiently from adenosine diphosphate and radioactive inorganic phosphate by sodium and potassium adenosine triphosphatase from guinea pig kidney. In a first step, K+-sensitive phosphoenzyme was formed from radioactive inorganic phosphate in the presence of magnesium ion and 16 mM sodium ion. In a second step the addition to the phosphoenzyme of adenosine diphosphate with a higher concentration of sodium ion produced adenosine triphosphate. Recovery of adenosine triphosphate from the phosphoenzyme was 10 to 100% in the presence of 96 to 1200 mM sodium ion, respectively. Potassium ion (16mM) inhibited synthesis if added before or simultaneously with the high concentration of sodium ion but had no effect afterward. The half-maximal concentration for adenosine diphosphate was about 12 muM. Ouabain inhibited synthesis. The ionophore gramicidin had no significant effect on the level of phosphoenzyme nor on the rate nor on the extent of synthesis of adenosine triphosphate. The detergent Lubrol WX reduced the rate of phosphoenzyme break-down and the rate of synthesis but did not affect the final recovery. Phospholipase A treatment inhibited synthesis. In a steady state, the enzyme catalzyed a slow ouabain-sensitive incorporation or inorganic phosphate into adenosine triphosphate. These results and other suggest that binding of sodium ion to a low affinity site on phosphoenzyme formed from inorganic phosphate is sufficient to induce a conformational change in the active center which permits transfer of the phosphate group to adenosine diphosphate. 相似文献
18.
19.
Studies on the activating enzyme for iron protein of nitrogenase from Rhodospirillum rubrum 总被引:7,自引:0,他引:7
L L Saari M R Pope S A Murrell P W Ludden 《The Journal of biological chemistry》1986,261(11):4973-4977
Removal of ADP-ribose from the iron protein of nitrogenase by activating enzyme resulted in the activation of the inactive iron protein. A radioassay that directly measured the initial velocity of the activation was developed using iron protein radiolabeled with either [8-3H]- or [G-32P]ADP-ribose. The release of radiolabeled ADP-ribose by activating enzyme was linearly correlated with the increase in the specific activity of the iron protein as measured by acetylene reduction. Both ATP and MnCl2 were required for the activation of inactive iron protein. The optimal ratio of [MnCl2]/[ATP] in the radioassay was 2:1, and the optimal concentrations were 4 mM and 2 mM for [MnCl2] and [ATP], respectively. The Km for inactive iron protein was 74 microM and the Vmax was 628 pmol of [32P] ADP-ribose released min-1 microgram of activating enzyme-1. Adenosine, cytidine, guanosine, or uridine mono-, di-, or triphosphates did not substitute for ATP in the activation of native iron protein. Activating enzyme removed ADP-ribose from oxygen-denatured iron protein in the absence of ATP. ADP, ADP-ribose, pyrophosphate, and high concentrations of NaCl inhibited activating enzyme activity. 相似文献
20.
The direct homo- and heteromeric association between G-protein-coupled receptors (GPCRs), adenosine A2A receptor (A(2A)R) and dopamine D2 receptor (D2R), occurs although little is known about the selectivity of their formation (A(2A)R/A(2A)R vs. A(2A)R/D2R). In order to stimulate the heteromerization of A(2A)R and D2R, we have designed a single-polypeptide-chain heterodimeric A(2A)R/D2R complex by fusing the C-terminus of the A(2A)R via transmembrane (TM) of a type II TM protein with the N-terminus of D2R in tandem. This was successfully expressed on the cell surface as a full-length protein with specific binding to the respective ligands and functional coupling to G-proteins comparable to wild-type receptors, suggesting the possible creation of physiologically relevant heteromeric A(2A)R/D2R. This expression system would be useful to exclusively clarify the properties of heteromeric GPCRs irrespective of homomeric receptors. 相似文献