首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
The aim of this study is to determine the effects of the combination of recombinant human BMP-2 (rh-BMP-2) and dentin sialoprotein (rh-DSP) on growth and differentiation in human cementoblasts and determine the underlying signal transduction mechanism. Compared to treatment of cementoblasts with either rh-BMP-2 or rh-DSP alone, the combination of rh-BMP-2 and rh-DSP synergistically increased cell growth, ALP activity, nodule formation and expression of differentiation markers. The differentiation-promoting effect was also observed in periodontal ligament cells and an osteoblastic cell line. Likewise, combination of rh-DSP and rh-BMP-2 increased BMP-2 mRNA expression and Smad1/5/8 phosphorylation, which was blocked by the BMP antagonist noggin. The expression levels of α2β1 integrin and RhoA, as well as the phosphorylation status of FAK and Akt, were increased by the combination of rh-BMP-2 and rh-DSP in a time-dependent manner. In addition, rh-BMP-2 and rh-DSP enhanced expression of Wnt ligands, β-catenin activation and GSK-3β phosphorylation, all of which were inhibited by the Wnt receptor antagonist DKK1. Furthermore, treatment with rh-DSP plus rh-BMP-2 resulted in phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 and also induced the nuclear translocation of the NF-κB p65 subunit, which was blocked by noggin. This study demonstrates for the first time that rh-DSP and rh-BMP-2 act synergistically, enhancing each other’s ability to stimulate cementoblastic cell growth and differentiation in vitro via autocrine BMP, integrin, Wnt/β-catenin, MAP kinase and NF-κB pathways. These results support the therapeutic potential of a combination strategy for aiding periodontal regeneration.  相似文献   

3.
Latexin is the only known carboxypeptidase A inhibitor in mammals. We previously demonstrated that BMP-2 significantly induced latexin expression in Runx2-deficient mesenchymal cells (RD-C6 cells), during chondrocyte and osteoblast differentiation. In this study, we investigated latexin expression in the skeleton and its role in chondrocyte differentiation. Immunohistochemical studies revealed that proliferating and prehypertrophic chondrocytes expressed latexin during skeletogenesis and bone fracture repair. In the early phase of bone fracture, latexin mRNA expression was dramatically upregulated. BMP-2 upregulated the expression of the mRNAs of latexin, Col2a1, and the gene encoding aggrecan (Agc1) in a micromass culture of C3H10T1/2 cells. Overexpression of latexin additively stimulated the BMP-2-induced expression of the mRNAs of Col2a, Agc1, and Col10a1. BMP-2 treatment upregulated Sox9 expression, and Sox9 stimulated the promoter activity of latexin. These results indicate that latexin is involved in BMP-2-induced chondrocyte differentiation and plays an important role in skeletogenesis and skeletal regeneration.  相似文献   

4.
5.

Introduction  

The present study compares bone morphogenetic protein (BMP)-4 and BMP-2 gene transfer as agents of chondrogenesis and hypertrophy in human primary mesenchymal stem cells (MSCs) maintained as pellet cultures.  相似文献   

6.
The in vitro effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on osteogenic and myogenic differentiation was examined in two clonal cell lines of rat osteoblast-like cells at different differentiation stages, ROB-C26 (C26) and ROB-C20 (C20). The C26 is a potential osteoblast precursor cell line that is also capable of differentiating into muscle cells and adipocytes; the C20 is a more differentiated osteoblastic cell line. Proliferation was stimulated by rhBMP-2 in C26 cells, but inhibited in C20 cells. rhBMP-2 greatly increased alkaline phosphate (ALP) activity in C26 cells, but not in C20 cells. The steady-state level of ALP mRNA was also increased by rhBMP-2 in C26 cells, but not in C20 cells. Production of 3',5'-cAMP in response to parathyroid hormone (PTH) was dose-dependently enhanced by adding rhBMP-2 in both C26 and C20 cells, though the stimulatory effect was much greater in the former. There was neither basal expression of osteocalcin mRNA nor its protein synthesis in C26 cells, but they were strikingly induced by rhBMP-2 in the presence of 1 alpha,25-dihydroxyvitamin D3. rhBMP-2 induced no appreciable changes in procollagen mRNA levels of type I and type III in the two cell lines. Differentiation of C26 cells into myotubes was greatly inhibited by adding rhBMP-2. The inhibitory effect of rhBMP-2 on myogenic differentiation was also observed in clonal rat skeletal myoblasts (L6). Like BMP-2, TGF-beta 1 inhibited myogenic differentiation. However, unlike BMP-2, TGF-beta 1 decreased ALP activity in both C26 and C20 cells. TGF-beta 1 induced neither PTH responsiveness nor osteocalcin production in C26 cells, but it increased PTH responsiveness in C20 cells. These results clearly indicate that rhBMP-2 is involved, at least in vitro, not only in inducing differentiation of osteoblast precursor cells into more mature osteoblast-like cells, but also in inhibiting myogenic differentiation.  相似文献   

7.
Molecular mechanisms of lipid synthesis and their controls in hepatic stellate cells are not known. We have previously proposed that, in contrast to other fat storing cells, hepatic stellate cells are not involved in energy storage, but they represent a particular cell population specialized in storage of lipid-soluble substances, the major one being probably retinol. In agreement with this hypothesis, induction of the lipocyte phenotype in stellate cells is not under the control of insulin, but responds to retinoids and other molecules that modify the gene expression program in these cells. In the present study we have monitored the activity of the two major enzymes involved in lipid synthesis during the induction of the lipocyte phenotype in hepatic stellate cells: glycerol-3-phosphate dehydrogenase (GPDH) that mediates the de novo lipid synthesis, and lipoprotein lipase that mediates incorporation of plasma lipids. In early stages of lipocyte induction, both pathways of lipid synthesis are activated. When lipocytes have already constituted the lipid droplets, lipoprotein lipase pathway is downregulated, while GPDH activity remains high. Adult liver has been reported to lack lipoprotein lipase, but under stress, lipase activity was detected around and at the surface of the intrahepatic vasculature. We have now shown that the lipase activity can be induced in the hepatic stellate cells, located in the Disse's space. The high lipoprotein lipase activity under acute induction of lipocyte phenotype, followed by the low activity under conditions of metabolic equilibrium, are in compass with the increased activity of this enzyme under stress, and its low activity in adult liver parenchyma under normal conditions.  相似文献   

8.
We examined osteo-chondrogenic differentiation of a human chondrocytic cell line (USAC) by rhBMP-2 in vivo and in vitro. USAC was established from a transplanted tumor to athymic mouse derived from an osteogenic sarcoma of the mandible. USAC usually shows chondrocytic phenotypes in vivo and in vitro. rhBMP-2 up-regulated not only the mRNA expression of types II and X collagen, but also the mRNA expression of osteocalcin and Cbfa1 in USAC cells in vitro. In vivo experimental cartilaginous tissue formation was prominent in the chamber with rhBMP-2 when compared with the chamber without rhBMP-2. USAC cells implanted with rhBMP-2 often formed osteoid-like tissues surrounded by osteoblastic cells positive for type I collagen. rhBMP up-regulated Ihh, and the expression of Ihh was well correlated with osteo-chondrogenic cell differentiation. These results suggest that rhBMP-2 promotes chondrogenesis and also induces osteogenic differentiation of USAC cells in vivo and in vitro through up-regulation of Ihh.  相似文献   

9.
To evaluate the effect of elcatonin on osteoinduction by recombinant human bone morphogenetic protein-2 (rhBMP-2), 5 microg of rhBMP-2 was implanted into intramuscular sites of rats. For 14 days after the implantation, elcatonin was administered intraperitoneally with total dosage of 80 U, 8 U, and 0.8 U, respectively. For the control group, only physiological saline was administered. At 21 days after implantation, the area of the oval shadow in the radiologic findings depended on the elcatonin dose and the amount of trabecular bone and the number of osteoblasts observed in the histologic findings depended on the dosage of elcatonin. The values of ALP activity and Ca content also showed an elcatonin dose dependency. These results suggested that elcatonin is effective in enhancing osteoinduction by rhBMP-2 within the dose range of this study, and that elcatonin has an anabolic effect on osteoblasts in addition to an antiresorptive effect.  相似文献   

10.
Bone morphogenetic protein-2 (BMP-2) promotes the differentiation of non-osteogenic mesenchymal cells to osteogenic cells. In this study, we isolated human adipose-derived stem cells (hASCs) and investigated the effects of recombinant human BMP-2 (rhBMP-2) and extracellular Ca2+ concentration ([Ca2+]out) on the osteogenic differentiation of hASCs. rhBMP-2 promoted calcium deposition in hASCs and stimulated the mRNA expressions of six proteins known to be involved in the osteogenic differentiation of hASCs: Runx2, osterix, alkaline phosphatase, osteonectin, bone sialoprotein and osteocalcin. Elevation of [Ca2+]out enhanced the level of alkaline phosphatase enzyme, increased the mRNA expressions of Runx2 and osteocalcin and induced the expressions of BMP-2 mRNA and protein in hASCs. Elevation of [Ca2+]out transiently increased the intracellular Ca2+ concentration ([Ca2+]in) due to activation of the calcium-sensing receptor (CaSR). The Ca2+-induced expressions of BMP-2 mRNA and protein were inhibited by the calmodulin antagonist, W-7. Furthermore, elevation of [Ca2+]out decreased the cytoplasmic level of phosphorylated nuclear factor of activated T-cell-2 (NFAT-2) and increased the nuclear level of dephosphorylated NFAT2. Taken together, these results suggest that rhBMP-2 promotes the osteogenic differentiation of hASCs. Furthermore, an increase in [Ca2+]out enhances the expression of BMP-2 via activation of the CaSR, elevation of [Ca2+]in and stimulation of Ca2+/calmodulin-dependent NFAT-signaling pathways.  相似文献   

11.
12.
13.
Cell responses to bone morphogenetic proteins (BMP) depend on the expression and surface localisation of transmembrane receptors BMPR-IA, -IB and -II. The present study shows that all three antigens are readily detected in human bone cells. However, only BMPR-II was found primarily at the plasma membrane, whereas BMPR-IA was expressed equally in the cytoplasm and at the cell surface. Notably, BMPR-IB was mainly intracellular, where it was associated with a number of cytoplasmic structures and possibly the nucleus. Treatment with transforming growth factor β1 (TGF-β1) caused rapid translocation of BMPR-IB to the cell surface, mediated via the p38 mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) pathways. The TGF-β1-induced increase in surface BMPR-IB resulted in significantly elevated BMP-2 binding and Smad1/5/8 phosphorylation, although the receptor was subsequently internalised and the functional response to BMP-2 consequently down-regulated. The results show, for the first time, that BMPR-IB is localised primarily in intracellular compartments in bone cells and that TGF-β1 induces rapid surface translocation from the cytoplasm to the cell surface, resulting in increased sensitivity of the cells to BMP-2.  相似文献   

14.
FK506 is an immunosuppressant that is used widely in organ transplantation, and it has recently been recognized as effective for promoting the growth of bone grafts [J. Bone Miner. Res. 15 (2000) 1147]. In this study, we evaluated the influence of FK506 on osteoinduction by recombinant human bone morphogenetic protein-2 (rhBMP-2) using atelopeptide type I collagen as a carrier. We administered FK506 (1 mg/kg/day intramuscularly) on days -2 to 0, -2 to 7, and -2 to sacrifice. rhBMP-2 was implanted into the calf muscle of Wistar rats (thirty per group) and the implant was sampled on days 7, 14, and 21. Radiographic evaluation, histological examination, and biochemical analysis were performed. It was found that FK506 promoted the early stage of osteoinduction after short-term administration. However, long-term administration of this agent accelerated both bone formation and bone resorption. In order to use FK506 effectively for promoting bone growth, we must further examine the appropriate dose, method, and period of administration.  相似文献   

15.
Osteoprogenitor cells in the human bone marrow stroma can be induced to differentiate into osteoblasts under stimulation with hormonal and local factors. We previously showed that human bone marrow stromal (HBMS) cells respond to dexamethasone and vitamin D by expressing several osteoblastic markers. In this study, we investigated the effects and interactions of local factors (BMP-2 and TGF-β2) on HBMS cell proliferation and differentiation in short-term and long-term cultures. We found that rhTGF-β2 increased DNA content and stimulated type I collagen synthesis, but inhibited ALP activity and mRNA levels, osteocalcin production, and mineralization of the matrix formed by HBMS cells. In contrast, rhBMP-2 increased ALP activity and mRNA levels, osteocalcin levels and calcium deposition in the extracellular matrix without affecting type I collagen synthesis and mRNA levels, showing that rhBMP-2 and rhTGF-β2 regulate differentially HBMS cells. Co-treatment with rhBMP-2 and rhTGF-β2 led to intermediate effects on HBMS cell proliferation and differentiation markers. rhTGF-β2 attenuated the stimulatory effect of rhBMP-2 on osteocalcin levels, and ALP activity and mRNA levels, whereas rhBMP-2 reduced the rhTGF-β2-enhanced DNA synthesis and type I collagen synthesis. We also investigated the effects of sequential treatments with rhBMP-2 and rhTGF-β2 on HBMS cell differentiation in long-term culture. A transient (9 days) treatment with rhBMP-2 abolished the rhTGF-β2 response of HBMS cells on ALP activity. In contrast, a transient (10 days) treatment with rhTGF-β2 did not influence the subsequent rhBMP-2 action on HBMS cell differentiation. The data show that TGF-β2 acts by increasing HBMS cell proliferation and type I collagen synthesis whereas BMP-2 acts by promoting HBMS cell differentiation. These observations suggest that TGF-β2 and BMP-2 may act in a sequential manner at different stages to promote human bone marrow stromal cell differentiation towards the osteoblast phenotype. J. Cell. Biochem. 68:411–426, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
带有pBV221-hBMP-7的E.coli表达得到的rhBMP-7以不溶的包涵体形式存在,用高浓度的变性利溶解后,经过DEAE-FF纯化,得到高纯度的目的蛋白,达95%以上。分别用尿素浓度梯度降低法、添加促复性剂及人工分子伴侣法对蛋白质进行复性,并通过不同方法对复性结果进行比较。Western blot中辉度扫描结果显示,GSH/GSSG法样品二聚体/单体比例为79.5/20.5,尿素浓度梯度降低法二聚体/单体比例为73.6/26.4,表明GSH/GSSG法复性样品溶液上清中含较高比例的蛋白质二聚体。根据不同复性样品对NIH3T3细胞ALP活性影响大小的比较结果,氧化还原剂最有助于二聚体的形成,蛋白质活性最高。  相似文献   

17.
We have examined the effects of BMP-2 on the expression of bone matrix proteins in both human bone marrow stromal cells (HBMSC) and human osteoblasts (HOB) and their proliferation and mineralization. Both HBMSC and HOB express BMP-2/-4 type I and type II receptors. Treatment of these two cell types with BMP-2 for 4 weeks in the presence of β-glycerophosphate and ascorbic acid results in mineralization of their matrix. BMP-2 increases the mRNA level and activities of alkaline phosphatase and elevates the mRNA levels and protein synthesis of osteopontin, bone sialoprotein, osteocalcin, and α1(I) collagen in both cell types. Whereas the mRNA level of decorin is increased, the mRNA concentration of biglycan is not altered by BMP-2. No effect on osteonectin is observed. The effect of BMP-2 on bone matrix protein expression is dose dependent from 25 to 100 ng/ml and is evident after 1–7 days treatment. In the presence of BMP-2, proliferation of HBMSC and HOB is decreased under either serum-free condition or in the presence of serum. Thus, BMP-2 has profound effects on the proliferation, expression of most of the bone matrix proteins and the mineralization of both relatively immature human bone marrow stromal preosteoblasts and mature human osteoblasts. J. Cell. Biochem. 67:386–398, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
将人BMP-2的编码区cDNA克隆至穿梭载体pShuttle,以PI-SceI和I-CeuI切下含BMP-2编码区cDNA的片断,在体外与PI-SceI/I-CeuI切开的腺病毒DNA连接,构建重组有BMP-2全长编码区基因的腺病毒DNA,PCR鉴定正确后,经PacI酶切线性化,在脂质体介导下转染HEK293细胞,反复冻融制备重组腺病毒,空斑形成试验测定病毒滴度约为7.5×106~1.5×107pfu/ml。以BMP-2重组腺病毒感染体外培养的小鼠成肌细胞C2C12,Westernblot检测证实有BMP-2表达。  相似文献   

19.
Homodimeric bone morphogenetic protein-2 (BMP-2) is a member of the transforming growth factor beta (TGF-beta) superfamily that induces bone formation and regeneration, and determines important steps during early stages of embryonic development in vertebrates and non-vertebrates. BMP-2 can interact with two types of receptor chains, as well as with proteins of the extracellular matrix and several regulatory proteins. We report here the crystal structure of human BMP-2 determined by molecular replacement and refined to an R-value of 24.2 % at 2.7 A resolution. A common scaffold of BMP-2, BMP-7 and the TGF-betas, i.e. the cystine-knot motif and two finger-like double-stranded beta-sheets, can be superimposed with r. m.s. deviations of around 1 A. In contrast to the TGF-betas, the structure of BMP-2 shows differences in the flexibility of the N terminus and the orientation of the central alpha-helix as well as two external loops at the fingertips with respect to the scaffold. This is also known from the BMP-7 model. Small secondary structure elements in the loop regions of BMP-2 and BMP-7 seem to be specific for the respective BMP-subgroup. Two identical helix-finger clefts and two distinct cavities located around the central 2-fold axis of the dimer show characteristic shapes, polarity and surface charges. The possible function of these specific features in the interaction of BMP-2 with its binding partners is discussed.  相似文献   

20.
Current osteoinductive protein therapy utilizes bolus administration of large doses of bone morphogenetic proteins (BMPs), which is costly, and may not replicate normal bone healing. The limited in vivo biologic activity of BMPs requires the investigation of growth factors that may enhance this activity. In this study, we utilized the C3H10T1/2 murine mesenchymal stem cell line to test the hypotheses that osteoactivin (OA) has comparable osteoinductive effects to bone morphogenetic protein-2 (BMP-2), and that sustained administration of either growth factor would result in increased osteoblastic differentiation as compared to bolus administration. Sustained release biodegradable hydrogels were designed, and C3H10T1/2 cells were grown on hydrogels loaded with BMP-2 or OA. Controls were grown on unloaded hydrogels, and positive controls were exposed to bolus growth factor administration. Cells were harvested at several time points to assess osteoblastic differentiation. Alkaline phosphatase (ALP) staining and activity, and gene expression of ALP and osteocalcin were assessed. Treatment with OA or BMP-2 resulted in comparable effects on osteoblastic marker expression. However, cells grown on hydrogels demonstrated osteoblastic differentiation that was not as robust as cells treated with bolus administration. This study shows that OA has comparable effects to BMP-2 on osteoblastic differentiation using both bolus administration and continuous release, and that bolus administration of OA has a more profound effect than administration using hydrogels for sustained release. This study will lead to a better understanding of appropriate delivery methods of osteogenic growth factors like OA for repair of fractures and segmental bone defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号